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Abstract 

Using relevant diagnostic measurements such as systolic blood pressure, diastolic blood pressure, fasting 

blood sugar level, hemoglobin A1c level, serum creatinine level, blood urea nitrogen level, glomerular 

filtration rate, protein levels in urine, albumin-to-creatinine ratio, serum sodium level, serum potassium level, 

serum calcium level, serum phosphorus level, hemoglobin level, total cholesterol level, low-density 

lipoprotein cholesterol level, high-density lipoprotein cholesterol level, triglycerides level, as well as 

lifestyle and environmental factors, suitably complex artificial intelligence (AI) models generated based on 

suggestions extracted from generative AI tools such as large language models (LLMs) through prompt 

engineering are trained and deployed to automatically diagnose chronic kidney disease for clinical decision 

support purposes. The results indicate that the application of prompt engineering to generative AI tools 

coupled with AI expertise is a viable approach to the development of AI models for automatic chronic 

kidney disease diagnosis on the basis of diagnostic measurements, lifestyle and environmental factors. The 

trained AI models could be incorporated into a modular comprehensive AI-driven healthcare system 

designed to provide actionable insights that can support clinical decision-making practice. 

Keywords: Artificial Intelligence (AI), Generative Artificial Intelligence, Large Language Model (LLM), 

Artificial Neural Network (ANN), Chronic Kidney Disease (CKD), Healthcare System, TensorFlow, Disease 

Diagnosis and Prediction 

1. Introduction

The debilitating effects of chronic kidney disease 

(CKD) are borne by a large number of people 

worldwide [1]. Chronic kidney disease features 

prominently as one of the top ten leading causes 

of mortality globally according to Word Health 

Organization (WHO) statistics [2].  People in low- 

and middle-income countries (LMIC) with 

inadequate healthcare facilities and limited access 

to affordable healthcare services with healthcare 

systems characterized by chronic and acute 

shortages of qualified service providers are 

particularly hard hit. Accurate and timely 

diagnosis of CKD can significantly improve 

health outcomes and ameliorate the economic, 

physical, psychological and emotional toll of the 

disease.  

Ekpar [3] created a comprehensive artificial 

intelligence-driven healthcare system that can 

incorporate modules for the automated diagnosis 

of CKD and a wide variety of health conditions 

and sporting features for the adoption of novel 

three-dimensional multilayer 

electroencephalography (Ekpar EEG) systems for 

greater insights into brain-related health 

conditions, rehabilitation and practical human 

machine interfaces (HMIs) such as high 

performance brain computer interfaces (BCIs) and 

brain-to-brain communication [3], [4], [5], [6]. 

http://www.ijecs.in/
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This comprehensive AI-driven healthcare system 

(Scholar Medic) [3] enables ten or higher-fold 

improvements in medical doctor productivity, 

permitting the availability of high-quality 

healthcare services even in resource-constrained 

settings such as LMICs and mitigating the 

deleterious effects of the brain drain occasioned 

by the emigration of qualified medical doctors 

from LMICs to developed countries for greener 

pastures. In a previous study, Ekpar [7] 

synthesized suitably complex AI models and more 

specifically, artificial neural networks for the 

automated diagnosis of CKD based on clinical 

measurements, lifestyle and environmental 

considerations for incorporation into a 

comprehensive AI-driven healthcare system [3]. 

Additional studies by Ekpar [8], [9] applied two-

dimensional (2D) convolutional neural networks 

(CNNs) built from the ground up on the basis of 

expert knowledge as well as on the basis of 

prompt engineering of generative AI tools to the 

development of image-based automated chronic 

kidney disease diagnosis systems. This paper 

introduces a system that relies on prompt 

engineering to extract suggestions from generative 

AI tools on the development of AI models for 

automated diagnosis of CDK based on clinical 

measurements, lifestyle and environmental factors 

and then the recommended AI models are 

implemented and trained, tested and validated on 

publicly accessible data with the potential for 

refinement and incorporation into the 

comprehensive AI-powered healthcare system – 

Scholar Medic – created by Ekpar [3]. 

A wide range of published studies have applied AI 

to the diagnosis and prediction of diseases such as 

heart disease, epilepsy, diabetes mellitus and other 

conditions [10] – [28]. The vast majority of these 

studies were designed around conditions and data 

in developed countries and consequently report 

results that are liable to bias and prone to limited 

global relevance.  

There is as yet at best limited application of large 

language models (LLMs) with the ability to draw 

inferences using AI models trained on input data 

and to learn structured representations of the 

underlying data [29], [30] to the prediction and 

diagnosis of health conditions and the 

construction of BCIs. Brain computer interfaces 

(BCIs) including those based on 

electroencephalography (EEG) provide 

opportunities for rehabilitation and for interaction 

with the environment but are hampered by 

limitations such as poor performance, high cost, 

risks associated with surgery for implanted 

systems, and so on, severely limiting their 

application in practice [31] – [49]. Ekpar EEG 

systems – novel three-dimensional multilayer 

EEG systems [4], [5], [6] offer high performance 

typically only attainable in systems requiring 

surgical implantation of electrodes while actually 

operating non-invasively and obviating the need 

for risky and expensive surgeries and enabling a 

wide range of novel and game-changing 

applications.  

2. Materials and Methods

Participant Recruitment 

Individuals volunteered to participate in the 

research that contributed to the creation of the 

comprehensive AI-powered healthcare system, 

with all participants providing informed consent 

prior to their involvement in the studies. 

Ethical Approval 

The Health Research Ethics Committee at the 

Rivers State University Teaching Hospital, located 

within Rivers State University, granted ethical 

clearance for the studies. The research adhered to 

all applicable ethical and regulatory standards. 

Publicly available data were used in compliance 

with the licensing terms set by the original 

creators. 

3. Methodology

Healthcare datasets that are publicly available can 

be enhanced by integrating data collected from 

local experiments and data collection initiatives. 

This combined data can then be used to train AI 

models to make actionable predictions based on 

new inputs. Public healthcare dataset sources 

include the Centers for Disease Control, the 
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University of California Irvine Machine Learning 

Repository, the American Epilepsy Society, and 

Kaggle. 

Incorporating local data strengthens the model, 

minimizes bias, and ensures broader inclusivity 

and global relevance. A distinctive aspect of this 

project involves merging diagnostic data (which 

may include electrocardiographic results) from 

local experiments with EEG data, utilizing both 

traditional and innovative three-dimensional 

multilayer EEG systems. 

Local data collection efforts for the project have 

received ethical approval from research ethics 

committees in the regions where the experiments 

take place. Additionally, partnerships have been 

formed with licensed medical doctors who have 

direct access to patients and healthcare 

professionals in the community. These doctors are 

contributing anonymized clinical data to validate 

the AI models. 

The AI models, once trained, will be integrated 

into a comprehensive healthcare system designed 

to assist medical practitioners with clinical 

decision-making and generate Brain-Computer 

Interfaces (BCIs). The system will offer 

actionable predictions and insights derived from 

new clinical data provided by healthcare 

professionals. This will help with the early 

detection, diagnosis, treatment, prediction, and 

prevention of various conditions such as diabetes, 

heart disease, stroke, autism, and epilepsy. 

This project is dedicated to advancing open 

science, reproducibility, and collaboration, and as 

such, the generated data will be shared on public 

platforms like GitHub. 

4. System Design and Implementation

The healthcare system outlined in this paper 

adopts a modular design, where each health 

condition (such as diabetes mellitus, heart disease, 

stroke, epilepsy, autism, etc.) is managed by a 

separate module. This structure ensures the system 

can be extended to diagnose and predict additional 

conditions in the future, while also enabling 

efficient updates to existing modules with new 

data. Modules designed for Brain-Computer 

Interfaces (BCIs), including those utilizing the 

motor imagery paradigm, are capable of 

processing EEG data to generate actionable 

commands and appropriate responses. 

The system also includes guidelines for adapting 

traditional EEG systems to innovative game-

changing three-dimensional multilayer EEG 

systems. These novel systems, developed by 

Ekpar [4], [5], [6] follow a conceptual framework 

that uses approximations of key features from the 

bio-signal sources to analyze or manipulate the 

underlying biological systems. 

For each module, advanced AI models are 

developed and trained on properly formatted data, 

as outlined in the paper. These AI models can 

incorporate genetic, environmental, lifestyle, and 

other pertinent information to provide more 

accurate depictions of the participants' 

circumstances. 

Key aspects of the system are represented 

graphically in Fig. 1 

Fig. 1: System Schematic Design Diagram for 

the Comprehensive AI-Driven Healthcare 

Solution and Brain Computer Interface System. 

The New Conditions component represents 

additional health conditions that can be 

incorporated into the solution via new modules. 

The AI models are developed using four distinct 

methods: 

1. Direct Utilization of LLMs like GPT-4 as

inference engines, leveraging data

formatted as multidimensional input
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vectors. This process may involve fine-

tuning the LLM. 

2. Prompt Engineering applied to LLMs such

as Bard and GPT-4 (including future

versions) to propose a sequence of actions

for developing the AI system. These steps

are then executed using the creator’s

expertise in AI, neural networks, deep

learning, Python, TensorFlow, Keras, and

other machine learning and visualization

tools like Scikit-learn and Matplotlib.

3. Automated Generation of AI Models using

LLMs such as Bard and GPT-4 (and their

future iterations) through an automated

pipeline to create specific models.

4. Direct Design of an AI Architecture based

on the creator’s deep knowledge of AI,

neural networks, deep learning, Python,

TensorFlow, Keras, and other ML and

visualization tools like Scikit-learn and

Matplotlib.

All methods and tools used in the solution’s 

development are thoroughly documented to ensure 

easy transfer and reuse of the system. 

The generated AI models are evaluated and 

compared based on their performance (using 

metrics like specificity, sensitivity, etc.) and their 

suitability for addressing the challenges at hand. 

Automated Chronic Kidney Disease Diagnosis 

Based on Diagnostic Measurements  

This study adopts the second approach to the 

construction of AI models in the foregoing list of 

approaches, namely, prompt engineering of 

generative AI tools such as large language models 

(LLMs). More specifically, the ChatGPT 4o mini 

LLM was used for the generation of suggestions 

on how to build a system to solve the problem at 

hand – the development of a suitable AI model for 

the automated diagnosis of chronic kidney disease 

based on clinical measurements, lifestyle and 

environmental factors. 

First, ChatGPT is prompted with a generalized 

query on the design of the system. Based on the 

response generated by ChatGPT to the first 

prompt, a more specialized second prompt is 

created and used to elicit concrete instructions and 

source code for the development of the suggested 

AI model. Finally, the suggested AI model is 

implemented, trained, tested and validated on a 

publicly accessible chronic kidney disease dataset. 

The resulting AI model could be refined and then 

incorporated into a Kidney Disease Module within 

the comprehensive AI-driven healthcare system 

created by Ekpar [3]. 

Following is a brief description of the dataset 

employed and a presentation of the exact prompts 

fed into ChatGPT (accounting for the number of 

features in the dataset) and copies of the responses 

generated by Chat GPT. 

DATASET 

The chronic kidney disease dataset used in this 

study was sourced from the Kaggle dataset 

repositor. It comprises a total of 1659 rows or 

complete data samples each of which contains 52 

columns of interest. Clinical measurements, 

lifestyle and environmental factors relevant for the 

diagnosis of chronic kidney make up the first 51 

columns of each row while the last column is the 

associated diagnosis representing presence or 

absence of chronic kidney disease. A value of 1 

represents a positive diagnosis (chronic kidney 

disease present) while a value of 0 represents a 

negative diagnosis (chronic kidney disease absent). 

Captured in the first 51 columns of input are the 

relevant measurements from each participant. 

These measurements include patient information 

like demographic particulars and lifestyle factors 

(age, gender or sex, ethnicity, education level, 

socioeconomic status, body mass index, physical 

activity, smoking, alcohol consumption, diet 

quality, sleep quality), medical history (family 

history of kidney disease, family history of 

hypertension, family history of diabetes, previous 

acute kidney injury, urinary tract infections), 

diagnostic measurements (systolic blood pressure, 

diastolic blood pressure, fasting blood sugar level, 

hemoglobin A1c level, serum creatinine level, 

blood urea nitrogen level, glomerular filtration 

rate, protein levels in urine, albumin-to-creatinine 
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ratio, serum sodium level, serum potassium level, 

serum calcium level, serum phosphorus level, 

hemoglobin level, total cholesterol level, low-

density lipoprotein cholesterol level, high-density 

lipoprotein cholesterol level, triglycerides level), 

medications (use of ACE inhibitors, use of 

diuretics, frequency of NSAIDs use, use of statins, 

use of antidiabetic medications), symptoms and 

quality of life (presence of edema, fatigue level, 

frequency of nausea and vomiting, frequency of 

muscle cramps, itching severity, quality of life 

score), environmental and occupational exposures 

(exposure to heavy metals, occupational exposure 

to harmful chemicals, quality of water), and health 

behaviors (frequency of medical check-ups per 

year, medication adherence score, health literacy 

score). 

Data Availability 

The data collections that support the conclusions 

of this study are contained in the chronic kidney 

disease dataset publicly available from the Kaggle 

dataset repository at 

https://www.kaggle.com/datasets/rabieelkharoua/c

hronic-kidney-disease-dataset-analysis. 

FIRST Chat GPT PROMPT 

Design a system for automated diagnosis of 

chronic kidney disease based on diagnostic 

measurements such as systolic blood pressure, 

diastolic blood pressure and fasting sugar level. 

FIRST Chat GPT RESPONSE 

Designing a system for automated diagnosis of 

chronic kidney disease (CKD) using diagnostic 

measurements such as systolic blood pressure 

(SBP), diastolic blood pressure (DBP), and fasting 

sugar level (FSL) involves developing a 

comprehensive workflow incorporating data 

collection, preprocessing, analysis, and output 

generation. Below is a step-by-step approach to 

design this system. 

1. Data Collection

The first step is to collect accurate and relevant 

data. The system will require the following 

measurements: 

• Systolic Blood Pressure (SBP): A

measure of the pressure in your arteries

when the heart beats.

• Diastolic Blood Pressure (DBP): The

pressure in the arteries when the heart rests

between beats.

• Fasting Sugar Level (FSL): The blood

glucose level after fasting for at least 8

hours.

The system can receive this data either through: 

• Direct input from a medical practitioner or

patient

• Automated integration with digital health

devices (e.g., blood pressure monitors,

glucose meters)

2. Data Preprocessing

Once the data is collected, preprocessing steps are 

necessary to ensure the data is clean and usable 

for analysis: 

• Handle missing values: If any

measurement is missing, decide on an

appropriate strategy, such as asking for a

recheck or estimating values based on

historical data.

• Normalize measurements: Standardize

units for consistency (e.g., converting BP

from mmHg if different units are used).

• Check for outliers: Values significantly

higher or lower than typical ranges should

be flagged for further review.

3. Feature Engineering

Extract features relevant to CKD diagnosis from 

the raw data: 

• Blood Pressure Ratio: Calculate the ratio

of SBP to DBP to evaluate blood pressure

health (e.g., high ratios can indicate

potential hypertension).

• Fasting Glucose Categories: Classify

FSL into categories such as normal,

prediabetic, or diabetic based on standard

glucose thresholds:

o Normal: 70–100 mg/dL
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o Prediabetic: 101–125 mg/dL

o Diabetic: ≥126 mg/dL

• Risk Scoring: Create a composite score

by aggregating the blood pressure and

fasting sugar level data, which correlates

with CKD risk.

4. CKD Risk Prediction Model

A machine learning model can be trained to 

predict the likelihood of CKD based on the input 

parameters (SBP, DBP, and FSL). The model 

could be trained on historical patient data with 

labels indicating the presence or absence of CKD. 

The steps to build the model: 

• Data Collection for Model Training:

Gather a dataset containing labeled

examples of patients with and without

CKD, with corresponding measurements

for SBP, DBP, and FSL.

• Model Choice: Select a machine learning

algorithm (e.g., logistic regression,

decision trees, random forests, or neural

networks) suitable for classification

problems.

• Feature Selection: Use statistical

techniques (e.g., correlation analysis) to

identify the most influential features.

• Model Training: Split the data into training

and test sets, then train the model to

predict CKD based on the input

measurements.

• Model Evaluation: Evaluate the model's

performance using metrics like accuracy,

precision, recall, F1 score, and ROC-AUC.

5. Classification Logic

• Once the model is trained, the system will

process incoming data as follows:

• Input the measurements: Enter SBP, DBP,

and FSL into the system.

• Feature extraction: Extract relevant

features (ratios, categories, etc.).

• Prediction: Feed the processed data into

the trained model.

Output the diagnosis: Based on the model’s output, 

classify the patient as: 

o CKD Risk: Low

o CKD Risk: Moderate

o CKD Risk: High

6. System Interface and Feedback

The system should provide a user-friendly 

interface for both medical practitioners and 

patients. The interface should: 

• Input Interface: Allow for easy data entry,

either manually or via automated device

integration.

• Results Output: Display the CKD risk

classification with associated

recommendations (e.g., "Monitor blood

pressure," "Consult a doctor," or "Start

diabetes management").

• Recommendations: Provide health tips or

advice based on the risk classification (e.g.,

lifestyle changes, diet, and exercise).

• Data Logging: Store historical data and

track changes over time, enabling long-

term monitoring of CKD risk.

7. Further Analysis and Diagnostics

To enhance the accuracy and utility of the system: 

• Integrate Additional Parameters:

Incorporate other relevant parameters such

as age, gender, eGFR (estimated

glomerular filtration rate), and creatinine

levels, which are commonly used in CKD

diagnosis.

• Multi-Model Integration: Combine the

blood pressure and fasting sugar-based

model with other existing CKD prediction

tools to create a hybrid model for better

accuracy.

8. System Deployment

The system should be deployed in a clinical 

setting, either: 

• Cloud-based platform: Accessible from

various devices for doctors and patients.
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• Standalone Medical Devices: Embedded

in digital health devices or apps for home

use by patients.

9. Security and Privacy Considerations

Ensure the system complies with medical data 

privacy standards such as HIPAA or GDPR. All 

personal and medical data should be encrypted, 

and secure access should be implemented. 

10. Continuous Learning and Model 

Improvement 

To improve the model over time: 

• Continuous Data Collection: Gather

feedback and data from real-world usage

to retrain and fine-tune the model

periodically.

• Model Updates: As new research and

medical guidelines are published, update

the risk prediction model to reflect the

latest findings.

________________________________________ 

Summary 

The system uses key diagnostic measurements like 

blood pressure and fasting glucose levels to assess 

the risk of CKD. A machine learning-based model, 

trained on historical data, predicts CKD risk and 

provides personalized recommendations. This 

system can be used both in clinical settings and by 

individuals at home to monitor kidney health, 

ensuring early detection and intervention. 

System Design Considerations 

The comprehensive AI-driven healthcare system 

created by Ekpar [3] incorporates a wide variety 

of relevant system design considerations including 

those recommended in the above listed ChatGPT 

response with provision for model updates 

facilitated by the modular design in addition to 

ethical, security and privacy considerations. 

SECOND ChatGPT PROMPT 

Design an artificial neural network for binary 

classification of a set of 51 inputs. 

SECOND ChatGPT RESPONSE 

To design an artificial neural network (ANN) for 

binary classification with 51 input features, we 

need to consider the architecture, activation 

functions, and training setup. Below is a step-by-

step guide for creating a neural network suitable 

for this task: 

1. Input Layer:

• Number of Nodes: 51 (equal to the

number of input features).

• Purpose: Each node will represent a

feature from the input dataset.

2. Hidden Layers:

• First Hidden Layer:

o Number of nodes: 64 (typically, this is

chosen empirically or through cross-

validation).

o Activation function: ReLU (Rectified

Linear Unit) is commonly used for hidden

layers due to its simplicity and efficiency.

• Second Hidden Layer:

o Number of nodes: 32 (can vary based on

the complexity of the problem).

o Activation function: ReLU.

• You can add more hidden layers if

necessary, depending on the complexity of

your dataset. However, two hidden layers

should be sufficient for many problems.

3. Output Layer:

• Number of Nodes: 1 (since it's a binary

classification task, the output is a single

scalar).

• Activation Function: Sigmoid, which will

output a value between 0 and 1, indicating

the probability of belonging to the positive

class.

4. Loss Function:

• Since it's a binary classification, use

Binary Cross-Entropy (also called log loss)

as the loss function. This is suitable for

tasks where the output is a probability (as

given by the sigmoid activation).
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5. Optimizer:

• Use Adam Optimizer for efficient gradient

descent with adaptive learning rates.

6. Model Architecture in Python (with

Keras/TensorFlow): 

from tensorflow. keras. models import Sequential 

from tensorflow. keras. layers import Dense 

from tensorflow.keras.optimizers import Adam 

# Initialize the model 

model = Sequential () 

# Input Layer: 51 inputs 

model.add(Dense(64,  

input_dim=51, activation='relu')) 

# Hidden Layer 1: 64 neurons, ReLU activation 

model.add(Dense(32, activation='relu')) 

# Output Layer: 1 output neuron, sigmoid 

activation for binary classification 

model.add(Dense(1, activation='sigmoid')) 

# Compile the model with Adam optimizer and 

binary cross-entropy loss 

model.compile(optimizer=Adam(), 

loss='binary_crossentropy', metrics=['accuracy']) 

# Model Summary 

model.summary() 

7. Model Training:

• You can now train the model using your

dataset:

# Assuming X_train and y_train are your training 

data and labels 

model.fit(X_train, y_train, epochs=50, 

batch_size=32, validation_data=(X_val, y_val)) 

8. Evaluation:

After training, evaluate the model on a test set 

(e.g., X_test and y_test) to determine its 

performance. 

# Assuming X_test and y_test are your test data 

and labels 

test_loss, test_accuracy = model.evaluate(X_test, 

y_test) 

print (f'Test Loss: {test_loss}, Test Accuracy: 

{test_accuracy}') 

Notes on Tuning: 

• You may need to experiment with the

number of layers, the number of neurons in

each layer, and the learning rate of the

optimizer.

• You can use techniques like dropout or

batch normalization if overfitting becomes

an issue.

• Early stopping is useful to prevent

overfitting by stopping training when the

validation accuracy stops improving.

Summary: 

This architecture is a simple yet powerful design 

for binary classification with 51 inputs. The 

network starts with 51 input nodes, followed by 

two hidden layers with ReLU activation, and ends 

with a sigmoid output layer for binary 

classification. The model uses the Adam optimizer 

with binary cross-entropy loss, and the final 

output is a probability indicating class 

membership. 

Artificial Neural Network (Ann) Architecture 

The artificial neural network (ANN) 

recommended by ChatGPT is a multilayer 

perceptron with 51 input units, two hidden layers 

with the first hidden layer featuring 64 units and 

the second hidden layer featuring 32 units and a 

single unit in the output layer. ReLU activation 

was recommended for all units except the output 

unit for which sigmoid activation was 

recommended. 

Figure 2 illustrates a generalized depiction of the 

artificial neural network. In Fig. 2, CM1, CM2, ..., 

CMN represent the relevant clinical measurements 

(a total of N=51 to cover all the measurements 

taken for each patient or participant as explained 
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in the foregoing) while CD represents the clinical 

diagnosis which maps to the output of the artificial 

neural network. 

Fig. 2: Schematic Graphical Representation of 

Artificial Neural Network (ANN) Architecture. 

CM1, CM2, ..., CMN represent the inputs while 

CD represents the output indicating the 

suggested clinical diagnosis. 

5. Results

The artificial neural network was implemented by 

utilizing the TensorFlow platform and the Keras 

API in the Python programming language [50], 

[51]. A split in the original input chronic kidney 

disease dataset was implemented such that 60% of 

the dataset was reserved for training of the 

artificial neural network while 40% of the dataset 

was reserved for testing and validation. Random 

shuffling of the dataset was introduced as a bias-

mitigating measure. The artificial neural network 

was trained over 500 epochs utilizing the Adam 

Optimizer [52], [53], binary cross-entropy loss 

function, a default learning rate of 0.001 and a 

default batch size of 32. The trained AI model was 

characterized by performance metrics of 

approximately 93% precision, approximately 93% 

specificity and approximately 95% sensitivity, 

performing substantially on par with the expert-

synthesized system developed in the comparable 

earlier study [7]. 

Figure 3 shows a subset of clinical measurements 

for a selected patient and the corresponding 

diagnosis suggested by the trained AI model. 

Fig. 3: Chronic Kidney Disease Diagnosis 

Module of Scholar Medic Showing Clinical 

Measurements and Corresponding Suggested 

Diagnosis. 

Computation of the precision, sensitivity or recall 

and specificity performance metrics is as follows: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷

In the foregoing equations, TN refers to true 

positives, FP refers to false positives, FN refers to 

false negatives, and TN refers to true negatives. 

Negative here indicates normal kidney functioning 

or absence of chronic kidney disease while 

positive indicates the presence of chronic kidney 

disease. Implementing the comprehensive AI 

system outlined here will provide actionable 

insights for clinical decision-making, ultimately 

saving lives and enhancing living conditions. This 

is achieved by reducing the economic, social, 

psychological, and physical burdens of conditions 

that could be predicted, prevented, detected early, 

diagnosed, treated, and managed more effectively. 
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Electronic Health Records (EHR), including 

clinical diagnostic data and EEG information, 

could be created by participating medical 

professionals and their colleagues. EEG data may 

also be collected during experiments involving 

Brain-Computer Interfaces (BCIs). All data will 

be gathered in line with ethical guidelines, 

anonymized, and then made publicly available in 

repositories alongside relevant research 

publications. 

6. Discussion

Predictions from the comprehensive AI-driven 

healthcare system [3] could be utilized to guide 

recommendations for lifestyle changes that may 

help prevent diseases and significantly enhance 

health outcomes. The system’s modular 

architecture enables the potential for diagnosing 

and predicting additional conditions in the future, 

while also allowing for efficient updates to 

specific modules with new data. Incorporating 

environmental and genetic data into the AI models 

could provide a more accurate representation of 

participants' living conditions, thus making 

medical practitioners' prescriptions more effective. 

A variety of strategies, such as the use of large 

language models and smaller AI models, could be 

explored, evaluated, and compared to determine 

the most suitable approach based on resource 

availability and urgency, with the best method 

being implemented in each situation. 

The responses of generative AI tools such as large 

language models could be leveraged with AI 

expertise to create AI models with performance on 

par with expert-crafted systems or where 

performance is sub-par, could be refined on the 

basis of AI expertise to generate usable systems as 

demonstrated by this study.  Further 

advancements in the technologies outlined here, 

through ongoing research and development 

(including the creation of the novel three-

dimensional multilayer EEG system [4], [5], [6] 

introduced by Ekpar, which could enable much 

higher electrode densities and superior 

performance compared to traditional EEG 

systems), will enhance societal capabilities, aid in 

the rehabilitation of individuals with neurological 

conditions, and generally improve overall quality 

of life. 

7. Conclusion

Suggestions were elicited from generative AI tools 

- a large language model (LLM) in this case - for 

AI models which were then implemented, trained, 

tested and validated on publicly available data for 

the automated diagnosis of chronic kidney disease 

relying on clinical measurements, lifestyle and 

environmental factors for clinical decision support. 

The resulting models could be refined and 

incorporated into the comprehensive AI-driven 

healthcare system created by the author. The 

results of this study lend credence to the suitability 

of prompt engineering of LLMs combined with AI 

expertise as a viable pathway to the synthesis, 

training, testing, validation and deployment of AI 

models for the automated diagnosis of chronic 

kidney disease based on diagnostic measurements, 

lifestyle and environmental factors. 
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