
www.ijecs.in

International Journal of Engineering and Computer Science

Volume 14 Issue 01 January 2025, Page No. 26787-26792

ISSN: 2319-7242 DOI: 10.18535/ijecs/v14i01.4964

Ramazanov Israpil., IJECS Volume 14 Issue 01 January, 2025 Page 26787

Application of The React Navigation Library for Creating Complex

Routes in Mobile Applications

Ramazanov Israpil 1

1 Technical Lead, Photon Infotech Los Angeles California US

Abstract

This article examines the use of the React Navigation library for structuring navigation in mobile applications

developed on the React Native platform. Modern mobile technologies demand advanced solutions for

implementing navigation mechanisms, which necessitates the use of flexible tools. The React Navigation

library provides developers with the ability to build multi-level routes and manage navigation states through

dynamic transitions between screens. Given the importance of navigation quality in contemporary mobile

applications, this aspect significantly influences user perception and attitudes toward the product. The

methodology includes an analysis of documentation, existing solutions, and practical work with the React

Navigation library, demonstrated through real-world mobile application examples. Various types of

navigation—stack, tab-based, as well as custom implementations for unique interfaces—are explored. The

primary focus is on optimizing performance when utilizing complex routes, animations, asynchronous

operations, and transitions between screens tailored for specific solutions. The results demonstrate that React

Navigation provides developers with robust tools for creating flexible routes while ensuring a consistent user

experience. The library's modular system allows for easy adaptation of navigation to any specific project,

whether it is a simple application or a multitasking system with multiple screens and interactions. This article

will be of interest to those working on mobile applications, including developers, UI engineers, and specialists

in functional solutions for mobile platforms.

Keywords: React Navigation, mobile applications, routes, navigation, React Native, complex routes, state

management, multitasking, UI/UX, performance.

1. Introduction

The development of mobile technologies and the

expanding functionality of applications necessitate

effective methods of navigation between screens.

For developers using React Native, a significant

tool for route organization is the library that

provides functions for managing transitions and

component interactions. Despite its popularity, this

library requires customization when working with

more complex routing structures, which determines

the relevance of this topic for the article.

The goal of mobile applications is to create a clear

navigation system that ensures user convenience.

Modern applications include multi-level structures

and diverse transitions, which complicates the

development process. Specialists face the need to

simplify processes while considering evolving

interface requirements. Despite the capabilities

offered by React Navigation, developers encounter

challenges related to performance, scalability, and

interaction quality in the context of complex

navigation schemes. These issues require detailed

analysis and the search for solutions. This article

examines how React Navigation is used for route

organization and explores optimization methods to

http://www.ijecs.in/

Ramazanov Israpil., IJECS Volume 14 Issue 01 January, 2025 Page 26788

enhance performance and improve interactions.

The objective of the study is to explore the

capabilities of React Navigation for creating routes

in mobile applications and to identify approaches

to organizing multi-level, dynamic navigation

schemes in React Native.

2. Materials and Methods

The study by Kyriakidi S. K. and Krivenko O. V.

[1] focuses on routing methods in mapping

applications. Although React Navigation is not

addressed in this work, its findings are valuable for

understanding the principles of routing in mobile

applications, which is relevant when developing

navigation systems. The articles by Rădăcină A. C.

et al. and Ukwaththage Y. et al. [2, 3] discuss a

model that considers application performance

under unstable connections. These issues are

pertinent to building routes in mobile applications

using React Navigation. Sarathchandra C. [4]

explores methods for developing distributed

applications. The approaches presented can be

useful when designing routes that require

interaction between different services. The work of

Carvajal-Gómez R. and Rivière E. [5] examines

routing methods in mobile ad hoc networks. The

approaches described in the article can be useful for

creating adaptive routes that account for changing

network conditions. The algorithms proposed by

the authors are suitable for improving the

efficiency of routing in mobile applications.

3. Results and Discussions

React Navigation is a flexible library for organizing

navigation in mobile applications on the React

Native platform. It provides tools for creating

routes and navigation schemes, addressing tasks

that require precise navigation configuration [2, 3].

The elements of the library are presented in Figure

1.

Fig. 1. Library elements [2, 3]

Each component of the library offers extensive

customization options for organizing routes within

an application. Table 1 outlines the features of

using the React Navigation library to create

complex routes in mobile applications.

Table 1. Features of using the React Navigation

library to create complex routes in mobile

applications [4, 5]

Feature Description

Nested

navigation

structures

React Navigation supports

nested navigation, enabling the

construction of multi-level

screen routes.

Configurable

and

customizable

transitions

The library allows customization

of animations and screen

transitions, which is essential for

creating a unique user

experience.

Navigation

with

parameters

React Navigation supports

passing parameters between

screens, enabling dynamic

screen content based on

provided data.

Ramazanov Israpil., IJECS Volume 14 Issue 01 January, 2025 Page 26789

Deep linking

support

The library allows the

configuration of deep linking to

navigate directly to a specific

screen from external sources

(e.g., via URL or push

notifications).

Navigation

with state

React Navigation integrates with

React Navigation State and

provides an API for managing

navigation state.

Screen

animation

support

React Navigation enables

smooth animations during screen

transitions and supports custom

animations.

Mobile

compatibility

(iOS and

Android)

The library works uniformly

across both iOS and Android,

ensuring a consistent navigation

experience on both platforms.

Easy

integration

with other

libraries

React Navigation integrates

seamlessly with other libraries

and solutions such as Redux,

Context API, etc.

Modularity React Navigation is modular,

allowing developers to include

only the required components.

Navigation

state

management

The library provides

mechanisms for controlling

route states.

Flexibility in

route

definition

React Navigation supports

dynamically modifying or

updating routes based on the

application's context or state.

Multi-stack

application

support

React Navigation allows the

creation of applications with

multiple stacks, enabling the

implementation of complex

scenarios.

Personalized

headers and

panels

With React Navigation, custom

screen headers and navigation

elements such as buttons, menus,

and toolbars can be tailored to

application requirements.

One of the strong points of React Navigation is its

ability to work with nested navigators.

Applications often require navigation within

individual screens, such as for a news category or a

profile section. Nested navigators allow combining

different types of navigation within a single

application, providing flexibility in interface

design. Each module can contain its own screens

with unique transitions, facilitating functionality

separation [1, 3, 5]. An example implementation is

shown below:

In this example, two stacks (for news and profile)

are encapsulated within separate tabs. Each stack

contains its own screens and transition logic,

simplifying the application's structure. This

approach avoids duplication and makes

functionality extension straightforward. Adding a

new level of navigation to one stack does not affect

other parts of the application.

When developing applications, it is often necessary

to pass data between screens and adapt routes based

on the user's state. React Navigation offers

mechanisms for passing parameters between

screens and dynamically configuring routes. Data

can be passed through the route object, allowing

flexible parameter management [2, 4]. An example

of parameter passing is shown below:

Ramazanov Israpil., IJECS Volume 14 Issue 01 January, 2025 Page 26790

This approach efficiently organizes navigation by

passing necessary parameters without reloading

data. Additionally, dynamic routes can be

configured based on the application's state. For

instance, after authentication, the user is redirected

to the profile screen if the session is active, or to the

login page otherwise. An example of dynamic

navigation is shown below:

In this case, the navigation logic depends on the

user's state, allowing the application to adapt its

behavior based on changes. When implementing

complex routes, performance must be considered.

For applications with a large number of screens and

navigators, minimizing interface response time is

essential. One optimization method is lazy loading.

For large-scale applications, loading screens only

when necessary reduces startup time and resource

consumption. This can be implemented through

React.lazy or specific methods provided by React

Navigation. Component memoization helps avoid

unnecessary re-renders when switching screens.

Using React.memo or useMemo is effective when

working with dynamic data, where each transition

can lead to redundant renders. It is also important

to minimize repeated calculations during screen

transitions. This can be achieved through state

caching or limiting the number of active screens.

Additionally, deep linking allows the integration of

mobile applications with external services,

directing users to specific screens via URLs. React

Navigation supports deep links, simplifying

interactions with web resources or push

notifications [4, 5]. An example of deep link

configuration is shown below:

In this example, the myapp:// scheme is configured,

enabling the application to open a product screen

via a link while passing the id parameter. This is

useful for integrating with external services,

notifications, and creating universal links.

However, when developing complex navigation

systems, it is important to consider performance

and state management to avoid unnecessary

application load [1, 5]. Table 2 below describes the

advantages and disadvantages of using the React

Navigation library for creating complex routes in

mobile applications.

Table 2. Advantages and disadvantages of using

the React Navigation library to create complex

routes in mobile applications

Advantages Disadvantages

React Navigation integrates easily

and offers extensive

customization options for routing.

In large

applications

with numerous

screens,

performance

Ramazanov Israpil., IJECS Volume 14 Issue 01 January, 2025 Page 26791

issues may

arise due to

frequent re-

renders and

navigation

state

management.

The library supports various

navigation types, enabling the

creation of complex routes.

Advanced

scenarios

require

significant

knowledge and

experience in

setting up and

utilizing the

library

effectively.

React Navigation supports

dynamic parameter passing, deep

linking, and essential features for

mobile applications.

Custom

animations for

transitions or

non-standard

features can be

challenging to

implement and

may require

additional

configuration.

The library provides tools for

animations and transition

customizations between screens.

Implementing

complex

animations or

features may

necessitate the

use of

additional

libraries,

increasing

project

complexity.

React Navigation has an active

community and well-maintained

documentation, simplifying

problem resolution and feature

addition.

TypeScript

integration

may require

additional

effort,

especially in

large projects.

React Navigation supports both

major mobile platforms,

minimizing compatibility issues.

Library

updates may

sometimes be

incompatible

with previous

versions,

requiring

additional time

for migration.

React Navigation offers a modular

structure, allowing developers to

include only necessary

components, reducing app size.

In applications

with a

significant

number of

screens,

performance

issues and

increased

memory usage

may occur.

Thus, React Navigation provides extensive options

for customizing transition animations. For instance,

it allows defining the type of animation for screen

transitions using the transitionSpec parameter,

enabling effects like sliding or fading. The library

react-native-reanimated can be used to create

personalized animations tailored to the specific

interface requirements.

Additionally, the library includes tools for

managing navigation states. It enables tracking the

current screen location and its parameters using

hooks such as use Navigation and use Route. These

functions are particularly useful for dynamically

changing screen headers or performing additional

actions during transitions between screens.

4. Conclusion

Thus, the capabilities of the React Navigation

library for organizing routes in mobile applications

were examined. It provides developers with tools

for creating multi-level transitions between screens,

including stack navigation, tab elements, and

customized solutions. Various aspects of using

these tools in applications ranging from simple to

more complex ones were analyzed.

The results showed that React Navigation

effectively addresses the tasks of creating flexible

routes, managing navigation state, and improving

performance. With proper setup, optimization of

transitions, and adherence to user-friendly interface

principles, high performance is achievable. In other

words, React Navigation provides the necessary

tools to develop routes that meet the modern

requirements of mobile applications.

Ramazanov Israpil., IJECS Volume 14 Issue 01 January, 2025 Page 26792

References

1. Kiriakidi S. K., Krivenko O. V. New

methodological development of a website

for medical clinics with a rapid response

//The textbook of a massive Serious

technical university. Series: Technical

sciences. – 2024. – No. 48. – pp. 19-25.

2. Radachina A. S. et al. A broad analysis of

cartographic routing applications //2023,

24th International Conference on Control

Systems and Informatics (CSCS). – IEEE,

2023. – pp. 557-564.

3. Ukwatthage Yu. and others. A new method

of navigation based on network quality for

uninterrupted provision of mobile services

//The International Conference on

Advanced Communication Technologies

(ATC) in 2022. – IEEE, 2022. – pp. 262-

267.

4. Saratchandra S. REACT: Distributed

execution of mobile microservices,

provided by effective interaction between

processes // Preprint arXiv

arXiv:2101.00902.-2021.

5. Carvajal-Gomez R., Riviere E. Reactive

overlays for adaptive routing in mobile

peer-to-peer networks //Proceedings of the

10th ACM Symposium on the Design and

Analysis of Intelligent Automotive

Networks and Applications, 2020, pp. 55-

63.

