
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 14 Issue 01 January 2025, Page No. 26744-26750

ISSN: 2319-7242 DOI: 10.18535/ijecs/v14i01.4958

Kuciuk Artiom., IJECS Volume 14 Issue 01 January, 2025 Page 26744

Microservices Architecture: Accelerating Feature Development and

Scalability Through Monolith Decomposition

Kuciuk Artiom 1

1 Tech Lead at Greentube Vienna, Austria

Abstract

The article analyzes approaches to the transformation of software solutions based on microservice

architecture. The issues of structuring systems are considered, such as the division of functionality, the

allocation of separate domain areas, the creation of interfaces, and the management of components and their

interaction. The practical aspects of the use of containerization and orchestration technologies, as well as

mechanisms for ensuring data reliability and integrity in distributed environments, are highlighted.

Examples are given demonstrating the reduction of component interdependence, simplification of update

processes, and adaptation of systems to changing conditions. When writing the work, an analytical

methodology based on a systematic approach to the collection, study, and synthesis of information was used.

Scientific articles published by the author in the public domain, as well as materials that are on the Internet,

were used as sources, which made it possible to comprehensively consider the topic. The author focuses on

the need for a preliminary analysis of the current system, the development of a clear decomposition strategy,

and the use of modern tools for a successful transition to a modular architecture. Recommendations

concerning the implementation of container solutions, orchestration systems, continuous integration, and

delivery processes are presented. The content is intended for specialists involved in development,

architectural design, and infrastructure tasks. These findings demonstrate the potential of the microservice

approach as a tool for creating scalable, sustainable applications.

Keywords: microservices, architecture, monolith decomposition, scalability, containerization, API,

automation.

1. Introduction

The architecture of software systems is evolving

in response to increasing demands for flexibility,

scalability, and optimization of development

processes. Monolithic applications, characterized

by a unified structure, encounter significant

challenges as load increases, business logic

becomes more complex, and market conditions

shift. These limitations are particularly

pronounced in systems with high operational

intensity, where functional updates and adaptation

are essential. The microservices approach involves

dividing a system into independent modules with

clearly defined responsibilities. Each module

operates autonomously, simplifying development,

testing, and deployment of updates. This approach

facilitates system adaptation to external changes,

enhances fault tolerance, enables automation of

processes such as testing and orchestration, and

supports continuous delivery. Transitioning from

a monolithic structure to a microservices

architecture requires a thorough risk analysis, the

development of a strategy for decomposing the

system into separate components, and the

selection of tools tailored to specific tasks. The

http://www.ijecs.in/

Kuciuk Artiom, IJECS Volume 14 Issue 01 January, 2025 Page 26745

study of such transformations is increasingly

relevant in the context of data growth, process

complexity, and the need for rapid adaptation of

software solutions to new operational conditions.

This article explores methods of application

decomposition, evaluates their impact on system

performance and adaptability, and provides

recommendations for transitioning to a

microservices architecture.

2. Materials and Methods

Literature on the migration of monolithic

applications to microservices architecture

addresses a wide range of issues, including the

analysis of architectural solutions, methodologies

for software structuring, and assessments of their

impact on system performance. Scholarly works

explore both theoretical and practical aspects of

architectural transformation.

The comparison of various architectures has been

extensively studied in works by Blinowski G.,

Ojdowska A., Przybyłek A. [1], Jaskot K.,

Przyłucki S. [11], where operational

characteristics of monolithic and microservices

systems under real-world scenarios are analyzed,

and differences in their adaptation to workloads

are highlighted. Tapia F. et al. [2] examine factors

influencing the successful implementation of

microservices, including challenges during the

transition phase and the advantages of changing

architectural solutions.

Decomposition methodologies are discussed in

articles by Wei Y. et al. [3], Cao L., Zhang C. [5],

and Rand Ochimah S. et al. [12]. Wei Y. et al.

propose an approach based on identifying

functional characteristics of business logic. Cao L.,

Zhang C. applies interaction analysis of software

elements for structuring microservices. Rochimah

S. et al. utilize class clustering methods derived

from source code analysis. Hao J., Zhao J., and Li

Y. [7] investigate the transformation of relational

databases to ensure data preservation. Camilli M.

et al. [8] developed a multi-level evaluation

system aimed at improving architectural flexibility.

Nitin V. et al. [9] employ artificial intelligence to

enhance the accuracy of component relationship

analysis. Contemporary application modernization

methodologies are presented in studies by

Joselyne M. I., Bajpai G., Nzanywayingoma F. [4],

Mishra R. et al. [10], Rahmatulloh A. et al. [6].

Joselyne M. I., Bajpai G., and Nzanywayingoma F.

describe architectural transformation using

Domain-Driven Design approaches. Mishra R. et

al. investigate available tools that facilitate

successful system transformation. Rahmatulloh A.

et al. study event-driven methods and their impact

on operational performance.

For the practical section describing the impact of

microservices architecture on operations, sources

[13,14] hosted on highscalability.com,

korusconsulting.ru were utilized. Although

microservices architecture demonstrates efficiency,

questions remain regarding the selection of

structuring methods in highly interconnected

component environments. Aspects related to the

long-term operation of systems, automation of

application transformation, and compatibility

remain underexplored. These areas require further

study and the development of new solutions. The

study employed an analytical methodology based

on a systematic approach to collecting, analyzing,

and synthesizing information.

3. Results and Discussion

The microservices approach involves structuring a

system into autonomous modules, each

performing specific functions. Each component

operates independently, simplifying management,

deployment, and adaptation to changes. Data

exchange between modules utilizes standards such

as REST, gRPC, and GraphQL [1]. Below, Figure

1 presents the elements of a microservices

architecture.

Kuciuk Artiom, IJECS Volume 14 Issue 01 January, 2025 Page 26746

Fig.1. Elements of microservices architecture

(compiled by the author).

The isolation of system components simplifies

modifications and enhances fault tolerance. To

achieve this, it is crucial to thoroughly define

module boundaries using domain-driven design

methodologies [1,8]. Below, Figure 2 illustrates

the principles of microservices architecture.

Traditional architectures consolidate functional

parts into a unified structure. Any modification to

one element necessitates changes across all others,

complicating updates and requiring a

comprehensive system test, even for minor

adjustments. This approach becomes challenging

as the number of users increases. Decomposition

involves splitting an application into independent

services that interact through interfaces. This

format eliminates component interdependencies,

accelerating the implementation of changes and

reducing the likelihood of errors.

The microservices approach makes the

development process more structured. Teams can

work on different tasks simultaneously without

hindering one another, accelerating the

deployment of new solutions and eliminating the

need for system-wide testing after changes to a

single part. System segmentation facilitates

adaptation to changing conditions. Increased load

demands resource redistribution only for segments

experiencing strain. For instance, during peak

sales, additional resources can be allocated

specifically to order processing, leaving other

modules unaffected. This optimizes resource

allocation and minimizes infrastructure costs.

System stability is enhanced by isolating its

elements. In the event of a component failure, the

remaining modules continue to function. For

example, if the notification system fails, it does

not disrupt the performance of other tasks [7-9].

For successful decomposition, thorough

preparation is required. An analysis of the existing

system identifies areas that need segmentation.

Priority is given to segments subject to frequent

changes or high loads. Following this, the

boundaries of each service are defined, and

interaction rules are developed.

The transformation process begins with

standalone modules. Gradual segmentation

reduces risks and simplifies the transition. Service

management is carried out using modern

containerization technologies and orchestration

systems, automating deployment and ensuring

control. The transition from monolithic to modular

Kuciuk Artiom, IJECS Volume 14 Issue 01 January, 2025 Page 26747

architecture starts with analyzing existing internal

connections, identifying domain areas, and

dividing them into isolated segments. After

segmentation, API interfaces are designed to

account for scalability.

The transformation of systems such as ERP

demonstrates the potential of the microservices

approach. Dividing functions like accounting,

logistics management, and order processing into

independent modules improves manageability.

Tools like Kubernetes and Docker Compose are

used to simplify deployment. Developing

individual modules enables specialists to focus on

specific tasks. Automation of testing and

implementation of changes via CI/CD eliminates

the risk of system disruption. Tools for API

testing, such as Postman, and interaction

simulation through WireMock streamline

integration.

This architecture facilitates component adaptation

to load. Resource allocation for operation

processing can occur without redesigning the

entire system. For instance, during periods of high

transaction activity, resources are allocated to the

component responsible for their processing.

Scaling is achieved either by increasing the

number of service instances or by enhancing

hardware capabilities. Challenges arise during the

transition to this architecture. Increasing the

number of components complicates the

management of interconnections. Interface

changes must account for compatibility with other

elements. Special mechanisms are developed to

synchronize data in distributed systems. Tools like

Prometheus and Jaeger are used to monitor system

health.

Risk minimization is achieved through

orchestration tools, distributed tracing, and

automated monitoring. These measures enhance

system resilience and simplify maintenance [6,10].

As examples, consider the experiences of PayPal,

Amazon, and Netflix. The transition to a

microservice architecture marked a significant

milestone in the development of PayPal's systems,

improving performance and increasing resilience

under high loads. The integration of its proprietary

NoSQL-based JunoDB database enables the

processing of over 350 billion queries daily. The

system maintains high availability with less than

three seconds of downtime per month [12].

Amazon redefined its platform design by

transitioning from a two-tier monolithic solution

to a fully distributed, decentralized service

platform that supports a wide range of

applications. The implementation of a

microservice model enabled developers to

concentrate on building individual components,

accelerating the release of updates. This new

architecture significantly improved the platform's

adaptability to changing conditions [13]. Netflix

employs approximately 700 microservices to

manage various elements that comprise the entire

service. One microservice processes payments,

another stores information about all the shows

watched, and a third determines suitable content

recommendations [14].

The following section examines an author-

developed practical example. In this case, the

specialist possesses experience in developing

software solutions for online platforms supporting

payment processing. Within the professional

scope, methods were applied to flexibly adapt

architectural elements to market changes. A key

task involved transitioning from a monolithic

structure to a microservices format, eliminating

numerous limitations of the traditional model.

The analysis of the existing system revealed

significant drawbacks. The outdated approach

complicated the process of function modification,

increased the likelihood of errors when expanding

functionality, and restricted the ability to

distribute workloads. Integration challenges with

new services diminished the platform’s

adaptability to evolving requirements.

The proposed solution was based on dividing the

structure into separate modules, each assigned a

clearly defined set of tasks. The new model

ensured the independence of functional

components, simplified testing, and enhanced

flexibility for implementing changes. Functional

Kuciuk Artiom, IJECS Volume 14 Issue 01 January, 2025 Page 26748

localization eliminated the impact of faults on the

entire system, thereby improving its resilience.

The implementation was carried out in stages.

Initially, functional elements were analyzed, and

their boundaries and tasks were defined.

Subsequently, a sequential transformation was

performed, ensuring smooth updates. This phased

approach minimized risks associated with system

stability disruptions.

To enhance performance, automation tools were

introduced, and technologies enabling the

isolation of functional modules were employed.

Automated processes for testing and updates

reduced modification time and increased

verification accuracy. The transition to a modular

structure improved platform performance,

accelerated the deployment of new services, and

stabilized transaction processing. The new model

demonstrated its effectiveness in a competitive

market environment. This project highlighted the

specialist's ability to address complex challenges,

create robust architectural solutions, and align

them with business objectives. Below, Table 1

outlines the advantages and disadvantages of

microservices architecture.

Table 1. Advantages and Disadvantages of

Microservices Architecture [2]

Category Advantages Disadvantages

Development

Speed

- Independence of

teams: each team

works on its

service,

minimizing

conflicts.

- Coordination

between teams

becomes more

complex due to

segmentation.

- Less time

required to

implement

changes and

release new

versions.

- Complexity in

managing API

versions and

contracts between

services.

Scalability

- Easier to scale

individual parts of

the system instead

of the entire

monolith.

- Requires

infrastructure to

manage scalability.

- Ensures

availability

through isolated

services.

- Increased

overhead for

monitoring and

network

management.

Monolith

Decomposition

- Simplifies code

maintenance: each

service addresses

its task

independently.

- Complexity in

refactoring existing

monoliths to

transition to

microservices.

- Improves

testability with

smaller codebases

for each service.

- Debugging

becomes more

challenging due to

issues arising at the

service interaction

level.

Technology

Flexibility

- Enables the use

of different

technologies and

programming

languages for

different services.

- Increases DevOps

complexity and

requires knowledge

of diverse

technology stacks.

Deployment

- Facilitates

partial

deployment

(updating only the

necessary

service).

- Risks of

incompatibility

between services

after deployment

arise.

Data

Management

- Allows isolated

data management

(each service

having its

database).

- Complexity in

ensuring data

consistency across

services.

Overall

Complexity

- Simplifies long-

term system

management by

isolating each

service's context.

- The overall

architecture

becomes more

complex, requiring

orchestration tools

(e.g., Kubernetes).

The application of machine learning in data

analysis not only automates processes but also

enhances accuracy.

4. Conclusion

An analysis of the literature demonstrates that

employing a microservices architecture enables

the creation of adaptive systems with advantages

over the monolithic approach. Dividing the system

Kuciuk Artiom, IJECS Volume 14 Issue 01 January, 2025 Page 26749

into autonomous modules accelerates the

implementation of new features, minimizes failure

risks, and improves adaptability. Decomposition

methods, including dependency mapping, domain

area identification, and interface design, achieve

component isolation. Containerization

technologies simplify deployment processes and

the management of distributed systems. However,

transitioning to a microservices architecture

involves challenges related to ensuring data

consistency, organizing monitoring, and managing

application programming interfaces.

The findings suggest that architectural design

accelerates software development and provides a

foundation for its sustainable functionality.

References

1. Blinowski G., Ojdowska A., Przybyłek A.

Monolithic vs. microservice architecture:

A performance and scalability evaluation

//IEEE Access. – 2022. – Vol. 10. – pp.

20357-20374.

2. Tapia F. et al. From monolithic systems to

microservices: A comparative study of

performance //Applied sciences. – 2020. –

vol. 10. – no. 17. – p. 5797.

3. Wei Y. et al. A feature table approach to

decomposing monolithic applications into

microservices //Proceedings of the 12th

Asia-Pacific Symposium on Internetware.

– 2020. – pp. 21-30.

4. Joselyne M. I., Bajpai G.,

Nzanywayingoma F. A systematic

framework of application modernization to

microservice-based architecture //2021

International Conference on Engineering

and Emerging Technologies (ICEET). –

IEEE, 2021. – pp. 1-6.

5. Cao L., Zhang C. Implementation of

domain-oriented microservices

decomposition based on node-attributed

network //Proceedings of the 2022 11th

International Conference on Software and

Computer Applications. – 2022. – pp. 136-

142.

6. Rahmatulloh A. et al. Event-Driven

Architecture to Improve Performance and

Scalability in Microservices-Based

Systems //2022 International Conference

Advancement in Data Science, E-learning

and Information Systems (ICADEIS). –

IEEE, 2022. – pp. 01-06.

7. Hao J., Zhao J., Li Y. Research on

Decomposition Method of Relational

Database Oriented to Microservice

Refactoring //2023 24th Asia-Pacific

Network Operations and Management

Symposium (APNOMS). – IEEE, 2023. –

pp. 282-285.

8. Camilli M. et al. Actor-driven

decomposition of microservices through

multi-level scalability assessment //ACM

Transactions on Software Engineering and

Methodology. – 2023. – vol. 32. – No. 5. –

pp. 1-46.

9. Nitin V. et al. Cargo: Ai-guided

dependency analysis for migrating

monolithic applications to microservices

architecture //Proceedings of the 37th

IEEE/ACM International Conference on

Automated Software Engineering. - 2022.

– pp. 1-12.

10. Mishra R. et al. Transition from

Monolithic to Microservices Architecture:

Need and proposed pipeline //2022

International Conference on Futuristic

Technologies (INCOFT). – IEEE, 2022. –

pp. 1-6.

11. Jaskot K., Przyłucki S. Analiza wybranych

cech aplikacji opartych na architekturze

monolitycznej i mikrousługowej //Journal

of Computer Sciences Institute. – 2022. –

Vol. 25.

12. Rochimah S. et al. Decomposing

monolithic to microservices: Keyword

extraction and BFS combination method to

cluster monolithic’s classes //Jurnal RESTI

(Rekayasa Sistem dan Teknologi

Informasi). – 2023. – Vol. 7. – No. 2. – pp.

263-270.

13. Amazon Architecture. [Electronic resource]

Access mode:

Kuciuk Artiom, IJECS Volume 14 Issue 01 January, 2025 Page 26750

https://highscalability.com/amazon-

architecture/ (date of application:

5.12.2024).

14. Microservice architecture in simple terms:

pros and cons of the approach. [Electronic

resource] Access mode:

https://korusconsulting.ru/infohub/mikrose

rvisnaya-arkhitektura-prostymi-slovami-

plyusy-i-minusy/ (date of application:

5.12.2024).

