
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 13 Issue 12 December 2024, Page No. 26677-26681

ISSN: 2319-7242 DOI: 10.18535/ijecs/v13i12.4950

Okhonko Pylyp., IJECS Volume 13 Issue 12 December, 2024 Page 26677

Analysis of Vulnerabilities in The Content Security Policy Standard

to Enhance Website Security

Okhonko Pylyp 1

1 Application Security Engineer, Tential Rockville, Maryland, United States

Abstract

This article analyzes the vulnerabilities of the Content Security Policy (CSP) standard with the aim of

improving website security. It highlights that this standard has vulnerabilities that enable attackers to

successfully execute attacks by injecting malicious code into web pages. The relevance of studying CSP

vulnerabilities to enhance website protection is substantiated. The primary aspects of implementing web

resource protection using the CSP standard are discussed. The article outlines the most well-known

techniques for bypassing the directives of this standard. It describes the process of executing an XSS attack

using the "unsafe-inline" directive. It is revealed that such an attack organization allows the interception of

user data without detection by users or security administrators. The conclusion is made that the use of the

unsafe-inline directive by developers does not provide an adequate level of protection against XSS attacks.

As an alternative, the implementation of a more effective CSP policy, configured in accordance with the

recommendations of information security specialists, is proposed.

Keywords: information security, Content Security Policy, Cross-Site Scripting, website protection, security

standard vulnerabilities.

1. Introduction

Ensuring data protection within the operation of

web resources has long been a critical issue. This

type of security is implemented through various

means, one of the most relevant being a distinct

layer known as Content Security Policy (CSP).

This mechanism is designed to detect and mitigate

attacks based on cross-site scripting and the

injection of malicious data into transmitted

requests. It operates using a set of directives that

enable flexible configuration of protection

mechanisms.

Despite its widespread popularity, this standard

for securing web services and applications has

several shortcomings. Studying these

vulnerabilities will help identify ways to address

them for a broad range of specialists. In practice,

however, despite the existence of numerous

directives aimed at providing diverse protections

against code injection, attackers continue to find

ways to bypass them. For this reason, this article

explores these bypass methods and introduces a

query redirection technique that has not been

previously discussed.

2. Materials and Methods

The article begins by defining Stored XSS attacks,

a vulnerability in web systems that allows

attackers to embed malicious code (commonly

JavaScript) into a webpage [1]. Upon successful

execution of such an attack, an attacker may

intercept login credentials, personal user data, or

other sensitive information [2]. Essentially, XSS

attacks exploit a browser's trust in the content

displayed, as retrieved from a server platform,

leading to the execution of all received scripts.

http://www.ijecs.in/

Okhonko Pylyp., IJECS Volume 13 Issue 12 December, 2024 Page 26678

Modern web services have been developed to

eliminate the possibility of XSS vulnerabilities.

Browser developers have also contributed by

implementing tools for input validation and

policies such as Same-Origin Policy (defining

access permissions for scripts) and Content

Security Policy (specifying trusted script sources).

However, vulnerabilities persist, and this article

examines such weaknesses within the CSP

standard. Content Security Policy (CSP) is an

additional layer of protection for web services and

applications designed to prevent script injection

attacks and the execution of unauthorized code.

CSP achieves protection by specifying a list of

trusted resource sources [3]. If a resource or script

originates from an unlisted source, the browser

simply does not load it. This prevents the

execution of third-party code and mitigates the

risks of malicious code injection, which can lead

to a range of outcomes—from data interception to

website malfunction [4].

The CSP standard has multiple versions that

maintain compatibility, except for the second

version, which has some inconsistencies with

other versions. However, browsers can still

operate with servers using various versions of the

standard. If a CSP header is not provided by the

server, the browser applies a default policy for

that source [5, 6].

To define trusted sources, a CSP-compliant web

page must include a specialized `Content-

Security-Policy` header and a set of directives,

such as:

- `img-src` – specifies sources for image

loading;

- `media-src` – specifies sources for media

content (videos, animations, audio);

- `script-src` – specifies sources for loading

scripts for the web page;

- `frame-src` – specifies sources for web

elements;

- `default-src` – a fallback directive. If one

or more of the above directives lacks

arguments, the browser uses the sources

specified in this directive [3, 6].

Using these directives, developers can define the

domains, subdomains, or individual pages

permitted for loading, as well as set interaction

rules. For this, two values can be specified:

`"none"`, which blocks access, and `"self"`, which

permits the use of resources from the specified

source. In addition to general rules, individual

directives have specific rules. For example, the

`unsafe-inline` rule allows the use of JavaScript

scripts directly embedded in a webpage's code. If

this rule is not specified, any script not sourced

from a trusted origin will be blocked. The `unsafe-

eval` rule enables or blocks (by default) the

execution of dynamic code during runtime [7].

To implement CSP policies, developers must

configure the appropriate header to be returned by

the web page. For testing CSP policies, the

`Content-Security-Policy-Report-Only` directive

is available. When used, scripts are not blocked,

but all violations and deviations are logged in

reports sent to the system administrator.

However, despite the seemingly straightforward

implementation and the flexibility in configuring

trusted sources for web resources, CSP has

vulnerabilities that attackers can exploit to execute

XSS threats [8]. One identified vulnerability

involves the use of the `unsafe-inline` rule in the

`script-src` directive. While this directive is

intended to limit the ability to transmit

confidential information to external sources, if not

included, developers must manually compile an

extensive list of resources where such data might

be transmitted. Misconfigurations of this directive

can limit application functionality. For this reason,

developers often rely on this directive, assuming it

provides protection against data transmission to

other resources. However, in practice, this

assumption does not always hold true.

3. Results and Discussion

The conducted study revealed that employing the

redirect method enables the acquisition of all

necessary parameters. This is achieved by

constructing a URL containing the required

parameters within a GET request. An example of

such a request is shown in Figure 1:

Okhonko Pylyp., IJECS Volume 13 Issue 12 December, 2024 Page 26679

Figure 1 - URL construction process and

transmission of confidential data to the

intercepting server

The URL above allows the retrieval of session

cookies; however, this method has a significant

drawback: the attack redirects the user to the

intercepting server, potentially disrupting the

operation of the targeted website. To address this

limitation, the data interception method must be

refined. The intercepting server should be

configured to accept the data without returning a

response, keeping the connection open. Then, a

redirection to the intercepting server with the

required parameters is initiated, followed by the

execution of the `window. stop` procedure, which

cancels the redirection and renders the attack

invisible to the user. The visual process of data

interception using this method is depicted in

Figure 2 and can be described in three stages.

Figure 2 - Implementation process of an XSS

attack on a page using the CSP "unsafe-inline"

directive

In the first stage, a redirection to the specified

server, sleep-sniffer.com, occurs, along with the

transmission of the session attributes. During this

time, a loading indicator is displayed on the page,

leading the user to believe that the page is loading

as expected.

In the second stage, the intercepting server

receives the request, saves the transmitted

parameters, and holds the connection open

without sending a response. A key aspect of this

method is that while waiting for a response, the

browser perceives the page as functioning

normally, executing all its scripts. The user sees

the loading indicator and continues to wait for the

process to complete.

After three seconds, a `set Time out` is triggered,

transitioning to the third stage. The execution of

the `window. stop` method cancels the loading of

all resources, including multimedia, fonts, and

styles. Any incomplete requests are simply

terminated. The webpage then continues to

function as usual, all necessary data is transmitted

to the sleep-sniffer.com server, and the user

remains unaware of the attack. To implement the

data interception method using redirection, a

utility was developed. The interface of this utility

is shown in Figure 3 [9]. It allows specifying the

parameters to be transmitted in the request, as well

as the addresses of the targeted webpage and the

intercepting server.

Figure 3 - Utility interface for executing

redirect requests with various data sets [9]

To eliminate the described possibility of

redirecting with the required parameters, the CSP

standard introduced the "navigate-to" directive.

This directive allows specifying a list of external

Okhonko Pylyp., IJECS Volume 13 Issue 12 December, 2024 Page 26680

sources to which redirection from the current page

is permitted. On one hand, it enables defining a

list of domains or addresses where requests can be

executed. On the other hand, creating such a list

requires considerable effort in its formation and

constant updates to maintain its relevance.

Therefore, the only way to ensure a high level of

security is to avoid using the `unsafe-inline`

directive and to implement a more effective CSP

policy, regardless of the labor and financial costs

involved.

The CSP standard includes numerous directives

and their configurations, which in some cases may

create vulnerabilities that attackers can exploit to

execute XSS attacks [8]. Additionally, other

known methods for bypassing this standard

include:

- Injecting scripts through file upload

mechanisms.

- Injecting scripts using public CDNs.

- Injecting scripts through Third-Party

EndPoints combined with JSONP.

- Injecting scripts through Angular

procedures.

However, these methods only address code

injection into a webpage and do not solve the

problem of transmitting confidential data from the

page to the attacker’s server. As with the enabled

`unsafe-inline` option, the restriction allowing

communication only with trusted web resources

remains, preventing data transmission from the

page to the attacker’s server. In this case, the

aforementioned method can be combined with

other known CSP bypass techniques to

circumvent this restriction.

Table 1 - Example of payload generated using

the CSP Stealer utility and the CSP bypass

method via the Third-Party End Points +

JSONP mechanism

4. Conclusion

The exploitation of any of the vulnerabilities

mentioned above allows attackers to intercept

various types of information, including

authentication data. Combining these methods

broadens the range of potential XSS attack

techniques, thereby increasing the workload for

security specialists. In conclusion, it is essential to

emphasize that despite the existence of the CSP

mechanism aimed at protecting against script

injection into webpages, its effectiveness is often

insufficient, and attackers continuously find new

ways to bypass it. This study highlighted the

critical risk associated with using the `unsafe-

inline` directive. Therefore, the only way to

ensure a high level of security is to avoid using the

`unsafe-inline` directive and to implement a more

robust CSP policy, regardless of the required labor

and financial investments.

References

1. Singh, M., & Chauhan, A.S. (2016). DOM

BASED REFLECTED XSS ATTACK

USING SOP.

2. Jasmine M. S., Devi K., George G.

Detecting XSS based web application

vulnerabilities //International Journal of

Computer Technology & Applications. –

2017. – T. 8. – No. 2. – pp. 291-297.

3. Yusof I., Pathan A. S. K. Mitigating cross-

site scripting attacks with a content

security policy //Computer. – 2016. – T.

49. – No. 3. – pp. 56-63.

4. Golinelli M., Bonomi F., Crispo B. The

Nonce-nce of Web Security: An

Investigation of CSP Nonces Reuse

//European Symposium on Research in

Computer Security. – Cham: Springer

Nature Switzerland, 2023. – pp. 459-475.

5. Content Security Policy (CSP) [Electronic

resource].URL:

https://developer.mozilla.org/ru/docs/Web/

HTTP/CSP (Date of access: 08/15/2024)

6. Weichselbaum L., Spagnuolo M., Janc A.

Adopting strict content security policy for

XSS protection //2016 IEEE Cybersecurity

https://developer.mozilla.org/ru/docs/Web/

Okhonko Pylyp., IJECS Volume 13 Issue 12 December, 2024 Page 26681

Development (SecDev). – IEEE, 2016. –

pp. 149-149.

7. Kerschbaumer C., Stamm S., Brunthaler S.

Injecting CSP for fun and security

//International Conference on Information

Systems Security and Privacy. –

SCITEPRESS, 2016. – T. 2. – P. 15-25.

8. Weissbacher M., Lauinger T., Robertson

W. Why is CSP failing? Trends and

challenges in CSP adoption // Research in

Attacks, Intrusions and Defenses: 17th

International Symposium, RAID 2014,

Gothenburg, Sweden, September 17-19,

2014. Proceedings 17. – Springer

International Publishing, 2014. – pp. 212-

233.

9. GitHub - sysmustang/csp-stealer: Tool to

retrieve web-page secrets and bypass Content

Security Policy [Electronic resource].URL:

https://github.com/sysmustang/csp-stealer

https://github.com/sysmustang/csp-stealer

