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Abstract  

Personalized treatment plans, predictive analytics, and artificial intelligence (AI)-driven diagnostics are 

becoming more and more popular as a way to improve decision-making, expedite operations, and improve 

patient care. But there are still a number of substantial barriers to overcome, which includes but not limited 

to issues with user adoption, trust, prejudice, and fairness brought on by resistance from healthcare providers 

and a lack of confidence in the system's recommendations. To overcome these challenges and realize the full 

potential of AI-driven solutions, the system's accuracy and safety through meticulous testing and validation 

of AI algorithms becomes indispensable. This research provides a hybrid AI model that blends three base 

models with a Meta model in order to diagnose heart disease effectively. The essence is to revalidate the 

existing AI diagnostic models for cardiac diseases diagnostics and to tackle the concerns impeding the full 

utilization of the available AI diagnostic system. The study makes use of each model's advantages by 

merging these various and complimentary algorithms into a stacking ensemble model to create a diagnostic 

system that is more potent. Using publicly available heart disease data, the model performs remarkably well; 

it achieves 89% accuracy, 85% recall (sensitivity), 92% specificity, and 89% precision. This hybrid model's 

performance and proven efficacy are expected to boost trust in the system's recommendations and encourage 

broader implementation in clinical practice. 
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1. Introduction 

Artificial Intelligence (AI) is hastily developing and becoming a key component of the healthcare landscape 

by providing cutting-edge diagnostic tools, individualized treatment programs, and predictive analytics. 

These AI-powered technologies have the golden touch to improve decision-making processes, expedite 

operations, and improve patient care [1], [2]. Though AI holds enormous potential for the healthcare 

industry, a variety of barriers prevent its broad use. These hitches include concerns with user acceptance, 

trust, bias, and fairness that are mostly brought about by rebuff from healthcare providers and a lack of trust 

in the system's recommendation [3], [4], [5], [6]. On the other hand, healthcare providers' disapproval is one 

of the main impediments to the adoption of healthcare IT solutions. This averseness may be due to a number 

of reasons, such as a fear of change, a lack of technical expertise, or worries about disruptions to plan of 

action. It can also be perceived that healthcare professionals may be resistant to these new technologies 

because they see them as a threat to their professional autonomy and also having the potential to increase 

their burden according research [7], [8]. Furthermore, many practitioners find the switch from conventional 

paper-based systems to electronic health records (EHRs) intimidating, and that makes them reluctant to 

embrace new technologies. However, for software solutions to be used and implemented effectively, it is 

essential for it to garner the requisite trust and inclusive acceptance. The concerns raised by healthcare 
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practitioners bothers on the system's accuracy and dependability, particularly when it comes to hermetic 

decision-making process. These healthcare providers are more likely to believe recommendations made by 

human specialists than those generated by algorithms [3], [9]. This mistrust of algorithmic decision-making 

may prevent healthcare software from being widely used. 

Algorithm bias in healthcare is another stern concern. The data used to train these algorithms may have 

biases because it may not be entirely evocative of the population. According to [10], racial prejudice in an 

algorithm exploited widely in the US healthcare system resulted in less treatment being given to black 

patients relative to white patients with equivalent health profiles. These biases raise questions about fairness 

and ethics in addition to destabilizing public confidence in the system [11], [12]. Subsequently, biased 

algorithms have the potential to worsen already-existing health disparities, it is imperative that healthcare 

software solutions should ensure fairness. According to [13] , machine learning models which are not 

properly created and administered, may even underpin and amplify societal biases [14]. In order to avoid 

prejudice against any patient group, algorithms must be continuously evaluated and adjusted for fairness 

especially in healthcare sector due to its connection to life. Research has shown that healthcare providers 

believe the algorithms don't grasp context, hence, they muster distrust for the system's recommendations 

[15]. A wide range of contextual considerations that may not be fully captured by algorithms are taken into 

account when making decisions by humans in the healthcare industry. This obviously raise doubts about the 

system's capacity to provide accurate and distinct advice. Current advancement in a research, especially 

explainability in AI systems has delivered ground breaking evidence crucial enough to foster confidence and 

trust in the healthcare profession [16], [17], [18], [19]. 

The need for software-based solutions to improve accuracy, timeliness, and reliability in the diagnosis of 

complicated diseases such as heart disease is apparent. These technologies can greatly enhance patient care 

and diagnostic results by utilizing cutting-edge algorithms and real-time data processing. The capability of 

the systems to analyze vast amounts of data more precisely than human practitioners makes it more viable to 

consider. A deep neural network, for example, can detect arrhythmias from ECG signals with high accuracy, 

frequently exceeding skilled cardiologists, according to a studies by [20], [21], [22], [23]. These networks 

can detect minute patterns and correlations that the human eye might overlook by studying large datasets, 

which enables them to make more precise diagnoses. More so, analysis times can be meaningfully lowered 

by adopting artificial intelligence (AI) to interpret imaging data. From studies, Artificial intelligence (AI) in 

echocardiography permitted for faster and more accurate evaluations of heart function than were possible 

with orthodox techniques [24], [25], [26]. This promptness at which analysis is performed can expedite the 

diagnosis procedure, enabling earlier intervention and therapy. 

Artificial intelligent models can provide reliable performance without the subjectivity or weariness that 

could tilt the finding of human diagnosticians. For instance, an AI system showed great reliability and 

consistency in diagnosing diabetic retinopathy, a condition carefully associated to cardiovascular health on 

the use of deep learning in retinal disease screening [27], [28], [29]. This consistency guarantees that 

diagnoses are not only prompt and precise but also repeatable and steady over time. In real-world 

applications and case studies, software-based solutions in cardiac disease diagnostics has demonstrated a 

number of key advantages. An AI model created by Stanford University researchers could identify 

pneumonia from chest X-rays more accurately than radiologists. This model indirectly aids cardiovascular 

diagnostics by identifying associated issues early, given that pneumonia can exacerbate heart diseases [30], 

[31], [32], [33]. In a similar demonstration, a machine learning-enhanced electrocardiogram (ECG) system 

at the Mayo Clinic showed great ability to forecast atrial fibrillation (AF) in individuals with normal sinus 

rhythm. In line with these advances, it is manifest that AI system's predictive capability is apparent for 

averting strokes and other heart-related issues, proving its dependability and usefulness in clinical settings 

[34], [35]. Hence, artificial intelligence-enabled wearables, like smartwatches, can continually monitor heart 

rate and rhythm and instantly notify consumers and medical professionals of potential problems like atrial 
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fibrillation. The prompt and accurate benefits of these software solutions in regulating heart health are 

exemplified by this continuous monitoring and fast alerting system [36], [37], [38]. 

Discussed so far is the need to ensure trust, acceptance, and fairness in the adoption and use of use of AI-

based diagnostic systems. This paper presents a hybrid AI model that makes use of a stacking ensemble 

technique in order to address the requirement for accurate AI models in the detection of heart disease. By 

combining three foundational models, this approach makes use of their complimentary and varied 

characteristics to produce a more reliable diagnostic system. Impressive performance metrics have been 

demonstrated by the stacking ensemble model suggested in this paper, which has been trained, tested, and 

verified on publically available heart disease data. By highlighting the value of thorough validation and the 

potential advantages of ensemble modeling techniques in obtaining high diagnostic accuracy and reliability, 

we hope to contribute to the ongoing efforts to improve AI-based diagnostic systems. 

2. Materials and Methods  

The development and evaluation of a stacking ensemble artificial intelligence model for the detection of 

cardiac disease is presented in this study. The model leverages the strengths of multiple machine learning 

algorithms to improve prediction accuracy and dependability. The approach began with the careful gathering 

and preprocessing of data from multiple sources, including the Cleveland Heart Disease dataset from the 

UCI Machine Learning Repository. To ensure data integrity and improve model resilience, the dataset was 

carefully standardized using the min-max normalization technique. Following preprocessing, the dataset 

comprised of 297 rows, each containing 14 columns. The first 13 columns represented clinical 

measurements for each participant, including resting blood pressure, serum cholesterol, fasting blood sugar, 

and resting electrocardiographic (ECG) results, among others. The fourteenth (target) column indicated the 

diagnosis, where a value of 0 signified normal heart function, and values 1, 2, 3, and 4 indicated varying 

degrees of heart disease. The diagnosis was modeled as a binary classification problem, with the target 

column rescaled to a fixed range [0, 1]. This simplifies the problem to a binary classification task.  

3. Model Development and Implementation 

The core of this study involved constructing a hybrid AI model using a stacking ensemble method. The 

model integrated three diverse base algorithms such as XGBoost, Random Forest, and Support Vector 

Machine (SVM) with each selected for its proven efficacy in handling structured medical data. The Random 

Forest algorithm provides robustness by aggregating the predictions of multiple decision trees, reducing 

overfitting and enhancing generalization tasks [39], [40] , the Support Vector Machine (SVM) delivers its 

effectiveness in high-dimensional spaces and precision in handling classification, and the XGBoost 

algorithm affords its high performance in handling structured data and its ability to capture complex 

relationships through gradient boosting [41], [42]. The stacking ensemble approach capitalized on the 

complementary strengths of these models, with a logistic regression meta-learner combining their 

predictions to maximize overall predictive performance as depicted by the architecture shown in figure 1.   

 

Figure 1: Stacking Ensemble Model Architecture 
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An inclusive machine learning pipeline for diagnosing heart disease was implemented. Hyperparameter 

tuning via grid search technique, with cross-validation (CV=3), was implored to identify the optimal set of 

hyperparameters for each model. For the XGBoost model, different parameters were tested in different 

combinations to find the most effective configuration as n_estimators: [100, 250], learning_rate: [0.01, 0.2], 

max_depth: [3, 8], min_child_weight: [1, 3, 5], subsample: [0.6, 1.0], and colsample_bytree: [0.6, 1.0]. The 

Random forest had the best combination of parameters as n_estimators: [100, 250], max_depth: [6, 12], 

min_samples_split: [2, 7], and min_samples_leaf: [1, 4]. The support vector machine (SVM) had its 

parameters set to C: [0.01, 10], gamma: [0.001, 1], and kernel: ['linear', 'rbf'] and the Logistic regression 

parameters were set to C: [0.01, 10], solver: ['liblinear', 'lbfgs', 'saga'], max_iter : [100, 300]. Next, the 

stacking ensemble model's effectiveness was assessed. The final model was evaluated using metrics which 

includes precision, recall, specificity, and the F1 score. The performance of the model was visualized 

through the confusion matrix and ROC curve. Python modules like Pandas and NumPy were used for data 

manipulation and preprocessing across the whole model construction, training, and evaluation phase. 

Logistic regression was used for the Meta classifier, XGBoost, Random Forest, and Support Vector Machine 

(SVM) were used as base classifiers, and Matplotlib and Seaborn are used for data visualization and analysis. 

Scikit-Learn is used for model construction and assessment. The use of multiple models and the stacking 

ensemble approach aimed at improving predictive performance, while rigorous evaluation ensured the 

reliability of the results. 

4. Results and Discussion 

The stacking ensemble model was implemented to improve the robustness of heart disease diagnosis using a 

combination of different models. This section presents the results of the implementation and discusses the 

performance of the model based on various evaluation metrics and visualizations. 

The performance of the stacking ensemble model was evaluated using several key metrics which includes 

accuracy, precision, recall, F1 score, and specificity. The result yields an accuracy of 89%, Precision of 89%, 

Recall (sensitivity) of 85%, F1 Score of 87% and Specificity of 92%. These metrics indicate that the 

stacking ensemble model performs well in diagnosing heart disease, with high precision and recall values, 

suggesting a good balance between the model's ability to identify positive cases and minimize false positives. 

A normalized confusion matrix was plotted to provide better insights into the model's performance by 

showing the proportion of correct and incorrect predictions ad depicted in figure 2. 
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Figure 2: Confusion Matrix plot 

The confusion matrix confirms that the model correctly identifies most of the positive and negative cases, 

with few misclassifications. The model is highly effective (92%) at correctly identifying patients who do not 

have heart disease and makes few mistakes (8%) in incorrectly predicting heart disease in patients who do 

not have it, reducing unnecessary worry and potential over-treatment. The Plot further suggests that the 

model accurately identifies a large majority of patients (85%) with heart disease, which is crucial for timely 

and appropriate treatment as depicted. The high true positive and true negative rates indicate that the model 

is generally reliable. 

To evaluate the model's discriminatory power, the ROC curve was also plotted and the area under the curve 

(AUC) computed. The outcome is depicted in Figure 3. 
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Figure 3: Receiver operating characteristic (ROC) curve 

The stacking ensemble model's outstanding discriminative capacity to differentiate between individuals with 

and without heart disease is indicated by the ROC curve, which has an AUC of 0.93. The model's high AUC 

shows that it can continue to function well even in the event that the patient population or the underlying 

data distribution changes. Healthcare providers can be certain that the model works effectively over a range 

of decision thresholds thanks to the ROC curve's shape and the AUC number. 

A modest difference exists between the cross-validation and training scores, as illustrated in the learning 

curves created for the stacking ensemble model in Figure 4. 
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Figure 4: Learning curves 

The high cross-validation score and the high training score in this instance show that the ensemble model 

does not under or over fit the training data. The model appears to be well-generalized and able to produce 

precise predictions on fresh, untested data based on this balance. All this indicates is that the model has 

successfully balanced variance and bias. In clinical applications, like the diagnosis of heart disease, where 

consistent performance across different datasets (training and testing) is critical for reliable outcomes, the 

ensemble model's robustness is indicated by the close proximity of the training and cross-validation curves. 

5. Conclusion 

In comparison to conventional single-algorithm methods, the stacking ensemble model developed in this 

work offers improved accuracy and reliability, making it a potent tool for diagnosing cardiac disease. The 

obtained result indicates that the model is highly equipped for real-world clinical deployment in heart 

disease diagnosis, and it has a good chance of retaining accuracy and dependability. The promise of AI-

driven solutions to enhance clinical decision-making and patient outcomes in healthcare is highlighted by 

the successful integration of several machine learning algorithms into a coherent ensemble model. In order 

to improve this model's prediction power, future research could examine how to apply it to different medical 

problems and include more data sources. In order for AI-driven healthcare diagnostics to be more 

extensively recognized and used in clinical practice, it is imperative that key issues like bias, fairness, and 

trust be addressed by the suggested paradigm. The result demonstrates that the model can increase the 

accuracy of heart disease detection, supporting medical practitioners in reaching better decisions. The 

effectiveness of the model was established in practical situations by means of validation through the use of 

publically accessible datasets on heart disease. The study's findings shows that the stacking ensemble model 

performs better than individual models, which makes a strong argument for its application in therapeutic 

contexts. 
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