
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 13 Issue 06 June 2024, Page No. 26219-26228

ISSN: 2319-7242 DOI: 10.18535/ijecs/v13i06.4847

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26219

Ball-Maze Block Diagram for Visualizing Logic Flow and

Standardizing Code Structure

Eik Fun Khor

Institute of Technical Education

College West

1 Choa Chu Kang Grove

Singapore 688236

Abstract

Both flowchart and pseudocode are popular tools to describe program algorithms. However, they have their

strengths as well as weaknesses. Flowchart visualizes logic flow effectively but sometimes it may not be

conveniently converted to program code for novice programmers. On the other hand, pseudocode format is

closer to program code but may not be as easily visualized as flow chart. To address the issue, this paper

proposes an alternative graphical representation of logic flow, called ball-maze block diagram, which takes

advantages of both flowchart and pseudocode in a single representation format. Besides describing the

graphical representation of the diagram, this paper also demonstrates systematic conversion from the

diagram to standard code structure to ease code development. The generated code is structure-friendly

regardless of the complexity of logic flow. Step-by-step guides are given on practical problem to

demonstrate the usefulness of the proposed methods.

Keywords: graphical representation, block diagram, programming, code development, computer science.

1. Introduction
In today‘s programming, there exist various

diagramming tools to graphically describe computer

programs. Unlike the representations used in other

design disciplines, new diagrams for programming

are continually being developed, so it is possible to

observe the effect of successive generations of

diagram conventions, or even influence the

development of future generations of design

notation [1]. Some diagram types to model program

solutions can be found in Unified Modelling

Language [2]. In addition, some other examples are

introduced separately, such as Sketchpad [3,4],

LabVIEW [5], Scratch [6] and so forth. In general,

the diagramming tools can be classified into 2 main

categories – Data Flow Diagrams (DFDs) and

Control Flow Diagrams (CFDs) [7-12]. Both of

them serve different objectives in programming

applications. DFDs‘ origins can be traced back at the

Ph.D. thesis of Sutherland [13] where a light-pen

and a TX-2 computer are used to create a visual

programming language, on top of the SKETCHPAD

framework. While data flow diagrams represent the

flow of data, operands or information within a

program, a control flow diagram shows the logical

flow of operations, i.e. what operations to be

performed, in what order, and under what

circumstances. While programming with DFDs is

found more user-friendly for programmers, it

normally requires sophisticated conversion software

tool working in the background to translate the

diagram to source code or directly to machine code

for targeted platform specified by developer. In this

paper, we focus on the graphical representation of

control flow in a program, i.e. CFDs, where

programmers can learn to develop their own source

code in standard structure from the diagram in a

simple and systematic way without the reliance on

additional software tool.

Flowchart is schematic representation of a process

[14]. As stated in New World Encyclopaedia [15], it

was introduced by Frank Gilbreth to members of

American Society of Mechanical Engineers (ASME)

in 1921 as the presentation ―Process Charts—First

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26220

Steps in Finding the One Best Way.‖ It is also

known as control flow diagram. Although it is the

earliest diagramming tool, it is still remained as

well-known diagramming tool. In today‘s computer

science education, it is still found useful and widely

applied, especially by beginners, to plan logical flow

of a program before learning to develop source code

for the program. It is capable of showing the overall

logic flow of instructions from one process to

another, including the branching and looping in the

logic flow. Nevertheless, sometimes the novice

programmers have difficulty to translate some logic

flows to source code, especially when the original

flow is unstructured and/or involve nested branching

and looping in different combinations.

Pseudocode is another type of representation of a

program algorithm. It uses a combination of natural

language and programming language in written

format. Since it allows users to formulate their

thoughts into computer algorithm without the need

to follow exact coding syntax, it serves as

intermittent step towards the development of the

actual code. As it is very much similar to program

code, it is found easier than flowchart for user to

write source code. Also, compared to flowchart, it

requires less space to develop as it can be in written

text format in our own way as there are no fixed

rules. However, the logic flow of instructions in

pseudocode cannot be easily visualized by users,

especially novice programmers. Besides, pseudo

code is less appropriate than flowchart to explain the

flow to people with no programming background.

Knowing that flowchart and pseudocode have their

own strengths and weaknesses as compared to each

other, this paper introduce a new diagramming tool

to combine the advantages of the two. The proposed

tool, is call Ball-Maze (BM) block diagram. It is a

versatile graphical representation of program so that

user can visualize the logic flow of the program

effectively and at the same time, facilitate users to

write source code in more direct and simple way.

The main purpose is to assist users who have

difficulty to develop source code that involve

complex control flow structure, such as the nested

branching and looping and their combinations in

various ways. It will be shown that with the

proposed BM block diagram, the generated code

structure is standard and systematic. The method

does not require conversion tool from diagram to

source code. In addition, it is suitable for users who

want to have direct control on the structure of code

to be developed.

This paper is organised as follow. Section 2

introduces the basic concept of BM block diagram.

Section 3 defines the basic building blocks for the

diagram while Section 4 covers the flow

representation for the diagram. Section 5 suggests,

although not compulsory to the users, a systematic

coding method to facilitate users to develop source

code effectively from BM block diagram. The full

implementation process from developing BM block

diagram to generating source code is explained step-

by-step in an application example in section 6 before

conclusion is drawn.

2. Basic Concept of Ball-Maze (Bm) Block

Diagram

In BM block diagram, program execution is

modelled by a ball rolling along pathways in a maze.

The maze is constructed by a number of maze

blocks and the pathways that interconnect the maze

blocks. The ball rolls from one maze block to

another through the pathways. The pathway is

unidirectional. There are 2 types of junctions on the

pathways, 1) branch - junction where one pathway

split into multiple pathways (single-in-multiple-out)

that can be controlled , and 2) join - junction where

multiple pathways are combined into single pathway

(multiple-in-single-out).

While the ball rolls inside a maze block, operations

where the ball passes by are evoked. The ball can

roll into a maze block at one end and exit at the

other. Sometimes there are multiple exits out from a

block. After exiting the block, the ball will follow

the pathway that link from one block to another to

enter the following block, which can be either

another maze block or the same one where it was

exited from. By re-arranging the maze blocks and

re-connecting the blocks to one another, the overall

layout of the maze can be altered accordingly.

Fig. 1 illustrates an example of a maze which

consists of 4 maze blocks, i.e. blocks 1 to 4. The ball

begins at ―start‖ position of the maze. It first enters

block 1 through the entrance ―Entry 1‖. When it

comes to ―branch A‖, it can be controlled which exit

to take, i.e. Exit1,1 or Exit1,2. If the ball take Exit1,1, it

will follow a pathway that lead to ―Block 2‖, and

subsequently to ―Block 3‖ and ―Block 4‖. On the

other hand, if it take Exit1,2, it will bypass ―Block 2‖

and ―Block 3‖ and reach Block 4 directly. In either

way, it will finally enter ―Block 4‖ and roll through

―Entry 4‖ before exiting from the maze.

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26221

Fig. 1 Rolling ball and maze blocks

Since the diagram is modelled after the ball maze,

the program structure in the diagram is analogous to

the layout of the maze block and the

interconnections among the blocks while program

execution is analogous to the process of rolling ball

in the maze.

3. Basic Building Block

After showing the overall ball maze concept, this

section focus on the detailed structure of the

building block of the maze and its simplified model,

the main graphical symbol of BM block diagram.

First, let‘s take a look on the basic mechanism of a

maze block as shown in Fig. 2. In general, it consists

of 3 primary parts:

i) Entry to the block,

ii) Jobs, i.e. jobs P1 to P3, to be executed in pre-

defined sequence from top to bottom, and

iii) Exits from block, i.e. Exit1 & Exit2.

The maze block is ―activated‖ when the ball enters

the block, which is part 1) of the block. When it rolls

through the jobs in part 2), the jobs are executed.

Each job is executed one at a time and in sequence

where it passes by. In this case, the order of the jobs

to be executed is P1, P2 and followed by P3. The ball

will stay at the current job where it is being executed

and it only moves on to the next job when the

current job is completed. When the ball comes to

exit part (part 3) in this example, there are two

possible exits. In the mechanism shown, which exit

to take depends on the position of the control horn at

the junction. If the horn is at position A, the ball will

exit from the block through Exit 1. Otherwise (horn

at position B), Exit 2 will be taken. The horn

position is governed by the selection criterion C. If

the criterion C is TRUE, control horn will be

switched to position A, else, at position B. The

subsequent block to be activated depends on which

block the ball rolls to and this depends on the layout

of the pathway that inter-connects the blocks

together.

Fig. 2 Rolling ball model of maze block

Fig. 3 depicts the simplified representation of a

maze block for use in the diagram. It applies the

same working principle of maze block explained in

Fig. 2.

Fig. 3 Simplified model of maze block

Note that the block symbol is simplified from

conceptual maze blocks in the ways that, (i) the

layout of pathways inside the block is removed with

the same working principle remained and, (ii) the

pathways from one block to another are replaced by

flow lines for ease of drawing.

As similar to maze block, the block symbol consist

of 3 primary elements as follows:

i) Entry to the block

ii) Job(s) to be executed

iii) Exit(s) from the block

The number of entries to a maze block is one for

sequential flow (not concurrent flow). The jobs to be

done follow the sequence from top to bottom. The

number of job (J) to perform can vary from zero to

any integer number. The number of exit(s) (E) from

a maze block can vary from one to any integer

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26222

number as well. For multiple exits, which exit to

take depends on the exit criteria (C). In more

detailed definition, the program will take the first

exit where its exit criterion is TRUE.

From programming point of views, the control

structures that a maze block cover are:

i) Sequential Control – E.g. P1, P2 and P3. No

defined sequence if the jobs are within the same job

row.

ii) Branching Control – E.g. If (C), take exit E1, Else

take exit E2.

Pertaining to the graphical representation, the exit

from a maze block can be on the right or left side as

below in Fig. 4. However, in the context of

sequential programming, only one exit is allowed

per exit branch as shown in Fig. 5.

(a) Exit 1 on the left

and Exit 2 on the right

(b) Exit 1 on the right

and Exit 2 on the left

Fig. 4 Maze block exit can be on either side (left or

right)

(a) 2 exits for Exit 1 (b) 2 exits for Exit 2

Fig. 5 Maze block exit branch on both sides is not

allowed

Note that a maze block is simply represented by a

big rectangle with rows of smaller rectangles

stacking on one another. In contrary to flowchart,

BM block diagram is shape friendly as all maze

blocks has standard format and in rectangle shapes.

This ease the process in choosing the correct shapes

to use and as well as constructing the graphical

representation for the blocks.

4. CONSTRUCTION of BALL-MAZE (BM)

BLOCK DIAGRAM

Upon introducing maze block as standard building

block, this section explains the construction of the

proposed diagram, BM block diagram. In general,

BM block diagram for a flow can be represented by

a number of maze blocks connected through flow

lines. Similar to flowchart, the flow begins with the

―start‖ terminal and end with ―end‖ terminal. In case

of endless repetition, the ―end‖ terminal is not

needed. Unlike flowchart, there is only one type of

execution node, which is maze block.

In other words, BM block diagram consists of the

below elements to represent the control flow:

i) Maze blocks that encapsulate a series of jobs to

be performed and exit branches.

ii) Flow lines to represent the flow from one block

to another.

iii) Terminals such as ―Start‖ and ―End‖ to mark the

start and end of the flow.

Through proper design of logic flow from one maze

block to the other, various types of control structure

can be implemented. These include:

i) Sequential control where a series of process

carried out from one maze block to another.

ii) Branching control to logically control the next

maze block to be activated (where the ball rolls to)

through assessment of binary decision (Exit

criteria).

iii) Looping control to allow the conditional

repetition of a block or sequence of blocks. The

loop control is implemented through the

combination of Exit branch and the flow lines

linking to the previous block.

Fig. 6(a) depicts an example of sequential control

from one maze block to another. The program starts

from K1 to perform jobs P1 to P3. After K1, it

subsequently activates K2, in sequence through the

flow line connecting from K1 to K2. Thus, it can be

seen that the example given is purely a sequential

control from K1 to K2. Its equivalent representation

in maze blocks is illustrated in Fig. 6(b) for ease of

visualization on the control flow.

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26223

(a) Sequential control example with simplified

model

(b) Sequential control example with rolling ball

model

Fig. 6 Sequential control example

Fig. 7(a) depicts an example that comprises a simple

branching control to 2 different maze blocks. After

activating block K1, the program can either take the

first exit to activate K2 or through second to end the

program. The decision is governed by criterion C1.

Its equivalent control flow in rolling ball model is

shown in Fig. 7(b). As far as there are multiple exits

from a maze block, branching control is involved.

(a) Branching control example with simplified

model

(b) Branching control example with rolling ball

model

Fig. 7 Branching control example

Fig. 8(a) illustrates a simple example of looping

control where the same block K1 will be repeatedly

activated as far as criterion C1 is TRUE. Its

equivalent representation in rolling ball model is

illustrated in Fig. 8(b).

(a) Looping control example with simplified

model

In the case where a BM block diagram is long

winded that flow lines start crisscrossing, which

may cause confusion, or to continue on separate

page, connector symbols is used to connect two or

more different part of flowlines in the diagram. As

shown in Fig. 9, they are represented by a circle and

a letter or digit is placed within the circle to indicate

the link, which is similar to flowchart.

(a) Looping control example with rolling ball

model

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26224

Fig. 8 Looping control example

Fig. 9 Connectors that connect one block to another

block

There may also be cases where a maze block itself is

too long to fit into a desired space. To address the

issue, another type of connectors as shown in Fig.

10, called ―Continue-to‖ and ―Continue-from‖, are

introduced to join different parts of a maze block

together. In the figure, both parts are combined by

the connectors to form a complete K1 block.

Fig. 10 Connectors that put together parts within

the same block

5. Code Development for BM Block Diagram

Another objective of using BM block diagram is to

ease the code development in a way systematic way

and within a standard code structure. I can simplify

the process of developing code, especially for

novice programmers who have difficulty to develop

code for complex logic flow. Nevertheless, users can

choose to use their own code development method

or the proposed method, called K-coding [16], in

this section.

In K-Coding approach, source code is constructed at

2 levels: i) for each maze block and ii) for overall

program. At block level, the code content is

constructed separately for each maze block within

simple branch statements. There are basically 2 set

of branches for each maze block: 1) check-in branch

for the incoming branch and, 2) check-out branch

for outgoing branch as shown in Fig. 9.

Fig. 9. Check-in and check-out branches in maze

block

Check-in branch basically check the condition to

enter the maze block. If the condition is TRUE, the

maze block become active (or TRUE) and the

process, P1,…,PJ in the maze block are executed in

order. On the other hand, check-out branch checks

whether the program will exit from the current maze

block. If the condition is TRUE to exit, it describes

the next active block. In general, there are three

possible outcomes in check-out branch. The

program will either: 1) exit to different maze block,

2) exit to itself (loop back) or, 3) exit to end of

program (End is TRUE).

In the code development, check-in and check-out

branches can be easily implemented using various

types of branch statements, such as IF-THEN, IF-

THEN-ELSE, CASE-SELECT, etc. For consistency,

we choose to use IF-THEN or IF-THEN-ELSE

statements to demonstrate the sample code for maze

blocks. Fig. 10 illustrates the pseudo code for

different types of exit scenarios. For simplicity,

Boolean variables are used to mark the active

(TRUE) and inactive (FALSE) of each maze block.

Maze block can change the state during the program

runtime. In practice, users can use any variable or

array type to mark the states which they think is

appropriate. For the case in Fig. 10(c) where there is

no EXIT for C1 = FALSE as there is no change in

the active state of maze block, K1 still remains

active.

There are basically 2 options in implementing maze

block: either 1) split check-in and check-out

branches into 2 separate sets of branch statements or,

2) combine check-in and check-out branches in

single set of branch statement. The code examples

shown in Fig. 10 take the first option. Fig. 11

illustrates the code templates, taking Fig 10b as an

example. Both options are shown in the templates.

In comparisons, option 1 implementation results in

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26225

simpler code structure for novice programmer since

nested branch structure can be avoided. On the other

hand, option 2 implementation improves code

efficiency as there is no redundancy in checking the

condition for K1. Finally, it is users‘ preference on

which options to select.

(a) Maze block with single exit

(b) Maze block with multiple exits

(c) Maze block with loop-back

Fig. 10. Code development for maze block

It is essential to highlight that while the standard

model within the maze block, as shown in Fig. 9 can

be unstructured flow, during the K-coding for the

maze block, the composed source code, as shown in

Fig. 11, become structured.

After constructing code content for each maze block

at level 1, users may proceed to assemble the code

blocks together to construct the overall program in a

standard logic structure as shown in Fig. 12. The

notations <Ki Check-In> and <Ki check-out>

represent the code blocks of check-in and check-out

branches respectively, for block Ki.

The overall code structure of the program is

standard and simple to implement regardless of the

complexity of original logic flow. In general, it

consists of a series of branch statements within a

main loop and the program will repeat the main loop

until coming to the end of the program (End is

TRUE). Although sometimes K-coding may result

in longer code size and/or decrease in code

efficiency in terms of speed, the resulted code

structure is significantly simplified and direct to

implement. Thus, basic logic flow knowledge in

programming skills is sufficient to solve

programming task for complex logic flow.

(a) Code template 1 -

splitting check-in and

check-out

(b) Code template 2 -

combining check-in

and check-out

Fig. 11. Different code implementations of maze

block

The proposed process in developing source code as

mentioned above is called K-composition. It can be

easily noted that the resulted code is a structured

program. The statement stays valid regardless of

whether the original logic flow is structured or

unstructured. Besides, the method is less error-prone

as the source code for the content of the maze block

and logic flow among the blocks can be traced

separately against BM block diagram.

K1 check-in:

If K1

 P1

 P2

K1 check-out:

If K1

 K1  FALSE

 K2  TRUE

K1 check-in:

If K1

 P1

 P2

K1 check-out:

If K1 And C1

 K1  FALSE

 K2  TRUE

Else If K1

 K1  FALSE

 K3  TRUE

K1 check-in:

If K1

 P1

K1 check-out:

If K1 And C1

 K1  FALSE

 K2  TRUE

K1 check-in:

If K1

 P1

 P2

K1 check-out:

If K1 And C1

 K1  FALSE

 K2  TRUE

Else If K1

 K1  FALSE

 K3  TRUE

K1:

If K1

 check-in

 P1

 P2

 check-out

If C1

 K1  FALSE

 K2  TRUE

Else

 K1  FALSE

 K3  TRUE

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26226

Fig. 12. Constructing overall code with maze blocks

6. Application Example

In this section, the step-by-step implementation of

the proposed method is demonstrated in practical

application of on a traffic light control. Fig. 13

depicts the layout of T-junction traffic lights. There

are three sets of traffic lights, one set for each road,

namely East (E) road, West (W) road, and North (N)

road. As usual, each set of traffic contains 3

different light colours, i.e. red (R), amber (A) and

green (G). For W road, Left-Turn (LT) light is

included to direct vehicles coming from W road to

do left turn into N road. In the system, each light is

labelled by the road name followed by the light

colour. For example, ―N Red‖ represents the red

light on N road. Instead of fixed traffic patterns, the

traffic will response differently depending on the

traffic condition at the respective road. In the system

2 vehicle detecting sensors are employed for this

purpose. Sensor Ncar returns TRUE if there is

vehicle on N road, similar to sensor Wcar for car on

W road.

Fig. 13 Layout of T-junction traffic light

Besides following the standard traffic light pattern

from Green, Amber and then Red, the traffic system

is programmed in such the ways that:

 N lights allow traffics from N road to turn left

while both W and E road traffics are stop.

 Traffics from W and E are allowed to travel

straight while traffics at N road are stopped.

 Traffic from W is allowed to do left turn when

both E and N traffics are stop. During this period,

traffic from W are also permitted to go straight.

 All roads should be on red light for 1 second

before the any road start green light.

 Duration for all amber lights is 2 Sec.

 Duration when both W and E roads are green is

20 Sec.

 If there is vehicle (Ncar is TRUE) on N road, the

green light will be on for 10 Sec. Else (no

vehicle), 1 Sec.

 If there is vehicle turning left (Wcar is TRUE)

from W road, W-LT will be on for 5 Sec,

followed by 3 blinks (1 Sec on and 1 Sec off)

before turning off fully. Otherwise, W-LT light is

skipped.

The program for the mentioned traffic light control

system can be graphically represented with BM

block diagram, as shown in Fig. 14, using the ball-

maze block model as follow. Let imagine the ball

start at the maze block K1 where NS Green is turned

on. Since the duration for NS Green can be either 1

or 8 Sec depending on sensor VEH1, there are 2

exits from K1 with VEH1 as the branching condition.

If VEH1 is TRUE, the ball will roll to K2 where the

delay is 8 Sec and if otherwise, it roll to K3 for 1

Sec delay. After NS green, the ball will come to

block K4 to do the NS amber, NS red, followed by

EW and WE green. As the subsequent process

depends on VEH2 sensor, there are 2 possible exits

for K4. One is when VEH2 sense vehicles (VEH2 is

TRUE) and the other is when it sense no vehicle

(VEH2 is FALSE). If there is vehicle, the ball will

take the first exit to block K5 to enable the vehicles

taking right turn. If otherwise, the ball will take the

second exit to block K6 to skip the right turn. Finally,

the ball will be routed back to block K1 to repeat the

next cycle.

First active maze block  TRUE

Other maze blocks  FALSE

Repeat

 <K1 check-in >

 <K1 check-out>

 <K2 check-in>

 <K2 check-out>

 . . .

 <KL check-in>

 <KL check-out>

Until End of Program (None of

maze blocks is active)

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26227

Fig. 14 BM block diagram for the traffic-light

control

Upon constructing BM block diagram for the

program, users can proceed to develop their source

code for the diagram using the K-coding approach

proposed in this paper (user can choose to use their

own approach for the coding as mentioned in

previous section). First, each maze block in the

diagram is converted into source code using the

code template of check-in and check-out branches,

which are shown in Fig. 11, as their guideline. An

example of the resulted code, using template 1, for

each maze block is given in Fig. 15, which is simple

to understand and implement.

After constructing code content for each maze block,

the code can be systematically assembled together in

the standard code structure as shown in Fig. 12

where the number of maze block, L, in this

application is 6. BM block diagram is very versatile

and it can be adapted to user preference. For

example, if less maze blocks is desired, some maze

blocks can be combined, provided it is still within

the framework of the BM block diagram. For

example, blocks K1, K2 and K3 can be combined into

K1‘ as shown in Fig. 16 for the BM block diagram

and Fig. 17 for the code.

Fig. 15 Code content for each maze block

Fig. 16 BM block diagram - K1, K2 and K3

combined into K1‘

Eik Fun Khor, IJECS Volume 13 Issue 06 June, 2024 Page 26228

Fig. 17 Code content - K1, K2 and K3 combined into

K1‘

7. Conclusion

In this paper, BM block diagram is introduced as an

alternative format to graphically represent of a

program. It combines the advantages of both

flowchart and pseudocode in a single diagram. As

benefited from flowchart, it is a versatile graphical

representation of program so that user can visualize

the logic flow of the program effectively. At the

same time, its format is closure to program code

development, thus facilitating users to chunk out the

flow and convert it to source code in more direct and

simple way. It helps to reduce the complexity of the

code structure for complex and even unstructured

logic flow of a given task. The application of K-

coding approach is also demonstrated, as an option,

in the application example to guide users to convert

BM block diagram to source code in direct and

simple way. The generated code structure from BM

block diagram is standard and structure-friendly.

References:

1. A.F. Blackwell, K.N. Whitley, J. Good and

M. Petre, ―Cognitive Factors in

Programming with Diagrams,‖ Artificial

Intelligence Review, Vol. 15, Issue 1, pp. 95-

114, 2001.

2. Unified Modeling Language (UML), source

from www.uml-diagrams.org, (accessed on

8th Jun 2024).

3. W.R. Sutherland, ―On-Line Graphical

Specification of Computer Procedures,‖

Massachusetts Institute of Technology, Dept.

of Electrical Engineering, Ph.D Thesis, 1966.

4. I.E. Sutherland, ―Sketchpad: A man-machine

graphical communication system,‖
Proceedings of the Spring Joint computer

Conference, pp. 329–346, 1963.

5. LabVIEW, source from

http://https://www.ni.com/en/shop/

labview.html, (accessed on 10th Jun 2024).

6. Scratch, source from https://scratch.mit.edu,

(accessed on 10th Jun 2024).

7. A.V. Aho, R. Sethi and J.D. Ullman,

―Compilers, principles, techniques,‖

Addison-Wesley, Vol. 7, No. 8, Issue 9,

1986.

8. F.E. Allen, ―Control flow analysis,‖ ACM

Sigplan Notices, Vol. 5, pp. 1–19, 1970.

9. R. Farrow, K. Kennedy and L. Zucconi,

―Graph grammars and global program data

flow analysis,‖ 17th Annual Symposium on

Foundations of Computer Science, IEEE, pp.

42–56, 1976.

10. C.W. Fraser and D.R. Hanson, ―A

retargetable C compiler: design and

implementation,‖ Addison-Wesley Longman

Publishing Co., Inc, 1995.

11. T. Long, Y. Xie, X . Chen, W. Zhang, Q.

Cao and Y. Yu, ―Multi-View Graph

Representation for Programming Language

Processing: An Investigation into Algorithm

Detection,‖ Proceedings of the AAAI

Conference on Artificial Intelligence, Vol.

36, No. 5, pp. 5792-5799, 2022.

12. S. Muchnick, ―Advanced compiler design

and implementation,‖ Morgan Kaufmann,

1997.

13. W. Sutherland, ―On-Line Graphical

Specification of Computer Procedures,‖

Massachusetts Institute of Technology, Dept.

of Electrical Engineering, Ph.D Thesis, 1966.

14. A.B. Chaudhuri, ―Flowchart and Algorithm

Basics - The Art of Programming,‖ Mercury

Learning and Information, 2020.

15. New World Encyclopaedia, ‗Flowchart‘,

source from

http://www.newworldencyclopedia.org/entry

/ Flowchart, (accessed in 2013).

16. E.F. Khor, ―Coding for Multitasking Without

Operating System: A Method Using Simple

Code Structure,‖ CreateSpace Independent

Publishing Platform, 2017.

