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Abstract  

Oil is a precious and critical natural energy resource that is used in numerous ways to drive various 

industries worldwide. The extraction of oil from underground reservoirs is a complex process that requires a 

lot of planning, careful execution, and risk management. In this paper, CNN is employed to extract relevant 

features from sensor primary data collected from various wells. Detecting undesirable events such as leaks 

and equipment failure in oil wells is crucial for preventing safety hazards, environmental damage and 

financial losses, making it challenging to identify issues in a timely and accurate manner. This dissertation 

describes a hybrid model for detecting undesirable events in oil and gas wells using a combination of 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) techniques. The CNN 

architecture enables effective information extraction by applying convolutional layers and pooling 

operations to identify patterns and spatial dependencies in the data. The extracted features are then fed into 

an LSTM network, which can capture temporal dependencies and learning long-term patterns. By utilizing 

LSTM, the model can effectively analyse the time series data and detect the occurrence of undesirable 

events, such as abnormal pressure, fluid leakage, or equipment malfunction, in oil and gas wells. The hybrid 

model leveraging CNN for feature extraction and LSTM for detecting undesirable events in the oil and gas 

industry presents a comprehensive approach to enhance well monitoring and prevent potential hazards. 

Achieving high accuracy rates of 99.8% for training and 99.78% for testing demonstrates the efficacy of the 

proposed model in accurately identifying and classifying undesirable events in oil and gas wells. 

1. Introduction 

Oil is a precious and crucial natural energy 

resource that is used in numerous ways to drive 

various industries worldwide. The extraction of oil 

from underground reservoirs is a complex process 

that requires a lot of planning, careful execution, 

and risk management. However, undesirable 

events can occur during oil well drilling, 

development, production, and maintenance, which 

can have significant negative impacts on the 

environment, human health, and the economy. 

 These undesirable events are typically classified 

as oil well incidents, ranging from minor spills to 

catastrophic explosions, fires, and blowouts. In the 

general industrial context, there have been 

increasing demands for greater operational safety, 

productivity, quality, and energy efficiency. 

Complexity, instrumentation, and automation 

have increased significantly to meet these 

demands. Control loops, whether manual or 

automated, are developed to maintain operations 

under normal conditions, but there are changes 

and disturbances which these control loops cannot 

handle satisfactorily.  

Faults occur in these situations, the underlying 

cause(s) of a fault in oil wells include a failed 

coolant pump or a controller, as the root cause(s) 

or basic event(s), which are also referred to as 

malfunction(s) or failure(s). The detection and 

classification of rare undesirable events are tasks 

that are relevant and in vogue in several activities 

carried out and/or monitored by human beings. 

Leak detection, and location in water and oil 

pipelines (Liu et al., 2019). Responding to 

abnormal events in a process involves timely 

detection, diagnosing its root causes, and taking 
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appropriate control decisions and actions to bring 

the process back to a normal, safe, and operational 

state. This entire activity is known as Abnormal 

Event Management (AEM). Diagnosis in 

automated AEM can be viewed as a classification 

problem, and classification algorithms can be 

categorized in terms of their knowledge and 

search strategies (Li et al., 2018). Major 

consequences when leaks and equipment failure 

occur in oil wells are flow instability, flow 

oscillations or drift caused by pressure drop, flow 

density and cavitation. Spurious closure is an 

unexpected short down of the flow due to 

condensate or accumulation of oil and scaling 

which is coating that is formed that can prevent 

flow. 

The oil and gas industry has been leveraging 

artificial intelligence and machine learning 

techniques to improve its operations. Machine 

learning can be applied to various aspects of oil 

and gas operations, including exploration, drilling, 

production, and maintenance. In the case of 

undesirable events in oil wells, machine learning 

can be a valuable tool to prevent and mitigate 

these events. One of the most significant benefits 

of machine learning in the context of oil well 

operations is its ability to analyze vast amounts of 

data in real time. Machine learning algorithms can 

analyze data from sensors and other monitoring 

equipment to detect anomalies and identify 

patterns that may indicate a potential problem.  

Another application of machine learning in oil 

wells is predictive maintenance. By analyzing 

historical data on equipment failures and 

maintenance activities, machine learning 

algorithms can predict when equipment may fail 

and recommend preventive maintenance measures. 

This can help operators avoid costly downtime 

and reduce the risk of equipment failures that can 

lead to undesirable events. 

Machine learning can also be applied to improve 

the safety of oil well operations. By analyzing 

data on accidents and incidents, machine learning 

algorithms can identify trends and patterns that 

may indicate a potential safety risk. This can 

enable operators to take corrective action to 

prevent accidents and mitigate the impact of any 

incidents that do occur. Finally, machine learning 

can be used to optimize production in oil wells. 

By analyzing data on production rates, reservoir 

characteristics, and other factors, machine 

learning algorithms can recommend adjustments 

to production parameters to maximize output 

while minimizing the risk of undesirable events 

such as blowouts or sand production. 

2. Review of Related Literatures 

Below are review of related works done in the 

past by different authors whose gaps are to be 

addressed in this work.  

Zhou et al. (2018) presented a deep Learning for 

the detection and Classification of Oil Well 

Events. The authors achieved an accuracy of 96.2% 

in detecting the events using the deep learning 

model. The dataset used was small and the 

model's performance may decrease when applied 

to larger and more complex datasets.  

Ghorbani et al. (2021) presented a framework for 

Detecting Anomalies in oil Wells. The authors 

achieved an accuracy of 96.7% in detecting 

anomalies using a deep learning model. The 

dataset used was limited and the model may not 

generalize well to other datasets 

Tran et al. (2019) presented a deep Learning for 

Real-Time Detection of Hydrocarbon Leaks. The 

authors achieved an accuracy of 98.9% in 

detecting hydrocarbon leaks using a deep learning 

model. Limitations: The dataset used was small 

and the model may not perform as well on larger 

and more complex datasets. 

Li et al. (2020) provided a deep Learning-based 

Detection of Pumping and Flowing States in 

Water Wells. The authors achieved an accuracy of 

99.1% in detecting pumping and flowing states in 

water wells using a deep learning model. The 

dataset used was limited and the model may not 

generalize well to other datasets. 

AI-Shammary et al. (2020) proposed a novel 

machine learning model that combined multiple 

features extracted from drilling data to detect gas 

kicks. Gas kicks are undesirable events that occur 

during the drilling process of oil wells, and they 

can lead to severe consequences such as blowouts. 

This literature review focuses on the detection of 

gas kicks using machine learning techniques. 

Machine learning algorithms have been shown to 
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be effective in identifying gas kicks in real-time, 

reducing the risk of blowouts. The proposed 

model achieved an accuracy of 93% in detecting 

gas kicks, which is significantly higher than other 

existing models. 

Wellbore instability is another undesirable event 

that can occur during the drilling process, leading 

to significant financial losses and safety risks. The 

use of artificial intelligence (AI) in detecting 

wellbore instability has gained popularity in recent 

years. In a study by Salehi et al. (2021), they used 

a convolutional neural network (CNN) to analyze 

wellbore images and detect unstable sections. The 

proposed CNN achieved an accuracy of 95.3% in 

detecting wellbore instability, outperforming other 

traditional methods. 

Drilling fluid losses are another undesirable event 

that can occur during the drilling process, leading 

to wellbore instability and other related issues. In 

recent years, intelligent detection methods have 

been proposed to identify drilling fluid losses. In a 

study by Chen et al. (2018), they used a support 

vector machine (SVM) to analyze drilling data 

and detect drilling fluid losses. The proposed 

SVM achieved an accuracy of 96.8% in detecting 

drilling fluid losses, demonstrating the 

effectiveness of intelligent detection methods. 

Downhole pipe failure is another undesirable 

event that can occur during the drilling process, 

leading to costly repairs and potential safety 

hazards. Real-time detection of downhole pipe 

failure is crucial to preventing further damage. In 

a study by Xu et al. (2020), they proposed a real-

time detection method using an artificial neural 

network (ANN). The proposed ANN achieved an 

accuracy of 95.2% in detecting downhole pipe 

failure, demonstrating the potential of real-time 

detection methods.  

In a study by Wang et al. (2019), the authors 

proposed a hybrid method for detecting gas influx 

in oil wells. The method combines the use of a gas 

influx detection model based on artificial 

intelligence (AI) with a fluid dynamics model for 

simulating the flow of gas in the wellbore. The 

results showed that the proposed method can 

effectively detect gas influx and provide valuable 

information for gas influx control. 

Machine learning (ML) techniques have been 

increasingly used for detecting undesirable events 

in oil wells. In a study by Zhang et al. (2021), the 

authors proposed a ML-based method for early 

detection of wellbore instability in oil wells. The 

method involves the use of multiple ML models 

trained on historical data to predict the occurrence 

of wellbore instability. The results showed that the 

proposed method can effectively detect wellbore 

instability with high accuracy. 

In a study by Zhang et al. (2018), the authors 

proposed a novel method for detecting wellbore 

instability in oil wells. The method involves the 

use of fiber Bragg grating (FBG) sensors installed 

in the casing of the well to measure the strain and 

temperature changes caused by wellbore 

instability. The results showed that the proposed 

method can effectively detect wellbore instability 

and provide valuable information for wellbore 

stability analysis. 

Acoustic emission (AE) monitoring has been 

widely used for detecting undesirable events in oil 

wells. In a study by Chen et al. (2020), the authors 

proposed an AE-based method for detecting gas 

influx in oil wells. The method involves the use of 

an AE sensor installed in the casing of the well to 

detect the acoustic signals generated by gas influx. 

The results showed that the proposed method can 

effectively detect gas influx in real time. 

One of the major challenges in oil well 

management is detecting undesirable events such 

as gas influx, kick, and wellbore instability. In 

recent years, various methods have been 

developed to detect such events. In a study 

conducted by Al-Najjar et al. (2020), the authors 

proposed a hybrid model that combines wavelet 

transform and artificial neural network (ANN) for 

early detection of kick in oil wells. The results 

showed that the proposed model can effectively 

detect kick with high accuracy. 

3.    Methodology 

Figure 1 shows the architecture for our proposed 

model for managing abnormal events such as 

leaks and equipment failure in an oil well. It is 

made of different components ranging from the 

input data which accepts the oil well data sets and 

processes it after transformation of data set from 

its original state to arrays called Data 
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Normalization and proceeded to feature extraction 

module for the use of algorithms and pseudo 

codes through principal component analysis and 

moved to the Detection module where 

identification and classification of undesirable 

events are carried out through the convolutional 

neural network and long-short term memory 

algorithm which gives feedback to the system 

output for operators and managers to view Normal 

event and undesirable events for early mitigation 

and control. 

 

Figure 1: Architectural design of the proposed 

model 

Input Data: The dataset was collected from 

online repository at Kaggle.com which comprises 

of 7 columns and 482075 rows. It consists of eight 

types of undesirable events characterized by eight 

process variables. The eight instances of the 

undesirable events of the dataset can be seen as 

follows: 

1. Abrupt Increase of Bsw 

2. Spurious Closure of Dhsv 

3. Severe Slugging 

4. Flow Instability 

5. Rapid Productivity Loss 

6. Quick Restriction in Pck  

7. Scaling In Pck 

8. Hydrate In Production Line 

Many hours of expert work were required to 

validate historical instances and to produce 

simulated and hand-drawn instances that can be 

useful to distinguish normal and abnormal actual 

events under different operating conditions.  The 

dataset sample can be seen in Figure 2 

 

Figure 2: Sample of dataset 

Data Normalization:  We normalized dataset 

using standard scaler ( ) technique by changing the 

values of the numeric columns in the dataset to 

use common scale, without distorting the 

differences in ranges of values or losing the 

information of the dataset. This is achieved using 

standard Scaler function in python. 

Feature Extraction Module: Figure 3 shows the 

architecture of CNN for feature extraction. In the 

context of detecting undesirable events in oil and 

gas, the CNN is employed to extract meaningful 

features from the time series data. The time series 

data, representing sensor readings, are input into 

the CNN, which consists of several layers of 

convolutions and pooling. The convolutional 

layers apply various filters across the input data to 

capture essential patterns such as sudden spikes or 

drops, which are indicative of potential issues. 

These filters learn to detect specific features 

automatically during the training process. The 

pooling layers then down sample these feature 

maps, reducing their dimensions while retaining 

the most critical information, which helps in 

focusing on the most prominent features and 

improving computational efficiency. 

After passing through multiple convolutional and 

pooling layers, the high-dimensional feature maps 

are flattened into a one-dimensional vector. This 

vector represents the extracted features, which 

encapsulate the significant patterns and trends in 

the input data. These features are then fed into the 

LSTM layer for sequence modeling, which helps 

in capturing temporal dependencies in the data. 

The LSTM layer processes these features over 

time steps, learning to identify sequences that 

correspond to undesirable events. By combining 

CNN for feature extraction and LSTM for 

sequence modeling, the model can effectively 
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detect anomalies and undesirable events in the oil 

and gas data. 

 

 

Figure 3:  CNN architecture for feature 

extraction 

Detection Module: The LSTM model is 

responsible for detecting and classifying the 

various types of undesirable events in the system. 

The algorithm for LSTM for the detection of 

undesirable events can be seen below and its 

architecture shown in Figure 4: 

Long-Short Term Memory 

1. LSTM 

2. Input d: dataset, 1:dataset tune labells, w: 

wordZvec matrix 

3. Output: score of LSTM trained model on test 

dataset. 

4. Let f be the feature set 3d matrix 

5. For i in dataset do { 

6. Let fi be the feature set matrix of sample i 

7. For j in i do { 

8. vj   vectorise (j,w) 

9. append vj to fi 

10. append fi to f 

} 

} 

11. f train, f test, l train, l test spliit feature set and 

labels into train subset and test subset 

12. M   LSTM(ftrain, ltrain) 

13. Score   evaluate (i, ltest, M) 

14. Return score 

 

Figure 4: Architecture of LSTM 

4.    Experimental Setup 

The experimental setup for detecting undesirable 

events in oil and gas using a CNN-LSTM model 

involves several key steps. First, historical sensor 

data, such as pressure, temperature, and flow rates, 

are collected and pre-processed. This pre-

processing includes normalizing the data, handling 

missing values, and segmenting it into fixed-

length windows suitable for the CNN input. The 

CNN is then used to extract features from these 

time series data windows through multiple 

convolutional and pooling layers, capturing 

essential patterns and trends. These extracted 

features are flattened and fed into an LSTM layer 

to model temporal dependencies and sequences 

that indicate potential undesirable events. The 

combined CNN-LSTM model is trained on this 

data, with the CNN focusing on feature extraction 

and the LSTM on sequence modeling. The 

model's performance is evaluated using metrics 

such as accuracy, precision, recall, and F1-score 

on a validation dataset to ensure its effectiveness 

in detecting anomalies and undesirable events in 

the oil and gas industry. 

From the experiment conducted, Figure 5 and 

Figure 6 describes the number of occurrences of 

the undesirable events in the dataset. Figure 5 

depicts that the data is imbalanced, and Figure 6 

depicts that the data imbalanced has been resolved. 

The data imbalance refers to a situation in a 

dataset where the distribution of classes or labels 

is highly skewed, meaning that one or a few 

classes are significantly overrepresented, while 
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others are underrepresented. This can be 

problematic for machine learning models because 

they may become biased towards the majority 

class, leading to poor performance in predicting 

the minority classes. The balanced data, shows 

that the distribution of classes is roughly equal, or 

at least more evenly distributed.  

Figure 7 represents a visual representation of the 

distribution of occurrences for each instance over 

both time and different wells. Each point on the 

scatter plot corresponds to a specific occurrence, 

and its position along the x-axis indicates the 

temporal occurrence while the position along the 

y-axis denotes the specific well in which it took 

place. This visualization provides a 

comprehensive overview of how these instances 

are distributed across the dataset in terms of time 

intervals. It allows for a quick assessment of any 

potential patterns, clusters, or anomalies in the 

occurrences, enabling a more nuanced 

understanding of their spatiotemporal distribution 

across the wells under consideration.  

Figure 8 shows the importance of each of the 

features by performing a ranking using Random 

Forest classifier. The histogram shows that the 5 

features of the dataset are all relevant in building a 

model for the detection of undesirable events in 

oil and gas well. 

Figure 9 illustrates the progression of the model's 

performance over time, possibly including metrics 

like loss and accuracy. Figure 10, and Figure 11 

provide graphical representations of the training 

process. It may show the model's accuracy and 

loss on both the training and validation data, 

helping to visualize how well the model is 

learning and whether it's overfitting. 

Figure 12 and Figure 13 present additional 

evaluation metrics. The classification report 

provides a detailed summary of the model's 

performance, including metrics such as precision, 

recall, and F1-score for each class. The confusion 

matrix is a visual representation of the model's 

predictions compared to the actual labels, giving 

insights into which classes the model may struggle 

with. These figures collectively offer a 

comprehensive view of the model's effectiveness 

in detecting undesirable events in oil and gas wells. 

Training of Hybrid Model (CNN-LSTM) 

In the first phase of training, a Convolutional 

Neural Network (CNN) is employed for robust 

feature extraction from the spectrograms 

generated from the acoustic data collected in oil 

and gas wells. The CNN architecture consists of 

four convolutional layers, each followed by a 

rectified linear unit (ReLU) activation function to 

introduce non-linearity. The first convolutional 

layer has 32 filters, followed by 64 filters in the 

subsequent layers. A max-pooling layer is inserted 

after every two convolutional layers to down 

sample the feature maps.  

This process aids in capturing hierarchical patterns 

at different scales, crucial for discerning subtle but 

critical information in the spectrograms. To 

prevent overfitting, dropout layers with a rate of 

0.25 are strategically placed after each max-

pooling layer. The final layer flattens the extracted 

features before passing them on to the subsequent 

Long Short-Term Memory (LSTM) network for 

temporal analysis. 

Following the CNN feature extraction, the LSTM 

model is employed to analyze the temporal 

dependencies present in the extracted features. 

The LSTM architecture comprises two layers, 

each containing 64 units, allowing for a balance 

between model complexity and computational 

efficiency. Additionally, a dropout rate of 0.5 is 

employed after each LSTM layer to minimize 

over fitting. The LSTM layers are followed by a 

fully connected layer with a sigmoid activation 

function, enabling the model to classify the 

extracted features into desirable and undesirable 

events. The final output layer utilizes categorical 

cross-entropy as the loss function, since the task 

involves multi class classification. To facilitate 

gradient descent during back propagation, the 

Adam optimizer is chosen with a learning rate of 

0.001. The model is trained on 25 epochs, with a 

batch size of 32, striking a balance between 

convergence speed and computational resources. 

The training process is monitored using early 

stopping with a patience of 5 epochs, ensuring that 

the model generalizes well to unseen data. The 

training process of the model can be seen in 

Figure 5. Figure 6, and 7 shows the graphical 

representation of the model accuracy and loss for 

both training and validation data. Figure 8 and 9 
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shows the classification report and the confusion 

matrix of the dataset.  

 

Figure 5: Histogram of the data imbalance  

 

Figure 6: Histogram of the balanced data 

 

Figure 7: Scatter plot instances over time and 

wells 

This map provides an overview of the 

occurrence’s distributions of each instance over 

time and between wells. 

Table 1: Ranking of Dataset Features 

 
Features Important_Features 

0 Timestamp 0.293740 

1 P-PDG 0.250641 

 
Features Important_Features 

2 P-TPT 0.170667 

4 P-MON-CKP 0.165755 

3 T-TPT 0.080311 

5 T-JUS-CKP 0.038886 

 

 

Figure 8:    Feature Importance 

 

Figure 9: Simulation of the CNN-LSTM Model 

for the First Ten Iteration 

 

 

Figure 10: Graphical representation of 

Accuracy (Training and Testing) Vs Epoch 

T
ra

in
in

g
 A

cc
u

ra
cy

  

Validation Accuracy  



Dennis, T. L., IJECS Volume 13 Issue 07 July, 2024 Page 26307 

 

 

 

Figure 11: Graphical representation of Model 

Loss (Training and Testing) Vs Epoch 

 

 

Figure 12: Classification Report of The Hybrid 

Model’s Performance. 

 

 

Figure 13: Confusion Matrix of the Hybrid 

Model 

 

4.6 Deployed Results: 

 

Figure 14: Flow Instability Detected 

 

 

Figure 15: Spurious Closure Detected 

 

 

Figure 16: Scaling Detected 

5.  Discussion of Results 

The results of this evaluation showcase the 

superiority of the developed model, highlighting 

its accuracy in event detection, efficiency in real-

time notifications, and cost-effectiveness 
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compared to traditional methods.  The model has 

detected different types of undesirable events such 

as flow instability, spurious closure and scaling 

The web interfaces show a live simulation in 

Figure14, Figure 15 and Figure 16 where different 

parameters were generated randomly and assigned 

to the model to detect undesirable events in the oil 

and gas wells. This Flask application generates 

random input parameters for various pressure and 

temperature values relevant to oil and gas 

operations. The generated random parameters () 

function creates a dictionary with keys 

representing different parameters like pressures 

and temperatures, each assigned a random value 

within specified ranges.  

The simulated undesirable events () function 

selects a random undesirable event from a 

predefined list, such as 'Severe Slugging' or 

'Scaling', simulating potential issues in the system. 

The main route / handles both GET and POST 

requests, rendering an HTML template called 

'index.html'. When a POST request is received, 

the application generates random parameters, 

simulates an undesirable event, and then renders 

the template with both the event and the 

parameters displayed. The application runs in 

debug mode, allowing for easy debugging during 

development. 

6. Conclusion 

Deployment of the CNN-LSTM model for real-

time alerts and receiving Notifications and 

optimization of the hyper-parameters of the CNN-

LSTM model to enhance accuracy in identifying 

different types of undesirable events, such as leaks, 

and equipment failures had been done successfully.  

To ensure a systematic development process, the 

Object-Oriented Analysis and Design (OOAD) 

methodology was employed. OOAD methodology 

facilitates the identification of system 

requirements, designing the architecture, and 

modelling both the behaviour and structure of the 

system. Python, a popular programming language, 

was used for the implementation of the model.   

The model went through rigorous trainings and 

testing processes, as well making classification 

report and confusion matrix report in other to 

ascertain efficiency and accuracy of the model. 

The model had successfully identified and 

detected Flow instability, Spurious closure, and 

Scaling. Confirming the effectiveness of the 

model. 
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