
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 3 March 2013 Page No. 806-810

R. N. Jugele, IJECS Volume 2 Issue 3 March 2013 Page No. 806-810 Page 806

ODA : PROCESSING MODEL DESIGN FOR LINKING DOCUMENT
R. N. Jugele*, Dr. V. N. Chavan

*Department of Computer Science, Science College, Congress Nagar, Nagpur. Maharashtra, rn_jugele@yahoo.com
Head, Department of Computer Science, S. K. Porwal College, Kamptee, Dist : Nagpur. Maharashtra.

Abstract-Designers of systems have always been deeply concerned about their systems demise. The idea address some thoughts on
the implementation of ODA Link systems, particularly with respect to processing design platform that remain malleable and stable
through periods of experimentation and radical change.
When documents are to be accessed the link structure of the documents should be employed. The structures also form the basis for the
presentation of the content of the document to the user. The content of document is not just text but a highly structured collection of
text fragments and figures.
The model defines link to capture relations and consists of specifications of its starting point and its ending point. The link context
structure defines that the displayed component should only be replaced when it is not the component the activated link is pointing to.

Keywords :
Architecture, Link, ODA, Object, Style, logical, Layout, Generic, Content.

1. INTRODUCTION
Traditional document architecture has been thoroughly studied
in the area of open information systems. The ISO's Open
Document Architecture (ODA) standard covers almost all the
concepts developed for document structuring[3]. The ODA
standard defines a document as composed of logical and
layout architecture and content portions. The logical
architecture partitions the content of a document by using
semantic rules defined by the author. The layout architecture
defines the rules that govern the presentation of the document.
The content represents the information that normally associate
with documents, for example, the text and the diagrams of a
report. ODA-like structures have been also proposed in several
multimedia information systems [2][5].
A document architecture is defined to represent the document
view. This document architecture is composed of a logical
architecture and a layout architecture. The logical architecture
partitions the content of the document according to the
semantic rules defined[7] i.e. content can be divided into
scenes, subscenes, sections, subsections, etc. The layout
architecture partitions the content of the document by defining
the rules that govern the presentation of the content [6].
Consider a simple model whose structural part is composed of
nodes and links. Each node has a unique identity and a
content. The content of a node is a sequence of elements
which may be character strings and images. A sequence of
elements within the content of a node serves as a starting or
ending point of a link. A link is defined by its starting and
ending point and by its category it is either ‘reference’ or
‘inclusion’. Reference links are intended to create a navigation

structure within the nodes. Inclusion links are intended to
create nested structures that represent complex contents[4].
A reference link creates an active element whose action
consists in jumping to the referred link. A link specification
refers to a node through its identity, which is composed of its
schema name together with actual parameter values. The
source anchor of a link can be any element or list of
elements[1]. A reference link is specified with the following
syntax :

href node_name [parameter_list] (element,...)

2. MODEL DESIGN
To provide a user with current information in a timely manner
the linking process should be automated but the size of the
document, manually updating the links between it, its dynamic
nature and the graphical guidance front-end application proved
that it is inefficient process. The process has to account for
deletions and changes to regulations that are linked to from the
graphical guidance front-end and additions of information that
might be pertinent to the waste characterization process.
With the original application design it is observed that the
major problem is how to establish the links to the referenced
document after it underwent changes. For such situation
following two steps can be consider :
i. Costs can be reduced while developing similar

applications
ii. Improve responsive changes to dynamic reference

documents

http://www.ijecs.in/�
mailto:rn_jugele@yahoo.com�

R. N. Jugele, IJECS Volume 2 Issue 3 March 2013 Page No. 806-810 Page 807

The approach recommended is to design links into the
application so that the linktext references can be maintained as
data, which will minimize recoding and redesign when the
reference documents change.
The links to the document can be stored in any responsive
database system. For each link built a record that included the
search criteria and the information required to instruct the
engine to directly go to that reference. In this case it needed
only the document name and the line number of the referenced
paragraph to display the desired information for the
application. When the application needed to access the
reference engine, it first retrieved the information needed, then
passed control with the appropriate parameters to the module
via its interface. This concept also made it simple to change
engines with minimal or no changes to the application.
Three events will occur for new reference document, a
powerful engine can support all three tasks using techniques of
searching and knowledge discovery.

i. The links will have moved: It is the most common and

simplest. It simply involves locating the search field from
the database and its new line number in the document.
The line number will be updated in the database.
Generally this process can be automated with no changes
required in the application.

ii. There is new material in the document: Preferably it

seems that there will be no references to by the
application and no action is required. But the database can
be used to scan the new document to check for any new
information related to existing references. This new
knowledge can be reviewed and added to existing links
where appropriate otherwise new concepts are added, no
changes to the application.

iii. The reference was deleted: It require recoding any

application dependent upon this reference, for this
approach there are following considerations:

a) If the engines discovery capabilities reveal that a new,
related reference has been created the new reference can
be substituted again, no change to the application is
required.

b) If the application uses the reference as supplemental
information then the database record can be changed to
indicate that the supplemental information is no longer
available. The application will be designed to interpret
this possibility and not offer the information to the user.
However, some deletions may require changes to the
application when they are essential to overall context.

The ODA architectures, services and applications is developed
to support the creation, interchange and processing of
documents. It emerged as the result of a fundamental goal to
develop a coherent set of standards and capabilities for data
interchange. The main focus is the document, its logical
structures and data linkages. ODA components key design
decisions are made with reference to international standards.
Multiple workstations, central processing graphics and data

processing applications need to interchange information in a
revisable format to produce documents.
Main aims of ODA architecture are :
• Support easy handling of text, graphics and image document

content
• Support extensible to new media/data types
• Support for linked applications incorporation
• Deal with data and documents at the end-user level
• Support layered services for document handling
• Support incorporation of industry and international

standards
• Support heterogeneous systems

3. THE ODA ARCHITECTURE MODEL
There are four levels as shown in Figure 1.
• The first level based on applications that are the source of

information for inclusion in documents.
• The second level is a revisable document where content is

added and manipulated. This level is important for logical
structure and data linkages.

• The third level is document results which applying
formatting rules and layout characteristics to document.

• The fourth level is the transformation of document into
specific protocol for display or printing.

Fig. 1: Open Document Processing Model

The processing steps and data formats of the first level is
domain specific because it determined by the needs of many
different processing environments. The first level is important
because it is the foundation for the access to other applications
and data. Application specific data viewing modules provide
the link between the level one and level two functions.
Interchange of data take place in all levels but the architecture
focuses on the second phase documents and their processing.
Document contains abstract relationships between components
of the document because these relationships are logical, any
aspect of the document that has stated to the creating
application can be changed, updated or recalculated more
easily than in final form documents. These are more easily

R. N. Jugele, IJECS Volume 2 Issue 3 March 2013 Page No. 806-810 Page 808

developed and operate more efficiently. The revisable form for
structured text, graphics and image are specified by the
document interchange format which provide inclusion of
related data in other formats.
The final form represents the logical document component
relationships and attributes. These attributes include text fonts,
character positions, positioned, sized graphics frames and final
page layout. The final form is produced from revisable form
and specifically formatted for a particular class of display.
ODA/ODIF defines the DDIF data format as its extension or
specialization. The advantages of its are:
• ODA is not compatible, therefore one makes compatibility

with the other some what problematic
• The DDIF format required semantics
• ODA is incomplete in several areas, so extensions could

make the result nonconforming and handle linkages between
multiple documents and applications.

• ODA does not integrate text and non-text data, it simply
combines the existing and nonintegrated standards by
layering structure primitives on top.

4. ARCHITECTURE OF DOCUMENT CONVERSION
The ODA converter architecture comprises a layer that
supports document formats. Following are the goals :
• Support procedural interface for data format conversion
• Support many document formats
• Incorporate non-Digital conversion
• Dynamically conversion modules
• It build on existing ODA services

Fig. 2: Document Conversion

The converter architecture is based on a conversion model. A
front-end converts an input document to a format. A back-end
module then converts the format to an output format. The
format are in DIF format.
The converter control procedure assembles the complete
conversion program at execution time based on the conversion
modules installed and available at the time they are referenced
shown in figure 2. Document data flow through the
conversion. Each operating system includes a small number of
essential conversion modules as standard equipment shown in
figure 3.

Fig. 3: Flow of Data in Conversion

It works on DIF conversion formats. A front-end or back-end
module operates in DIF domain or in many cases the front
end and back end operate in the same domain. For example
word processing document conversion. Module added
additional logic to the converter to permit such domain-
crossing conversions which receives aggregates from one
domain and translates them to aggregates of another domain.

5. LINK CLASS
The link class fulfill two tasks :
i. It specifies which actions are sent to which objects.

ii. The conditions are specified under which this process
occurs.

From these tasks, it can be derived that the processing is based
on an event-driven processing model. This model is suitable
for the mapping of parallel running, synchronized processes
which exist often in interactive multimedia presentations.
Their sequentialisation depends on the performing system.
A link object consists of a set of links. The semantics of a link
is shown in Figure 4. A link connects a source object with one
or several destination objects. The source can be a virtual
views. The performance of a link is always dependent on a
condition, which can be expressed through the possible state
transition in the source object. Only if this condition is
satisfied, extra conditions are checked. If all conditions are
satisfied, the link is active. In this case, the action objects,
specified in the action link are sent to all destination objects.
Although the standard does not specify the implementation, it
may be appropriate to mention that the link is checked only if
a state transition of the particular source objects occurred. The
attachment point is used to position destination objects relative
to the source object. It means that coordinates in an action
object express a relative position of the destination with
respect to the source.

Fig. 4: Link Construction

5.1. Processing Link Connections

R. N. Jugele, IJECS Volume 2 Issue 3 March 2013 Page No. 806-810 Page 809

Link connections are of three types :
• Link to picture : It references a data file that is imaged DIF

file on the page.
• Link to application : It references a data file and application

names . The application can be invoked to process the data
and deliver DIF content for presentation on the page.

• Link to document : It references a document whose pages
are merged with referencing document from a number of
smaller documents.

A link is a reference link (href) that triggers action when
traversed. In addition to usual elements the source of an active
link can have one or more input elements and must have one
action element. The general syntax of link is :

href node_name[parameters] (standard or input or action
elements)

6. INDEX IMPLEMENTATION

The ODA model track ODA evolution compatibility even
though philosophy maintains that the relationship between
structure and content should be more highly integrated.
Document model including the treatment of generic and
specific structure but need to adopt a different treatment for
combining structure with content.

6.1. Generic structure extension
The generic structures are made extensible in such a way that
they can accept the pieces of generic structure needed by an
application. The elements and the attributes required to handle
the indexes are defined as a generic structure extension which
occur dynamically called the Index. Thus document have
index tables which defines number of elements and attributes.

6.2. Passage delimiters
A paired component is called passage delimiter and is defined
in the Index. Several logical elements are concerned by an
index entry. The delimiters comply with the logical structure
of the document. The pairs are siblings but several passages
may overlap in a sequence of three paragraphs, the first and
the second may constitute a passage which is referred by the
index and the second and the third may constitute another
passage which is also referred by another index entry as
shown in figure 5.

Fig. 5: Delimiters in the document structure

Indexes delimiters and descriptors of generic structure is :
STRUCTURE EXTENSION Index
EXTENS
ROOT + (passage delimiter);
STRUCT
passage delimiter (ATTR !descriptors Link = REFERENCE
(passage descriptor)) = PAIR;
ASSOC
passage descriptor (ATTR !delimiters Link = REFERENCE
(passage delimiter)) =
BEGIN
Keys (ATTR Level = low, normal, high) = LIST [1..3] OF
(Key = Text);
? Subject= Text;
? Semantics = Text;
? Gloss = Text;
END

<<1>> Delimits Section 1 of Chapter 1
<<2>> Delimits First and Second Para in section 1
<<3>> Delimits few words in the First Para of section 1
<<4>> Delimits Second and Third Para of section 1

It is inserted around a previously selected passage within the
structured document. When an opening or closing paired
component is selected the editor automatically selects the
paired component. When the delimited passage runs over a
series of consecutive pages, the indexing system will display a
range of pages in the index table. The passages delimited by
passage delimiters are linked with passage descriptors. This is
achieved with reference attributes, called descriptors Link,
associated with each opening paired component. This
specification extends the root element (ROOT) of any
document. It defines the passage delimiter as a paired
component (PAIR). A mandatory (!) attribute, called
descriptors link is a reference to an element of type passage
descriptor.

6.3. Descriptors
Passage descriptor describes an index entry. These descriptors
are associated elements (ASSOC). Each descriptor contains a
term (KEY) and sometimes a subject. All the descriptors are
displayed in a separate view of the document. By double-
clicking on passage delimiter the descriptor view is
automatically scrolled to display the linked passage descriptor.

7. CONCLUSION
ODA family of architectures, services and applications form
support environment for documents. This support is designed
and implemented to operate consistently on multiple hardware
and software platforms. Significant efforts have been
undertaken to ensure that the ODA benefits are not restricted
to Digital-produced products. There is still much work to do,
however, as the applications and requirements for documents

R. N. Jugele, IJECS Volume 2 Issue 3 March 2013 Page No. 806-810 Page 810

continue to expand into new media types and into more
dynamic relationships. These areas are now active areas of
ODA architecture research and development.
The proposed methods have been used in a case study. The
performance is sufficient to identify most of the structures
automatically. The large number of links found between text
and figures. However, they relieve the document creator from
the tedious task of identifying all links which are difficult to
identify automatically.

8. FUTURE STUDY
ODA offers the possibility to implement an open standard
with integration of continuous media. This would allow the
exchange of multimedia documents in the same way as we
exchange text documents through the mailing systems today.
But, there are still many missing aspects.
• ODA will have to consider security and color aspects.
• Backwards compatibility should be preserved besides text

and graphic.
• Tables and data will be supported in documents. This will

require a data exchange between a document and
spreadsheet as well as a transformation from data to text.

• The notion of partial documents should be introduced.
Partial documents are incomplete documents which include
external pointers.

• Formulas should be included as part of ODA.
• A version management should be introduced.
• Content architectures for others should be defined.

REFERENCES
[1] B.C. Watson and R.J. Davis. ODA and SGML: an assessment of

co-existence possibilities. Computer Standards & Interfaces,
11:169{176, 1991.

[2] Christodoulalds S, Theodoridou M, Ho F, Papa M, Pathria A
(1986) Multimedia document presentation, information
extraction, and document formation in MINOS: a model and a
system. ACM Trans Office Information Syst 4:345-383.

[3] ISO (1988) Information processing: text and office systems;
office document (ODA) and interchange format. ISO 8613, parts
1-8

[4] J. Nanard, M. Nanard. (1993)."Shoud Anchors Be Typed Too?
An Experiment with MacWeb". In Proc. of the Hypertext'93
Conf., Seattle, 51-62, 1993.

[5] Megheni C, Rabetti F, Thanos C (1991) Conceptual modeling of
multimedia documents. IEEE Comput 24:23-30.

[6] R. N. Jugele and V. N. Chavan, Structure of Multimedia
Documents : Theoretical Approach, International Journal of
Computer Science and Telecommunications, ISSN 2047-
3338,Vol. 3, issue 9, Sep. 2012, pp. 26-31.

[7] R.N. Jugele and V.N. Chavan, ODA: A Study of Document
Design, International Journal of Emerging Trends & Technology
in Computer Science, ISSN:2278-6856,Vol. 2, issue 1, Jan-Feb -
2013.

Books :
01. Principles of Multimedia
 By. Ranjan Parekh
 Tata McGraw Hill Companies.

02. Hypertext and Hypermedia.
 By. J. Nielsen
 Academic Press.

BIOGRAPHIES :

R. N. Jugele received his B.Sc. degree from Nagpur
University and M.Sc. degrees in Computer Science from
Marathwada University, Aurangabad, Maharashtra, India in
1991 and 1993 respectively. Currently, he is working as a
Associate Professor in Department of Computer Science,
Science College, Congress Nagar, Nagpur. Maharashtra.

Dr. V. N. Chavan Head, Department of Computer Science, S.
K. Porwal College, Kamptee, Dist : Nagpur. Maharashtra. He
is research guide in Computer Science subject in various
universities and have wide knowledge in research field since
last 22 years. He is a member of various bodies in Computer
Science subject.

