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ABSTRACT 

In today’s modern system-on-chips , there are several intellectual properties  on the system to provide different functionality. 

However,  more complex communications on  SoCs  the harder at which the programmer could discover all errors before first 

silicon during its verification. Therefore, it provides a reconfigurable unit for recording the transactions between IPs and adopt 

logical vector clock  as a time stamp of each trace. The programmable trigger unit in debugging node  could be configured by the 

validation to cache their interest sequences of transaction. Because  traces of transactions would have their own timestamp, during 

the post-silicon validation, finally it could reproduce the errors in faulty transactions between IPs and get more information for by 

passing or fixing the problems. In future, due to several entries of traces   finally shrink observation window very quickly, it also 

implement a compressor to compress traces before it store them into trace buffer. Finally,experiments demonstrate that the 

proposed debugging architecture is capable of recording the critical transactions, and  the proposed reconfigurable debugging unit 

whole debugging execution time can be reduced more than 80%. 

Keywords:AHBtracer,postsiliconvalidation,system 

onchiparchitectures,PTU(programmable trigger unit),cortex. 

I.INTRODUCTION 

Modernsystem-on-chips(SoCs) integrate multiple intellectual 

properties (IPs) including general purpose cores, digital signal 

processing cores (DSPs) and referred active peripherals 

 

that are connected by standard interfaces such as buses on a 

single monolithic substrate. For example, Apple A4, a SoC 

design for the main processor of Apple iPhone, combines an 

ARM Cortex-A8 CPU, Power VR GPU and a memory 

controller.SoCsprovides us several indispensable benefits. 

First, integrating existing re-usable IP blocks simplifies the 

complexity of new SoC designs. Second, in custom designs, 

the modular architecture of SoCs provides the flexibility for 

specified applications. next, due to the characteristics of 

modular IPs in SoC designs, idle IP blocks can be powered 

down while production runs, thus lowering the power 

consumption of the system. Although SoCs have such 

advantages, they still have some chal- lenges need to be 

overcome for embedded system developers. The most hard-to-

solve problem in SoCs is validation and debugging. SoC 

validation requires identifying errors in individual IP blocks, 

their interactions and whole system by running test programms 

. The test program would not stop until a system failure occurs. 

Sub- sequentially, developers will exploits auxiliary tools, such 

as debugging software on host machine, in order to localize the 

failure into a small region as well as to identify the root cause. 

Then, they could fix or bypass the failure by micro patching or 

circuit editing in the end. The main reasons for difficulty in 

SoC validation are described as ,Due to the limit length of an 

on-chip trace buffer, which is used to collect internal signal 

traces for a period of time, the root cause is hard-to-detect bugs 

may not be able to identify only one debugging session. As a 

result, the number of debugging sessions as wellhis research 

was supported by the Industrial could fix or bypass the failure 

by micro patching or circuit editing in the end. The main 

reasons for difficulty in SoC validation are described as,Due to 

the limit length of on-chip trace buffer, which is used to collect 

internal signal traces for a period of time, the root cause of 

hard-to-detect bugs may not be able to identify in only one 

debugging session. As a result, the number of debugging 

sessions as well                                                         This 

research was supported by the Industrial Technology Research 

Institute  grant (100C551). As design time would increase in 

virtue of the hard-to-detect bugs. . It is hard to re-generate the 

faulty sequences because of non-deterministic execution . 

Basically, a methodology called “cyclic debugging” for 

removing a hardware bug is often adopted in today SoC 

development. To make the detected bug manifests itself, 

faulting sequence is re-executed and the faulty hardware state 

is returned by supplying the same stimulus. Unfortunately, 

board-level hardware does not guarantee deterministic 
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execution . Therefore, it is hard to expose the bug, caused by 

non-deterministic events, in the following debugging cycle.  

With the rapid progress of chip fabrication techniques, dozens 

of IPs and communication fabrics are integrated into a chip. 

The more IPs in a chip, the more complex communication 

behaviours they have, which raises the probability of 

interaction errors . Since individual IPs are typically well 

validated in isolation, the major cause of the interaction errors 

is due to unexpected communications between IPs in the 

design. Consequently, SoC validation and debugging solutions 

regarding interaction bugs are increasingly important for future 

SoC designs, especially for detecting and reproducing the 

interaction errors.  Contributions In this work a hardware 

debugging solution is proposed to solve the above challenges 

in context of SoC validation. The key idea is caching 

transactions of interest as well as their timestamps of an IP via 

a hardware monitor piggybacked on the IP’s interface. When a 

predefined transaction is detected, targeted information with 

compressed timestamp would be stored in the on-chip trace 

buffer. In summary, the contributions of this work are as 

following: We propose a debugging architecture, debugging 

node, with programmable unit, for monitoring the 

interactionsbetweenIPs.We propose a timestamp recording 

mechanism for ordering non-deterministic interactions between 

IPs and with compression technique in order to broad 

observation windows of traces. The rest of the paper is 

organized. Next introduces the related work, furthermore 

describes our debugging architecture with our debugging node 

and presents experimental evaluation of architecture and 

finally concludes the paper. 

II.RELATED WORK 

In order to catch the bugs when the first-silicon is 

available, post-silicon validation has four crucial steps: 

detecting a problem, localizing the problem, identifying the 

root cause of the problem, and fixing or bypassing the problem.  

During post-silicon stage, detecting errors and collecting 

internal signals for localizing problem are not intuitive; on-chip 

debugging units are apparently indispensable.  proposed a 

scalable design for debug (DFD) architecture with distributed 

embedded logic analyzer (ELA) to better utilize the available 

on-chip storage for distributed trace buffers. In order to ideally 

solve diversified problems, a reconfigurable debugging 

instrument  is also needed. The feature of reconfiguration is 

able to dynamically create new hardware structures in existing 

silicon for debugging purposes. In our work we adopt ELA to 

be the fundament of our debugging unit and apply a 

Programmable unit for validate to select specific transaction 

sequences to be recorded. To track the SoC runtime execution, 

hardware matcher provides an efficient way to monitor 

particular sequences of signals about potential errors for each 

IP. For the non-deterministic execution sequences, we adopt 

Lamports logical vector clock , which had been adopt in 

several works, to order the transaction sequences and identify 

relation between each transaction among IPs. Using logical 

vector clock also enhances the ability for validator to replay the 

error inter- actions and fetch crucial information in 

transactions. The statistic information proposed by points out 

that the interaction errors have predominated the escaped 

errors. Due to dozens of IPs and complex communication 

fabric in SoCs, interaction errors are expected to occupy a 

higher proportion of escaped errors in the future. Therefore, in 

this paper, we emphasize on debugging communications 

among IPs and propose architecture to monitor each 

transaction on the buses and record targeted transactions with 

the logical timestamps. There are some other works based on 

transaction debugging as well.  Presented a specific trace 

buffer with Finite State Machine for post-analysis, and 

proposed a debug aware network interface which is compatible 

with AXI standard. However, our debug method is based on 

AHB buses , and the traces with timestamps could help us to 

identify the sequences of fault transactions and even replay the 

transactions with a checkpoint to reproduce the errors . In this 

paper, we focus on providing a debugging architecture with 

programmable trigger-unit and capacity efficient traces for 

validator to identify or reproduce errors. 

 

III.DEBUGGING ARCHITECTURE 

This work is based on the trace-based debugging used in most 

of today’s SoC validation. Internal signals of SoCs are 

monitored while test programs running on the system at speed. 

Once desired trigger conditions have detected, the 

corresponded data are captured and stored into an internal trace 

buffer to obtain the system real-time observability. The content 

of trace buffer would be offloaded via serial interfaces for bug 

identification. In addition, in order to enable bug reproduction 

ability and to close the captured data from the observed system 

failure, a timestamp approach for SoC system failures is 

proposed in our debugging architecture. The address, data and 

control signals from the abstraction module are the inputs for 

the compression module. The signals are compressed based o n 

different compression techniques. In  this compression 

module we instantiated three compression modules 

(Address, data, and control compression). The outputs of the 

compression module are given to the packing module. 

 

 

 

Figure 1 AHB tracer result for compressing nodes 
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3.1 Debugging Node 

All components in DN show in Figure 2. Our debugging 

architecture consists of four major steps: configuring, 

monitoring, data recording, and post-processing. First, the 

trigger condition in the programmable trigger unit (PTU) of 

DN can be reconfigured by the control unit for multiple 

debugging experiments. After running a test program, each 

DN, piggybacked on a specified IP, would monitor the 

communication event/sequence of the IP and record it with 

timestamp. Furthermore, each DN has a timestamp unit, called 

Local Timing Vector (LTV), to record the timing information 

of the triggered communication events. Each time when PTU 

had been triggered, the LTV would request the latest global 

timing vector (GTV) and increase the number in field of 

vector, which represent the master itself, and update GTV. 

Subsequently, the alarm of the detected communication event 

and its new LTV would be com- pressed and stored into trace 

buffer. The high level description of LTV and GTV operation 

are depicted in Figure 3, respectively. 

 

                 Figure 2: Debugging node 

 

 Figure 3 LTV and GTV Operations:When the test program 

finished, the traces could be utilized for localizing or 

reproducing error sequences. If the clue for locating the bug is 

not sufficient, the system must re-executes for collecting more 

information about the bug. To avoid the bug disappears in the 

next debugging session, the bug reproduction mechanism must 

be enabled. Therefore, the debugging software not only 

processes data for locating bug but also analyzes the timing 

information for bug reproduction. However, in this work we 

emphasize on recording and bug reproduction with timestamps. 

One of the central aspects of this work is watching erroneous 

transaction sequences. Therefore, in order to know when a 

master’s transfer begins, a DN is attached to IP’s wrapper 

interface. For ex- ample, master wrapper provides DN 

sufficient information to watching any types of transfers the 

master requested, such as burst or locked transfers. The DN 

observes the wrapper signals and compares the signals with the 

triggered conditions in PTU. 

3.2 LTV Compressing and Recovering  

In order to generate a partial order of transfers between masters 

on a slave, each master and arbiter maintains their own timing 

vector table in the trace buffer. If we have four masters and an 

arbiter in the SoC system, to consider that each field in a 

timing vector is 32 bits and each vector has five fields, 

therefore each LTV will be 160 bits in total. Obviously, LTV is 

too large to the trace buffer. Therefore, large LTV will occupy 

a lot of space of the trace buffer and will shrink the trace buffer 

observation window. To overcome this problem, we put a 

compressor before the trace buffer to widen the observation 

window and only the difference of LTVs would be recorded in 

the trace buffer. Here we reuse the temporal vector in 

compressor, which records the last content of an LTV in the 

DN, to achieve this goal. As shown in Figure 4 , the progress 

of LTV compression is as follows:   

 

   figure 4: The operation of LTV compressor 

 

(1) When compressor gets the latest LTV, it computes the 

difference between the incoming LTV and the temporal vector, 

then writes the difference to the trace buffer.  

(2) Compressor copies the incoming LTV to the temporal 

vector.  

(3) In the post-analysis stage, the difference will be processed 

to recover the order info. The timestamp recovery process will 

be described in following 

Each masters and arbiter would have their own LTV table in 

their trace buffer, which could be utilized for post-analysis. 

However, original timing info is lost in the form of the 

difference. As a result, the first process in post-analysis is to 

recover the original timing information. Since each time LTV 

was being store in trace buffer it subtracts the last LTV, the 

original value for any entry n can be restored from the 

differences  by using the following formula, where  

AHB TRACER TOP MODULE RESULT. 
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3.2.1ABSTRACTION MODULE 

The Abstraction Module monitors the AHB bus and 

selects/filters signals based on the abstraction mode. The bus 

signals are classified into four groups as mentioned below 

 

3.3CONCLUSION  

We have designed the AHB (Advanced High Performance 

Bus) Tracer module for error reproduction. The trace can be 

triggered on a time basis or on the basis of occurrence of an 

event like “error response”, etc. This tracer is capable of 

compressing the data so that we can save valuable FIFO space 

and let the trace continue for a longer period of time without 

FIFO overflow. This work presents a debugging system for 

recording and repro- ducing system interaction errors. The 

debugging system is consists of multiple distributed 

programmable monitors, which can be config- ured to monitor 

the execution order for specified interactions between 

individual IP blocks. The execution history is recorded into 

trace buffers on each DN. After the execution of test program, 

the post-analysis could find out the transaction errors between 

IPs. Once an error is detected, the special post-analysis 

algorithms would be utilized for reproducing errors. As the 

results of our experiments demonstrate that the debugging 

system is capable of dealing with avariety of system-level 

errors, and improves the debugging execution time more than 

80% and storage overhead with compression technique. 

 3.4FUTURE SCOPE 

The tracer designed is compatible with AHB bus. The design 

may be modified in future to support more advanced buses like 

AXI, etc. 
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