

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 1 January 2015, Page No. 9994-9998

E.Deepthi, IJECS Volume 4 Issue 1 January, 2015 Page No.9994-9998 Page 9994

A Configurable Bus-Tracer For Errorreproduction In Post-Silicon

Validation

 E.Deepthi, Cha.Swamy, S.Prabhakar

ABSTRACT

In today’s modern system-on-chips , there are several intellectual properties on the system to provide different functionality.

However, more complex communications on SoCs the harder at which the programmer could discover all errors before first

silicon during its verification. Therefore, it provides a reconfigurable unit for recording the transactions between IPs and adopt

logical vector clock as a time stamp of each trace. The programmable trigger unit in debugging node could be configured by the

validation to cache their interest sequences of transaction. Because traces of transactions would have their own timestamp, during

the post-silicon validation, finally it could reproduce the errors in faulty transactions between IPs and get more information for by

passing or fixing the problems. In future, due to several entries of traces finally shrink observation window very quickly, it also

implement a compressor to compress traces before it store them into trace buffer. Finally,experiments demonstrate that the

proposed debugging architecture is capable of recording the critical transactions, and the proposed reconfigurable debugging unit

whole debugging execution time can be reduced more than 80%.

Keywords:AHBtracer,postsiliconvalidation,system

onchiparchitectures,PTU(programmable trigger unit),cortex.

I.INTRODUCTION

Modernsystem-on-chips(SoCs) integrate multiple intellectual

properties (IPs) including general purpose cores, digital signal

processing cores (DSPs) and referred active peripherals

that are connected by standard interfaces such as buses on a

single monolithic substrate. For example, Apple A4, a SoC

design for the main processor of Apple iPhone, combines an

ARM Cortex-A8 CPU, Power VR GPU and a memory

controller.SoCsprovides us several indispensable benefits.

First, integrating existing re-usable IP blocks simplifies the

complexity of new SoC designs. Second, in custom designs,

the modular architecture of SoCs provides the flexibility for

specified applications. next, due to the characteristics of

modular IPs in SoC designs, idle IP blocks can be powered

down while production runs, thus lowering the power

consumption of the system. Although SoCs have such

advantages, they still have some chal- lenges need to be

overcome for embedded system developers. The most hard-to-

solve problem in SoCs is validation and debugging. SoC

validation requires identifying errors in individual IP blocks,

their interactions and whole system by running test programms

. The test program would not stop until a system failure occurs.

Sub- sequentially, developers will exploits auxiliary tools, such

as debugging software on host machine, in order to localize the

failure into a small region as well as to identify the root cause.

Then, they could fix or bypass the failure by micro patching or

circuit editing in the end. The main reasons for difficulty in

SoC validation are described as ,Due to the limit length of an

on-chip trace buffer, which is used to collect internal signal

traces for a period of time, the root cause is hard-to-detect bugs

may not be able to identify only one debugging session. As a

result, the number of debugging sessions as wellhis research

was supported by the Industrial could fix or bypass the failure

by micro patching or circuit editing in the end. The main

reasons for difficulty in SoC validation are described as,Due to

the limit length of on-chip trace buffer, which is used to collect

internal signal traces for a period of time, the root cause of

hard-to-detect bugs may not be able to identify in only one

debugging session. As a result, the number of debugging

sessions as well This

research was supported by the Industrial Technology Research

Institute grant (100C551). As design time would increase in

virtue of the hard-to-detect bugs. . It is hard to re-generate the

faulty sequences because of non-deterministic execution .

Basically, a methodology called “cyclic debugging” for

removing a hardware bug is often adopted in today SoC

development. To make the detected bug manifests itself,

faulting sequence is re-executed and the faulty hardware state

is returned by supplying the same stimulus. Unfortunately,

board-level hardware does not guarantee deterministic

http://www.ijecs.in/

E.Deepthi, IJECS Volume 4 Issue 1 January, 2015 Page No.9994-9998 Page 9995

execution . Therefore, it is hard to expose the bug, caused by

non-deterministic events, in the following debugging cycle.

With the rapid progress of chip fabrication techniques, dozens

of IPs and communication fabrics are integrated into a chip.

The more IPs in a chip, the more complex communication

behaviours they have, which raises the probability of

interaction errors . Since individual IPs are typically well

validated in isolation, the major cause of the interaction errors

is due to unexpected communications between IPs in the

design. Consequently, SoC validation and debugging solutions

regarding interaction bugs are increasingly important for future

SoC designs, especially for detecting and reproducing the

interaction errors. Contributions In this work a hardware

debugging solution is proposed to solve the above challenges

in context of SoC validation. The key idea is caching

transactions of interest as well as their timestamps of an IP via

a hardware monitor piggybacked on the IP’s interface. When a

predefined transaction is detected, targeted information with

compressed timestamp would be stored in the on-chip trace

buffer. In summary, the contributions of this work are as

following: We propose a debugging architecture, debugging

node, with programmable unit, for monitoring the

interactionsbetweenIPs.We propose a timestamp recording

mechanism for ordering non-deterministic interactions between

IPs and with compression technique in order to broad

observation windows of traces. The rest of the paper is

organized. Next introduces the related work, furthermore

describes our debugging architecture with our debugging node

and presents experimental evaluation of architecture and

finally concludes the paper.

II.RELATED WORK

In order to catch the bugs when the first-silicon is

available, post-silicon validation has four crucial steps:

detecting a problem, localizing the problem, identifying the

root cause of the problem, and fixing or bypassing the problem.

During post-silicon stage, detecting errors and collecting

internal signals for localizing problem are not intuitive; on-chip

debugging units are apparently indispensable. proposed a

scalable design for debug (DFD) architecture with distributed

embedded logic analyzer (ELA) to better utilize the available

on-chip storage for distributed trace buffers. In order to ideally

solve diversified problems, a reconfigurable debugging

instrument is also needed. The feature of reconfiguration is

able to dynamically create new hardware structures in existing

silicon for debugging purposes. In our work we adopt ELA to

be the fundament of our debugging unit and apply a

Programmable unit for validate to select specific transaction

sequences to be recorded. To track the SoC runtime execution,

hardware matcher provides an efficient way to monitor

particular sequences of signals about potential errors for each

IP. For the non-deterministic execution sequences, we adopt

Lamports logical vector clock , which had been adopt in

several works, to order the transaction sequences and identify

relation between each transaction among IPs. Using logical

vector clock also enhances the ability for validator to replay the

error inter- actions and fetch crucial information in

transactions. The statistic information proposed by points out

that the interaction errors have predominated the escaped

errors. Due to dozens of IPs and complex communication

fabric in SoCs, interaction errors are expected to occupy a

higher proportion of escaped errors in the future. Therefore, in

this paper, we emphasize on debugging communications

among IPs and propose architecture to monitor each

transaction on the buses and record targeted transactions with

the logical timestamps. There are some other works based on

transaction debugging as well. Presented a specific trace

buffer with Finite State Machine for post-analysis, and

proposed a debug aware network interface which is compatible

with AXI standard. However, our debug method is based on

AHB buses , and the traces with timestamps could help us to

identify the sequences of fault transactions and even replay the

transactions with a checkpoint to reproduce the errors . In this

paper, we focus on providing a debugging architecture with

programmable trigger-unit and capacity efficient traces for

validator to identify or reproduce errors.

III.DEBUGGING ARCHITECTURE

This work is based on the trace-based debugging used in most

of today’s SoC validation. Internal signals of SoCs are

monitored while test programs running on the system at speed.

Once desired trigger conditions have detected, the

corresponded data are captured and stored into an internal trace

buffer to obtain the system real-time observability. The content

of trace buffer would be offloaded via serial interfaces for bug

identification. In addition, in order to enable bug reproduction

ability and to close the captured data from the observed system

failure, a timestamp approach for SoC system failures is

proposed in our debugging architecture. The address, data and

control signals from the abstraction module are the inputs for

the compression module. The signals are compressed based o n

different compression techniques. In this compression

module we instantiated three compression modules

(Address, data, and control compression). The outputs of the

compression module are given to the packing module.

Figure 1 AHB tracer result for compressing nodes

E.Deepthi, IJECS Volume 4 Issue 1 January, 2015 Page No.9994-9998 Page 9996

3.1 Debugging Node

All components in DN show in Figure 2. Our debugging

architecture consists of four major steps: configuring,

monitoring, data recording, and post-processing. First, the

trigger condition in the programmable trigger unit (PTU) of

DN can be reconfigured by the control unit for multiple

debugging experiments. After running a test program, each

DN, piggybacked on a specified IP, would monitor the

communication event/sequence of the IP and record it with

timestamp. Furthermore, each DN has a timestamp unit, called

Local Timing Vector (LTV), to record the timing information

of the triggered communication events. Each time when PTU

had been triggered, the LTV would request the latest global

timing vector (GTV) and increase the number in field of

vector, which represent the master itself, and update GTV.

Subsequently, the alarm of the detected communication event

and its new LTV would be com- pressed and stored into trace

buffer. The high level description of LTV and GTV operation

are depicted in Figure 3, respectively.

 Figure 2: Debugging node

 Figure 3 LTV and GTV Operations:When the test program

finished, the traces could be utilized for localizing or

reproducing error sequences. If the clue for locating the bug is

not sufficient, the system must re-executes for collecting more

information about the bug. To avoid the bug disappears in the

next debugging session, the bug reproduction mechanism must

be enabled. Therefore, the debugging software not only

processes data for locating bug but also analyzes the timing

information for bug reproduction. However, in this work we

emphasize on recording and bug reproduction with timestamps.

One of the central aspects of this work is watching erroneous

transaction sequences. Therefore, in order to know when a

master’s transfer begins, a DN is attached to IP’s wrapper

interface. For ex- ample, master wrapper provides DN

sufficient information to watching any types of transfers the

master requested, such as burst or locked transfers. The DN

observes the wrapper signals and compares the signals with the

triggered conditions in PTU.

3.2 LTV Compressing and Recovering

In order to generate a partial order of transfers between masters

on a slave, each master and arbiter maintains their own timing

vector table in the trace buffer. If we have four masters and an

arbiter in the SoC system, to consider that each field in a

timing vector is 32 bits and each vector has five fields,

therefore each LTV will be 160 bits in total. Obviously, LTV is

too large to the trace buffer. Therefore, large LTV will occupy

a lot of space of the trace buffer and will shrink the trace buffer

observation window. To overcome this problem, we put a

compressor before the trace buffer to widen the observation

window and only the difference of LTVs would be recorded in

the trace buffer. Here we reuse the temporal vector in

compressor, which records the last content of an LTV in the

DN, to achieve this goal. As shown in Figure 4 , the progress

of LTV compression is as follows:

 figure 4: The operation of LTV compressor

(1) When compressor gets the latest LTV, it computes the

difference between the incoming LTV and the temporal vector,

then writes the difference to the trace buffer.

(2) Compressor copies the incoming LTV to the temporal

vector.

(3) In the post-analysis stage, the difference will be processed

to recover the order info. The timestamp recovery process will

be described in following

Each masters and arbiter would have their own LTV table in

their trace buffer, which could be utilized for post-analysis.

However, original timing info is lost in the form of the

difference. As a result, the first process in post-analysis is to

recover the original timing information. Since each time LTV

was being store in trace buffer it subtracts the last LTV, the

original value for any entry n can be restored from the

differences by using the following formula, where

AHB TRACER TOP MODULE RESULT.

E.Deepthi, IJECS Volume 4 Issue 1 January, 2015 Page No.9994-9998 Page 9997

3.2.1ABSTRACTION MODULE

The Abstraction Module monitors the AHB bus and

selects/filters signals based on the abstraction mode. The bus

signals are classified into four groups as mentioned below

3.3CONCLUSION

We have designed the AHB (Advanced High Performance

Bus) Tracer module for error reproduction. The trace can be

triggered on a time basis or on the basis of occurrence of an

event like “error response”, etc. This tracer is capable of

compressing the data so that we can save valuable FIFO space

and let the trace continue for a longer period of time without

FIFO overflow. This work presents a debugging system for

recording and repro- ducing system interaction errors. The

debugging system is consists of multiple distributed

programmable monitors, which can be config- ured to monitor

the execution order for specified interactions between

individual IP blocks. The execution history is recorded into

trace buffers on each DN. After the execution of test program,

the post-analysis could find out the transaction errors between

IPs. Once an error is detected, the special post-analysis

algorithms would be utilized for reproducing errors. As the

results of our experiments demonstrate that the debugging

system is capable of dealing with avariety of system-level

errors, and improves the debugging execution time more than

80% and storage overhead with compression technique.

 3.4FUTURE SCOPE

The tracer designed is compatible with AHB bus. The design

may be modified in future to support more advanced buses like

AXI, etc.

 3.5REFERENCES

[1] L. Lamport, "Time, clocks, and the ordering of

eventsinadistributed system," Communications of the ACM,

vol. 21(7), pp. 558-565, 1978.

[2] "Apple A4 - Wikipedia, the free encyclopedia," [Online].

Available: http://en.wikipedia.org/wiki/Apple_A4.

[3] A. Deshpande, "Verification of IP-Core Based SoC's," in

ISQED, 2008.

[4] S. R. Sarangi, B. Greskamp and a. J.

Torrellas,"CADRE:Cycle-Accurate Deterministic Replay for

Hardware Debugging," in DSN, 2006.

[5] I. Wagner and C.-L. Lu, "Distrubuted Hardware Matcher

Framework for SoC Survivability," in DATE, 2011.

E.Deepthi working as Asst.professor in

Hyderabad institute of technology and

management and her areas of interest in VLSI design,

Embedded systems.

CH.A.Swamy working as Assoc.professor in Marri Laxman

Reddy institute of technology and management.And his areas

of interest in vlsi design,embedded system design, cmos

technologies.

S.Prabhakar , a student of Hyderabad institute of technology

and management and his areas of interest in embedded

systems,digital designs.

http://en.wikipedia.org/wiki/Apple_A4

E.Deepthi, IJECS Volume 4 Issue 1 January, 2015 Page No.9994-9998 Page 9998

