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Abstract:The latest developments in mobile devices technology have made smartphones as the future computing and service 

access devices. Users expect to run computational intensive applications on Smart Mobile Devices (SMDs) in the same way as 

powerful stationary computers. However in spite of all the advancements in recent years, SMDs are still low potential computing 

devices, which are constrained by CPU potentials, memory capacity and battery life time. Mobile Cloud Computing (MCC) is the 

latest practical solution for alleviating this incapacitation by extending the services and resources of computational clouds to 

SMDs on demand basis. In MCC, application offloading is ascertained as a software level solution for augmenting application 

processing capabilities of SMDs. The current offloading algorithms offload computational intensive applications to remote servers 

by employing different cloud models. This seminar reviews existing Distributed Application Processing Frameworks (DAPFs) for 

SMDs in MCC domain. And mainly focuses on CloneCloud Framework. 
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1. Introduction 

The miniature nature, compact design, high quality 

graphics, customized user applications support and multimodal 

connectivity features have made SMDs a special choice of 

interest for mobile users. SMDs incorporate the computing 

potentials of PDAs and voice communication capabilities of 

ordinary mobile devices by providing support for customized 

user applications and multimodal connectivity for accessing 

both cellular and data networks. SMDs employ wireless 

network technologies for accessing the internet; such as 3G 

connectivity, Wireless Fidelity (Wi-Fi), Wi-Max, or Long 

Term Evaluation (LTE). SMDs are the dominant future 

computing devices with high user expectations for accessing 

computational intensive applications analogous to powerful 

stationary computing machines. Examples of such applications 

include natural language translators, speech recognizers, 

optical character recognizers, image processors, online games, 

video processing and wearable devices for patients such as 

wearable device with a head-up display in the form of 

eyeglasses (a camera for scene capture and earphones) is a 

useful application that helps Alzheimer patients in everyday 

life. Such applications necessitate higher computing power, 

memory, and battery lifetime on resource constrained SMDs. 

On the other hand, SMDs are still low potential computing 

devices having limitations in memory, CPU and battery power. 

In spite of all the advancements in recent years, SMDs are 

constrained by weight, size, and intrinsic limitations in wireless 

medium and mobility. 

A key area of mobile computing research focuses on the 

application layer research for creating new software level 

solutions. Application offloading is an application layer 

solution for alleviating resources limitations in SMDs. 

Successful practices of cloud computing for stationary 

machines are the motivating factors for leveraging cloud 

resources and services for SMDs. Cloud computing employs 

different services provision models for the provision of cloud 

resources and services to SMDs; such as Software as a Service, 

Infrastructure as a Service, and Platform as a Service. Several 

online file storage services are available on cloud server for 

augmenting storage potentials of client devices; such as 

Amazon S3, Google Docs, MobileMe, and Drop Box. In the 

same way, Amazon provides cloud computing services in the 

form of Elastic Cloud Compute. The cloud revolution 

augments the computing potentials of client devices; such as 

desktops, laptops, PDAs and smartphones. The aim of MCC is 

to alleviate resources limitations of SMDs by leveraging 

computing resources and services of cloud datacenters. MCC is 

deployed in diverse manners to achieve the aforementioned 

objective. MCC employs process offloading techniques for 

augmenting application processing potentials of SMDs. 
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DAPFs in SMDs within MCC domain and identify challenges 

in the cloud based processing of mobile applications. They 

classify existing DAPFs by thematic taxonomy and investigate 

commonalities and deviations in such frameworks on the basis 

of significant parameters such as offloading scope, partitioning 

approach, migration support, migration granularity, application 

developer support, migration pattern and execution monitoring. 

They contribute the categorization of frameworks on the basis 

of thematic taxonomy, analysis of current DAPFs by 

discussing the implications and critical aspects, identifying the 

issues in existing solutions for offload processing and 

challenge to cloud based application processing of mobile 

applications. The listing of challenges and open issues guide 

researchers to select the appropriate domain for future research 

and obtain ideas for further investigations. They classify the 

application offloading frameworks by using their attributes as 

follows- 

 VM Migration Based Application Offloading 

o Cyber Foraging Framework 

o VM based Cloudlets Framework 

o CloneCloud based framework 

o Elastic Clone cloud framework 

o Mirror server framework 

 Entire Application Migration Based Application 

Offloading 

o Universal Mobile Service Cell (UMSC) 

o Distributed Shell System (DISHES) 

o Misco 

o Cogniserve 

 Application Partitioning Based Application 

Offloading 

o Static Partitioning Based Application 

Offloading: 

o Dynamic Partitioning Based Application 

Offloading: 

 AIDE 

 Mobile Assistance Using Infrastructure 

(MAUI) 

 Elastic application model 

In [4] cyber foraging framework is employed to 

utilize computation resources of computing devices (stationary 

or mobile) in close proximity of SMD. The framework 

implements client/server architecture. Mobile devices request 

for process offloading and surrogate server provides the 

services on demand. The frame-work supports configuration of 

multiple surrogate servers simultaneously and employs virtual 

machine technology for remote application processing. A 

single surrogate server is capable to run a configurable number 

of independent virtual servers with isolation, elasticity, 

resource control and simple cleanup mechanism. Each 

offloaded application executes on isolated virtual server.  

But R. Balan, D. Gergle, M. Satyanarayanan, and J. 

Herbsleb [4] identify some critical aspects of cyber foraging 

framework is the deployment of template based virtualization 

approach which is a highly time consuming and resources 

starving mechanism for VM deployment [41]. The framework 

requires the annotation of individual components of the 

application as local or remote which is an additional effort for 

application developers. Further, surrogate based cyber foraging 

is restricted to the availability of services and resources on 

local servers. 

A cloudlet [5] architecture proposed by 

M.Satyanarayan, advocates a two tier approach to decrease the 

latencies. Proposed architecture states that rather than relying 

on a distant “Cloud”, we might be able to address the mobile 

device’s resource poverty via a nearby resource-rich cloudlet. 

Cloudlets are decentralized and widely dispersed Internet 

infrastructure components whose compute cycles and storage 

resources can be leveraged by nearby mobile computers. 

Access to a cloudlet can be provided by Wi-Fi that saves 

energy as well as has greater bandwidth as compared to other 

internet services. 

Also MahadevSatyanarayanan†, ParamvirBahl‡, 

Ramon Caceres•, Nigel Davies [5] identifies the critical aspects 

of VM based cloudlets framework are that the framework 

requires additional hardware level support for the 

implementation of VM technology and is based on cloning 

mobile device application processing environment to remote 

host which involves the issues of VM deployment and 

management on SMD, privacy and access control in migrating 

the entire execution environment and security threats in the 

transmission of VM. 

2. CloneCloud  

In this paper, we take a first step towards realizing this vision, 

by designing and implementing the first version of the 

CloneCloud system. CloneCloud boosts unmodified mobile 

applications by seamlessly off-loading part of their execution 

from the mobile device onto device clones operating in a 

computational cloud. It is designed to serve as a platform for 

generic mobile-device processing as a service. Conceptually, 

this system automatically transforms a single machine 

execution (e.g., computation on a smartphone) into a 

distributed execution that is optimal given the network 

connection to the cloud, if needed, the relative processing 

capabilities of the mobile device and cloud, and the 

application’s computing patterns.  

The underlying motivation for such a system lies in the 

following intuition: as long as execution on the cloud is 

significantly faster than execution on the mobile device (or 

more reliable, more secure, etc.), paying the cost for sending 

the relevant data and code from the device to the cloud and 

back may be worth it. Only when the metric (e.g., performance 

or energy) of the newly partitioned application is better than 

that of the existing application, it makes sense to partition an 

application. In practice, the partitioning decision may be more 

fine-grained than a yes/no answer (i.e., it may result in carving 

off different amounts of the original application for cloud 

execution). Furthermore, the decision may be impacted not 

only by the application itself, but also by the expected 

workload and the execution conditions, such as network 

connectivity and CPU speeds of both mobile and cloud 

devices.  

A fundamental design goal for CloneCloud is to allow such 

fine-grained flexibility on what to run where, which traditional 

client-server partitioning hardwire early on in the development 

process. Consequently, CloneCloud aims to make application 

partitioning seamless, and based only on the deployed version 

of the application, without need for source code. The 

CloneCloud prototype described here meets all our design 

goals, by rewriting an unmodified application executable. 

While the modified executable runs, at automatically chosen 

points individual threads migrate from the mobile device to a 

device clone in a cloud. There the thread executes, possibly 

accessing native features of the hosting platform such as the 

fast CPU, network, hardware accelerators, storage, etc. 

Eventually, the thread returns back to the mobile device, along 

with any state it created abroad, which it merges back into the 

original process. The choice of where to migrate off and back 

onto the mobile device is made by a partitioning component, 
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which uses static analysis to discover constraints on possible 

migration points, and dynamic profiling to build a cost model 

for execution and migration.  

First, unlike traditional suspend-migrater resume mechanisms 

for application migration, the CloneCloud migrator operates at 

thread granularity, an essential consideration for mobile 

applications, which tend to have features that must remain at 

the mobile device, such as those accessing the camera or 

managing the user interface.  

Second, unlike past application-layer VM migrators, the 

CloneCloud migrator allows native system operations to 

execute both at the mobile device and at its clones in the cloud, 

harnessing not only raw CPU cloud power, but also system 

facilities or specialized hardware.  

Third, unlike mostly programmer-assisted approaches to 

application partitioning, the CloneCloud partitioner 

automatically identifies costs and constraints through static and 

dynamic code analysis, without the programmer’s help, 

annotations, or application refactoring. 

 

3.1 Augmented Execution 

The scope of augmented execution from the infrastructure is 

fairly broad. In this section, we attempt to categorize the types 

of augmentation we envision (Figure 3.1).  

 
 

Figure 3.1: The five categories of Augmented Execution 

 

3.1.1 Primary functionality outsourcing: 
Computation-hungry applications such as speech processing, 

video indexing, and super-resolution are automatically split, so 

that the user-interface and other low-octane processing is 

retained at the smartphone, while the high-power, expensive 

computation is off-loaded to the infrastructure, synchronously. 

This is similar to designing the application as a client-server 

service, where the infrastructure provides the service (e.g., the 

translation of speech to text), or as a thin-client environment. 

 

3.1.2 Background augmentation:  
Unlike primary functionality outsourcing, this category deals 

with functionality that does not need to interact with users in a 

short time scale. Such is functionality that typically happens in 

the back-ground, such as scanning the file system for viruses, 

indexing files for faster search, analyzing photos for common 

faces, crawling news web pages, etc. In this case, entire 

processes can be marked (by the user or by the programmer) or 

automatically inferred as “background” processes, and 

migrated to the infrastructure wholesale. Furthermore, off-

loaded functionality can take on the role of a “virtual client.” 

Even when the smartphone is turned off, the virtual client can 

continue to run background tasks. Later when the smartphone 

returns online, it can synchronize its state with the 

infrastructure. 

 

3.1.3 Mainline augmentation:  

This category sits between primary functionality outsourcing 

and background augmentation. Here the user may opt to run a 

particular application in a wrapped fashion, altering the method 

of its execution but not its semantics. Examples are private-

data leak detection (e.g., to taint-check an application or 

application set), fault-tolerance (e.g., to employ multi-variant 

execution analysis to protect the application from trans-parent 

bugs), or debugging (e.g., keep track dynamically of allocated 

memory in the heap to catch memory leaks). Unlike 

background augmentation, mainline augmentation is 

interspersed in the execution of the application. Many 

possibilities exist: for example, when a decision point is 

reached in the taint-check example, the application on the 

smartphone may block, perhaps causing the clone to rewind 

back to a known checkpoint, and to re-execute for-ward with 

taint-tracking, before deciding. 

 

3.1.4 Hardware augmentation:  

This category is interestingbecause it compensates for 

fundamental weaknesses of the smartphone platform, such as 

memory caps or other constraints, and hardware peculiarities. 

 

 

3.1.5 Augmentation through multiplicity:  

The last category we consider is unique in that it uses multiple 

copies of the system image executed in different ways. This 

can help running data parallel applications (e.g., doing 

indexing for disjoint sets of images). This can also help the 

application to “see the future,” by exhaustively exploring all 

possible next steps within some small horizon as would be 

done for model checking or to evaluate in maximum detail all 

possible choices for a decision before making that decision. 

Consider, for example, an energy-conserving process scheduler 

that, in the absence of future knowledge, can only guarantee 

decisions close but not at the optimum. Instead, the whole 

system image could be replicated multiple times in the 

infrastructure, choosing all possible interleaving of processes 

during execution, and evaluating energy expenditure via some 

consumption model for the device, ultimately making the 

scheduling decision that results in the minimum expenditure. 

In this category of augmentation, infrastructure cycles are 

lavished on essentially a Monte-Carlo simulation of all 

possible outcomes of the scheduler's choices to make the 

optimal decision. We end up wasting much energy (at the 

infrastructure) to save a little bit of energy on the mobile 

device. However, given the opportunity cost of being left with 

a dead battery during a critical time, this rather extravagant use 

of the infrastructure may have significant benefits. 

 

4.1 Architecture:- 
Conceptually, our system provides a way to boost a 

smart-phone application by utilizing heterogeneous computing 

platforms through cloning and computation transformation. For 

doing so, our system (semi)-automatically trans-forms a single-

machine execution (e.g., smartphone com-putation) into a 

distributed execution (e.g., smartphone plus cloud 

computation) in which the resource-intensive part of the 

execution is run in powerful clones. An additional benefit of 

cloning is that if the smartphone is lost or destroyed, the clone 

can be used as a backup. Figure 2 illustrates the high-level 

system model of our approach. 
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Figure 4.1: CloneCloud system model. CloneCloud 

transforms a single-machine execution (mobile device 

computation) into a distributed execution (mobile device 

and cloud computation) automatically. [3] 

 

Augmented execution is performed in four steps:  

1. Initially, a clone of the smartphone is created within the 

cloud (laptop, desktop, or server nodes);  

2. The state of the primary (phone) and the clone is 

periodically or on-demand synchronized;  

3. Application augmentations (whole applications or 

augmented pieces of applications) are executed in the 

clone, automatically or upon request; and  

4. Results from clone execution are re-integrated back into 

the smartphone state. 

 

 
 

Figure 4.2: Clone execution architecture for 

smartphones. 

 

The CloneCloud prototype described here meets all 

our design goals, by rewriting an unmodified application 

executable. While the modified executable runs, at 

automatically chosen points individual threads migrate from 

the mobile device to a device clone in a cloud. There the thread 

executes, possibly accessing native features of the hosting 

platform such as the fast CPU, network, hardware accelerators, 

storage, etc. Eventually, the thread returns back to the mobile 

device, along with any state it created abroad, which it merges 

back into the original pro-cess. The choice of where to migrate 

off and back onto the mobile device is made by a partitioning 

component, which uses static analysis to discover constraints 

on possible migration points, and dynamic profiling to build a 

cost model for execution and migration. A mathematical 

optimizer chooses migration points that optimize execution 

time given the application and the cost model.  

 

4.2 Application VMs 

 
Figure 4.2.1: A general architecture for an application-

layer virtual machine. 

 

An application-level VM is an abstract computing 

ma-chine that provides hardware and operating system in-

dependence. Its instruction sets are platform-independent 

bytecodes; an executable is a blob of byte-codes. The VM 

runtime executes bytecodes of methods with threads. There is 

typically a separation between the virtual portion of an 

execution and the native portion; the former is only expressed 

in terms of objects directly visible to the bytecode, while the 

latter include management machinery for the virtual machine 

itself, data and computation invoked on behalf of a virtual 

computation, as well the process-level data of the OS process 

containing the VM. Interfacing between the virtual and the 

native portion happens via native interface frameworks. 

Runtime memory is split between VM-wide and per-

thread areas. The Method Area, which contains the types of the 

executing program and libraries as well as static variable 

contents, and the Heap, which holds all dynamically allocated 

data, are VM-wide. Each thread has its own Virtual Stack 

(stack frames of the virtual hardware), the Virtual Registers 

(e.g., the program counter), and the Native Stack (containing 

any native execution frames of a thread, if it has invoked native 

functions). 

Most computation, data structure manipulation, and 

memory management are done within the abstract ma-chine. 

However, external processing such as file I/O, networking, 

using local hardware such as sensors, are done via APIs that 

punch through the abstract machine into the process's system 

call interface. 

 

4.3 Partitioning 

The partitioning mechanism in CloneCloud aims to 

modify an application executable by deciding where to execute 

methods in the code. No special considerations are required for 

the executable beyond targeting the same application VM; that 

is, it need not be written in a particular idiom, e.g., a dataflow 

language. The output of the partitioning mechanism is the 

executable with partitioning points, optimal for a choice of 

execution conditions (network link characteristics between 

mobile device and cloud, relative CPU speeds). The 

partitioning mechanism can be run multiple times for different 

execution conditions, resulting in a database that maps 

partitioning to conditions. At runtime, the distributed execution 

mechanism we describe in Section 4 implements the choice of 

partition for the current execution conditions. Partitioning of an 

application operates according to the conceptual workflow of 

Figure 4.3.1.  
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Figure 4.3.1: Partitioning analysis framework. 
 

Our partitioning frame-work combines static program 

analysis with dynamic program profiling to produce 

partitioning that optimizes goals while meeting correctness 

constraints. 

The first component, the Static Analyzer, identifies le-gal 

partition choices for the application executable, ac-cording to a 

set of constraints (Section  3.1). Constraints codify the needs of 

the distributed execution engine used, as well as the particular 

usage model we target; however, different mechanisms can 

seamlessly be plugged into the partitioning component by 

changing these constraints. 

The second component, the Dynamic Profiler 

(Section  3.2), runs the input executable on different platforms 

(the mobile device and on the cloud clone) under a set of 

inputs, and returns a set of profiled executions. Profiled 

executions are used to compose a cost model for the ap-

plication under different partitioning. 

Finally, the Optimization Solver finds a legal 

partitioning among those enabled by the static analyzer that 

minimizes an objective function, using the cost model 

derived by the profiler (Section  3.3). The resulting 

partitioning is used to modify the executable, yielding the 

final output of the partitioner. This partitioning is an offline 

process th t generates a model that the runtime uses. 

 

4.3.1  Static Analyzer 
The partitioner uses static analysis to identify legal 

choices for placing migration and re-integration points in the 

code. In principle, these points could be placed any-where in 

the code, but we reduce the available choices to make the 

optimization problem tractable. In particular, we restrict 

migration and re-integration points to the entry and exit 

points, respectively, of methods. In addition, to focus on our 

application program, we restrict these partitioning points to 

methods of application classes as op-posed to methods of 

system classes (e.g., the core classes for Java) or native 

methods. 

4.3.2  Constraints 

Three properties required by the migration component of any 

legal partitioning  

 

Property 1: Methods that access specific features of 

amachine must be pinned to the machine. 

 

Property 2: Methods that share native state must be collocated 

at the same machine. 

 

Property 3: Prevent cyclic migration. 

 

 

4.3.3  Dynamic Profiler 

 The job of the profiler is to collect the data that will be 

used to construct a cost model for the application under 

different execution settings. The cost metric can be different 

things, including energy expenditure, resource foot-print, etc.; 

we focus on execution time in the prototype presented here. 

The profiler is invoked on multiple executions of the 

application, each using a different set of input data (e.g., 

command-line arguments and user-interface events), and each 

executed once on the mobile device and once on the clone in 

the cloud. The profiler outputs a set S of executions, and for 

each execution a profile tree T and T ′, from the mobile device 

and the clone, respectively. 

 A profile tree is a compact representation of an 

execution on a single platform. It is a tree with one node for 

each method invocation in the execution; it is rooted at the 

starting (user-defined) method invocation of the application 

(e.g., main). Specific method calls in the execution are 

represented as edges from the node of the caller method 

invocation (parent) to the nodes of the callers (children); edge 

order is not important. Each node is annotated with the cost of 

its particular invocation in the cost metric (execution time in 

our case). In addition to its called-method children, every non-

leaf node also has a leaf child called its residual node. The 

residual node I′ for node I represent the residual cost of 

invocation I that is not due to the calls invoked within I; in 

other words, node I′ represents the cost of running the body of 

code excluding the costs of the methods called by it. Finally, 

each edge is annotated with the state size at the time of 

invocation of the child node, plus the state size at the end of 

that invocation; this would be the amount of data that the 

migrator would need to capture and transmit in both directions, 

if the edge were to be a migration point. Edges between a node 

and its residual child have no cost. 

 

4.3.4  Optimization Solver 

 

 The purpose of our optimizer is to pick which 

application methods to migrate to the clone from the mobile 

device, so as to minimize the expected cost of the partitioned 

application. 

 

4.4 Distributed Execution 

 

The purpose of the distributed execution mechanism in 

CloneCloud is to implement a specific partitioning of an 

application process running inside an application-layer virtual 

machine, as determined during partitioning. 

 

The lifecycle of a partitioned application is as follows. When 

the user attempts to launch a partitioned application, current 

execution conditions (availability of cloud resources and 

network link characteristics between the mobile device and the 

cloud) are looked up in a database of pre-computed partitions. 

The lookup result is a binary, modified with particular 

migration and re-integrationpoints (special VM instructions in 

our prototype), which is then launched in a new process. When 

execution of the process on the mobile device reaches a 

migration point, the executing thread is suspended and its state 

(including virtual state, program counter, registers, and stack) 

is packaged and shipped to a synchronized clone. There, the 

thread state is instantiated into a new thread with the same 

stack and reachable heap objects, and then resumed. When the 

migrated thread reaches a re-integration point, it is similarly 

suspended and packaged as before, and then shipped back to 

the mobile device. Finally, the returned packaged thread is 

merged into the state of the original process. When conditions 

change, or upon explicit user input via a simple configuration 



Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985    Page 9982 

inter-face, a different partition and corresponding binary can be 

substituted for subsequent invocations of the application. 

CloneCloud migration operates at the granularity of a 

thread. This allows a multi-threaded process to off-load 

functionality, one thread-at-a-time. CloneCloud enables 

threads, local and migrated, to use but not migrate native, non-

virtualized features of the platform on which they operate: this 

includes the network, un-virtualized hardware accelerators, 

natively implemented API functionality (such as expensive-to-

virtualize image processing routines), etc. In contrast, most 

prior work providing application-layer virtual-machine 

migration keeps native features and functionality exclusively 

on the original plat-form, only permitting the off-loading of 

pure, virtualized computation. 

 
Figure 4.4.1: Migration overview. 

 

 

These two unique features of CloneCloud, thread-

granularity migration and native-everywhere operation, 

enable new execution models. For example, a mobile 

application can retain its user interface threads running and 

interacting with the user, while off-loading worker threads to 

the cloud if this is beneficial. This would have been 

impossible with monolithic process or VM suspend-resume 

migration, since the user would have to migrate to the cloud 

along with the code. Similarly, a mobile application can 

migrate a thread that performs heavy 3D rendering operations 

to a clone with GPUs, without having to modify the original 

application source; this would have been impossible to do 

seamlessly if only migration of virtualized computation were 

allowed. 

CloneCloud migration is effected via three distinct 

components:  

(a) A per-process migrator thread that assists a process 

with the mechanics of suspending, pack-aging, 

resuming, and merging thread state,  

(b) A per-node node manager that handles node-to-

node communicationof packaged threads, clone 

image synchronization and provisioning; and  

(c) A simple partition database that determines what 

partitioning to use. 

The migrator functionality manipulates internal state of 

the application-layer virtual machine; consequently we chose 

to place it within the same address space as the VM, 

simplifying the procedure significantly. A manager, in 

contrast, makes more sense as a per-node component shared 

by multiple applications, for several reasons. First, it enables 

application-unspecific node maintenance, including file-

system synchronization between the device and the cloud. 

Second, it amortizes the cost of communicating with the 

cloud over a single, possibly authenticated and encrypted, 

transport channel. Finally, it paves the way for future 

optimizations such as chunk-based or similarity-enhanced 

data transfer.  

 

4.4.1 Suspend and Capture 

 

Upon reaching a migration point, the job of the thread 

migrator is to suspend a migrant thread, collect all of its state, 

and pass that state to the node manager for data transfer. The 

thread migrator is a native thread, operating within the same 

address space as the migrant thread, but outside the virtual 

machine. As such, the migrator has the ability to view and 

manipulate both native process state and virtualized state. 

To capture thread state, the migrator must collect 

several distinct data sets: execution stack frames and relevant 

data objects in the process heap, and register con-tents at the 

migration point. Virtualized stack frames each containing 

register contents and local object types and contents are readily 

accessible, since they are maintained by the VM management 

software. Starting with local data objects in the collected stack 

frames, the migrator recursively follows references to identify 

all relevant heap objects, in a manner similar to any mark-and-

sweep garbage collector. For each relevant heap object, the 

migrator stores its field values, and collects all relevant static 

fields as well (e.g., static class fields). 

 

Captured state must be conditioned for transfer to be 

portable. First, object field values are stored in network byte 

order to allow for incompatibilities between differ-ent 

processor architectures. Second, whereas typically a stack 

frame contains a local native pointer to the particular class 

method it executes (which is not portable across ad-dress 

spaces or processor architectures), we store instead the class 

name and method name, which are portable. 

 

4.4.2  Resume and Merge 
As soon as the captured thread state is transferred to 

the target clone device, the node manager passes that state to 

the migrator of a newly allocated process. To resume that 

migrant thread, the migrator must overlay the thread con-text 

over the clean process address space. The executable text is 

loaded (it can be found under the same filename in the 

synchronized file system of the clone). Then all captured 

classes and object instances are allocated in the virtual 

machine's heap, updating static and instance field contents with 

those from the captured context. As soon as the address space 

contains all the data relevant to the migrant thread, the thread 

itself is created, given the stack frames from the capture, the 

register contents are filled to match the state of the original 

thread at the migration point in the mobile device, and the 

thread is marked as runnable to resume execution. 

As described above, the cloned thread will eventually 

reach a reintegration point in its executable, signaling that it 

should migrate back to the mobile device. Reintegration is 

almost identical conceptually to the original migration: the 

clone's migrator captures and packages the thread state, the 

node manager transfers the capture back to the mobile device, 

and the migrator in the original process is given the capture for 

resumption. There is, how-ever, a subtle difference in this 

reverse migration direction. Whereas in the forward direction 

from mobile de-vice to clone a captured thread context is used 

to create a new thread from scratch, in the reverse direction 

from clone to mobile device the context must update the 

original thread state to match the changes effected at the clone. 

We call this process a state merge. 

A successful design for merging states in such a 

fashion depends on our ability to map objects at the original 

address space to the objects they “became” at the cloned 

address space; object references themselves are not sufficient 
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in that respect, since in most application-layer VMs, references 

are implemented as native memory addresses, which look 

different in different processes, across different devices and 

possibly architectures, and tend to be reused over time for 

different objects. 

 

4.4.3  Optimization 
 

The VM offers a unique opportunity for optimizing 

the amount of information transferred during migration. Be-

cause new processes are forked as copies of a “template” 

process  the Zygote, in the Android nomenclature—and 

because that template exists in all booted instances of the 

Android platform, we can avoid transmitting all sys-tem heap 

objects that have not changed since an application was copied 

from Zygote. This typically saves about 40,000 object 

transmissions with every migration operation, a significant 

time and bandwidth overhead reduction. Furthermore, even 

ignoring the transmission cost, some of those objects are static 

or platform-dependent system objects so should not be 

migrated anyway. 

 

5. Applications 

The uses of Application Migration through CloneCloud are 

many; as a computing technique it may be applied to many 

different use scenarios.  

 Continuous Speech Recognition 

 Augmented Reality 

 Image Manipulation 

 Video streaming  

 Web browsing  

 Speech recognition 

 3D rendering  

 Selective, application specific fetching of large data 

sets  

 Data mining / Data staging  

 Document preparation  

 Natural language translation  

 Facial recognition  

 Text to speech  

 Optical character recognition  

 

6. SECURITY ANALYSIS 

In cloud computing, offloading of data to the cloud 

has implications for privacy and security. Because the data is 

stored and managed in the cloud, security and privacy settings 

depend on the IT management the cloud provides. A bug or 

security loophole in the cloud might result in a breach of 

privacy. For example, in March 2009, a bug in Google caused 

documents to be shared without the owners’ knowledge,9 

while a July 2009 breach in Twitter allowed a hacker to obtain 

confidential documents. Cloud service providers typically 

work with many third-party vendors, and there is no guarantee 

as to how these vendors safeguard data. For example, a 

phishing attack in 2007 duped a staff member for 

salesforce.com into revealing a password; 13 the attacker then 

used the password to access confidential data. Obviously, 

some type of data cannot be stored in the cloud considering the 

privacy and security issues. One possible solution is to encrypt 

the data before offloading. But encryption alone cannot solve 

the problem. A technique called Steganography is also used in 

the proposed system to hide the data from the cloud vendor. 

 

6.1 Encryption of Data 

The data can be encrypted in the mobile system itself 

before offloading. Here Random Key Generation Algorithm is 

used. The mobile user can encrypt the data before offloading 

to the cloud using the random key generated. The cloud vendor 

before performing computations in it requests for the key to 

the mobile users, then the cloud vendor after receiving the key 

decrypts the data and performs computations in it. 

 

6.2 Steganography 

Steganography is to hide data before sending them to 

servers so that unauthorized access of data can be prevented. 

Steganography hides data so that the server is unaware of the 

existence of information. Image processing is computation-

intensive and a good candidate for offloading. Fig.2 shows two 

examples of Steganography. A coverimage is used to disguise 

the data image so that the data image is hard to recognize. The 

combined image is called astego image. A key challenge is to 

allow offloaded computation to be performed on 

steganographic data because thecomputation must remain 

meaningful on stego images. Suppose we want to compare the 

images in Figure 6.2.1 (b) and (c), Figure 6.2.1 (d) and (e) are 

sent to the server instead. Figure 6.2.1 (f) shows the pixel-wise 

difference between (d) and (e). Since the cover image is never 

sent to server, the server cannot detect hidden data 

 

 

 

 

 

 

Fig.6.2.1: Two examples of Steganography. (a) Is the cover 

image. (b), (c) are hidden in (a) and their corresponding 

stego images are (d) and (e). (f) is the difference of (d) and 

(e) 

 

 

 

 

 

 

 

 

Fig.6.2.2: Offloading image computation protected by 

Steganography 

 

As shown in Fig.6.2.2, before sending the data to the 

server, the images are processed using Steganography. The 

stego images are sent to the server for further processing. The 

adopted protection techniques must ensure the computation 

performed at the server remains meaningful. Mean-while, the 

hidden data must be difficult for the server to detect. 

 

Privacy in the distributed platform and security of 

data transmission between mobile device and cloud server 

node are important concerns in cloud based application 

processing. Privacy measures are required to ensure the 

execution of mobile application in isolated and trustworthy 

environment, whereas security procedures are required to 

protect against network threats. Security and privacy are very 

important aspects for the establishing and maintaining the trust 

of mobile users in cloud based application processing. Security 

in MCC is important from three different perspectives: security 

for mobile devices, security for data transmission over the 

wireless medium and security in the cloud datacenter nodes. 

SMDs are subjected to a number of security threats such as 

viruses and worms. SMDs are the attractive targets for 
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attacker. According to a report the number of new 

susceptibilities in mobile operating systems increased 42 

percent from 2009 to 2010. The number and sophistication of 

attacks on mobile phones is increasing speedily as compared to 

the countermeasures.  

 

Data transmission over the wireless networks is 

highly vulnerable to network security threats. For example, 

using radio frequencies, the risk of interruption is higher than 

with wired networks therefore attacker can easily compromise 

confidentiality [58]. Similarly, in cloud datacenters the security 

threats are associated with the transmission between physical 

elements on the network, and traffic between the virtual 

elements in the network, such as between virtual machines 

within a single physical server. Therefore, in order to leverage 

the application processing services of computational clouds, a 

highly secure environment is expected at all the three entities 

of MCC model.  

In current DAPFs, transmission of the running states 

of mobile application which is encapsulated in VM or binary 

transfer of the application code at runtime is continuously 

subjected to security threats at mobile device, wireless medium 

and cloud datacenters. Therefore, secure transmission of the 

entire components of the application is a challenging issue for 

MCC. It is imperative to implement reliable security measures 

for the data transmission, and synchronization between SMD 

and cloud datacenters in distributed processing platform. 

Similarly, access control, fidelity and privacy of distributed 

application components in the remote cloud datacenters is an 

important consideration for the distributed application 

processing in MCC.  

Cloud datacenters provide augmentation services 

which are unapproachable to mobile users. Therefore, it is 

highly demanding to ensure the privacy of data and computing 

operations in remote server nodes. A trustworthy distributed 

application model is highly expected to cope with such 

important issues and ensure the trustworthiness of remote 

computing environment. A reliable distributed environment is 

expected to provide authentic access to authorized mobile user 

for legitimate operations on cloud server nodes.  

 

7. CONCLUSION 

This seminar takes a step towards seamlessly 

interfacing be-tween the mobile and the cloud in the context of 

mobile cloud computing. Our system overcomes design and 

implementation challenges to achieve basic augmented 

execution of mobile applications on the cloud, represent 

execution of mobile applications on the cloud, representing to 

address these challenges.  

CloneCloud approach is the first to replicate the 

whole smartphone image and to run the application code with 

few or no modifications in powerful VM replicas to transform 

a single-machine computation to a distributed computation 

(semi)-automatically. 

We believe that the CloneCloud architecture enables 

new, exciting modes of augmented execution for applications 

in diverse environments, and offers intriguing opportunities for 

research and for practical deployments that marry the 

convenience of hand-held devices with the power of cloud 

computing. 
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