

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 1 January 2015, Page No. 9977-9985

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9977

A Review on Distributed Application Processing Framework –

Clone Cloud

Lect. Prajakta R. Mali
1
, Lect. Gayatri D. Naik

2

1Lecturer in Computer Engineering Department

Government Polytechnic, Thane,

pmahajan2013@gmail.com

2Lecturer in Computer Engineering Department

YadavraoTasgaonkar Institute of Engineering and Technology

gayatri.naik@tasgaonkartech.com

Abstract:The latest developments in mobile devices technology have made smartphones as the future computing and service

access devices. Users expect to run computational intensive applications on Smart Mobile Devices (SMDs) in the same way as

powerful stationary computers. However in spite of all the advancements in recent years, SMDs are still low potential computing

devices, which are constrained by CPU potentials, memory capacity and battery life time. Mobile Cloud Computing (MCC) is the

latest practical solution for alleviating this incapacitation by extending the services and resources of computational clouds to

SMDs on demand basis. In MCC, application offloading is ascertained as a software level solution for augmenting application

processing capabilities of SMDs. The current offloading algorithms offload computational intensive applications to remote servers

by employing different cloud models. This seminar reviews existing Distributed Application Processing Frameworks (DAPFs) for

SMDs in MCC domain. And mainly focuses on CloneCloud Framework.

Keywords:Distributed Application Processing Framework, VM based Application Offloading, CloneCloud.

1. Introduction

The miniature nature, compact design, high quality

graphics, customized user applications support and multimodal

connectivity features have made SMDs a special choice of

interest for mobile users. SMDs incorporate the computing

potentials of PDAs and voice communication capabilities of

ordinary mobile devices by providing support for customized

user applications and multimodal connectivity for accessing

both cellular and data networks. SMDs employ wireless

network technologies for accessing the internet; such as 3G

connectivity, Wireless Fidelity (Wi-Fi), Wi-Max, or Long

Term Evaluation (LTE). SMDs are the dominant future

computing devices with high user expectations for accessing

computational intensive applications analogous to powerful

stationary computing machines. Examples of such applications

include natural language translators, speech recognizers,

optical character recognizers, image processors, online games,

video processing and wearable devices for patients such as

wearable device with a head-up display in the form of

eyeglasses (a camera for scene capture and earphones) is a

useful application that helps Alzheimer patients in everyday

life. Such applications necessitate higher computing power,

memory, and battery lifetime on resource constrained SMDs.

On the other hand, SMDs are still low potential computing

devices having limitations in memory, CPU and battery power.

In spite of all the advancements in recent years, SMDs are

constrained by weight, size, and intrinsic limitations in wireless

medium and mobility.

A key area of mobile computing research focuses on the

application layer research for creating new software level

solutions. Application offloading is an application layer

solution for alleviating resources limitations in SMDs.

Successful practices of cloud computing for stationary

machines are the motivating factors for leveraging cloud

resources and services for SMDs. Cloud computing employs

different services provision models for the provision of cloud

resources and services to SMDs; such as Software as a Service,

Infrastructure as a Service, and Platform as a Service. Several

online file storage services are available on cloud server for

augmenting storage potentials of client devices; such as

Amazon S3, Google Docs, MobileMe, and Drop Box. In the

same way, Amazon provides cloud computing services in the

form of Elastic Cloud Compute. The cloud revolution

augments the computing potentials of client devices; such as

desktops, laptops, PDAs and smartphones. The aim of MCC is

to alleviate resources limitations of SMDs by leveraging

computing resources and services of cloud datacenters. MCC is

deployed in diverse manners to achieve the aforementioned

objective. MCC employs process offloading techniques for

augmenting application processing potentials of SMDs.

LITERATURE SERVEY

Muhammad Shiraz, Abdullah Gani, Rashid

HafeezKhokhar and RajkumarBuyya [1] review current

http://www.ijecs.in/
mailto:pmahajan2013@gmail.com
mailto:gayatri.naik@tasgaonkartech.com

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9978

DAPFs in SMDs within MCC domain and identify challenges

in the cloud based processing of mobile applications. They

classify existing DAPFs by thematic taxonomy and investigate

commonalities and deviations in such frameworks on the basis

of significant parameters such as offloading scope, partitioning

approach, migration support, migration granularity, application

developer support, migration pattern and execution monitoring.

They contribute the categorization of frameworks on the basis

of thematic taxonomy, analysis of current DAPFs by

discussing the implications and critical aspects, identifying the

issues in existing solutions for offload processing and

challenge to cloud based application processing of mobile

applications. The listing of challenges and open issues guide

researchers to select the appropriate domain for future research

and obtain ideas for further investigations. They classify the

application offloading frameworks by using their attributes as

follows-

 VM Migration Based Application Offloading

o Cyber Foraging Framework

o VM based Cloudlets Framework

o CloneCloud based framework

o Elastic Clone cloud framework

o Mirror server framework

 Entire Application Migration Based Application

Offloading

o Universal Mobile Service Cell (UMSC)

o Distributed Shell System (DISHES)

o Misco

o Cogniserve

 Application Partitioning Based Application

Offloading

o Static Partitioning Based Application

Offloading:

o Dynamic Partitioning Based Application

Offloading:

 AIDE

 Mobile Assistance Using Infrastructure

(MAUI)

 Elastic application model

In [4] cyber foraging framework is employed to

utilize computation resources of computing devices (stationary

or mobile) in close proximity of SMD. The framework

implements client/server architecture. Mobile devices request

for process offloading and surrogate server provides the

services on demand. The frame-work supports configuration of

multiple surrogate servers simultaneously and employs virtual

machine technology for remote application processing. A

single surrogate server is capable to run a configurable number

of independent virtual servers with isolation, elasticity,

resource control and simple cleanup mechanism. Each

offloaded application executes on isolated virtual server.

But R. Balan, D. Gergle, M. Satyanarayanan, and J.

Herbsleb [4] identify some critical aspects of cyber foraging

framework is the deployment of template based virtualization

approach which is a highly time consuming and resources

starving mechanism for VM deployment [41]. The framework

requires the annotation of individual components of the

application as local or remote which is an additional effort for

application developers. Further, surrogate based cyber foraging

is restricted to the availability of services and resources on

local servers.

A cloudlet [5] architecture proposed by

M.Satyanarayan, advocates a two tier approach to decrease the

latencies. Proposed architecture states that rather than relying

on a distant “Cloud”, we might be able to address the mobile

device’s resource poverty via a nearby resource-rich cloudlet.

Cloudlets are decentralized and widely dispersed Internet

infrastructure components whose compute cycles and storage

resources can be leveraged by nearby mobile computers.

Access to a cloudlet can be provided by Wi-Fi that saves

energy as well as has greater bandwidth as compared to other

internet services.

Also MahadevSatyanarayanan†, ParamvirBahl‡,

Ramon Caceres•, Nigel Davies [5] identifies the critical aspects

of VM based cloudlets framework are that the framework

requires additional hardware level support for the

implementation of VM technology and is based on cloning

mobile device application processing environment to remote

host which involves the issues of VM deployment and

management on SMD, privacy and access control in migrating

the entire execution environment and security threats in the

transmission of VM.

2. CloneCloud

In this paper, we take a first step towards realizing this vision,

by designing and implementing the first version of the

CloneCloud system. CloneCloud boosts unmodified mobile

applications by seamlessly off-loading part of their execution

from the mobile device onto device clones operating in a

computational cloud. It is designed to serve as a platform for

generic mobile-device processing as a service. Conceptually,

this system automatically transforms a single machine

execution (e.g., computation on a smartphone) into a

distributed execution that is optimal given the network

connection to the cloud, if needed, the relative processing

capabilities of the mobile device and cloud, and the

application’s computing patterns.

The underlying motivation for such a system lies in the

following intuition: as long as execution on the cloud is

significantly faster than execution on the mobile device (or

more reliable, more secure, etc.), paying the cost for sending

the relevant data and code from the device to the cloud and

back may be worth it. Only when the metric (e.g., performance

or energy) of the newly partitioned application is better than

that of the existing application, it makes sense to partition an

application. In practice, the partitioning decision may be more

fine-grained than a yes/no answer (i.e., it may result in carving

off different amounts of the original application for cloud

execution). Furthermore, the decision may be impacted not

only by the application itself, but also by the expected

workload and the execution conditions, such as network

connectivity and CPU speeds of both mobile and cloud

devices.

A fundamental design goal for CloneCloud is to allow such

fine-grained flexibility on what to run where, which traditional

client-server partitioning hardwire early on in the development

process. Consequently, CloneCloud aims to make application

partitioning seamless, and based only on the deployed version

of the application, without need for source code. The

CloneCloud prototype described here meets all our design

goals, by rewriting an unmodified application executable.

While the modified executable runs, at automatically chosen

points individual threads migrate from the mobile device to a

device clone in a cloud. There the thread executes, possibly

accessing native features of the hosting platform such as the

fast CPU, network, hardware accelerators, storage, etc.

Eventually, the thread returns back to the mobile device, along

with any state it created abroad, which it merges back into the

original process. The choice of where to migrate off and back

onto the mobile device is made by a partitioning component,

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9979

which uses static analysis to discover constraints on possible

migration points, and dynamic profiling to build a cost model

for execution and migration.

First, unlike traditional suspend-migrater resume mechanisms

for application migration, the CloneCloud migrator operates at

thread granularity, an essential consideration for mobile

applications, which tend to have features that must remain at

the mobile device, such as those accessing the camera or

managing the user interface.

Second, unlike past application-layer VM migrators, the

CloneCloud migrator allows native system operations to

execute both at the mobile device and at its clones in the cloud,

harnessing not only raw CPU cloud power, but also system

facilities or specialized hardware.

Third, unlike mostly programmer-assisted approaches to

application partitioning, the CloneCloud partitioner

automatically identifies costs and constraints through static and

dynamic code analysis, without the programmer’s help,

annotations, or application refactoring.

3.1 Augmented Execution

The scope of augmented execution from the infrastructure is

fairly broad. In this section, we attempt to categorize the types

of augmentation we envision (Figure 3.1).

Figure 3.1: The five categories of Augmented Execution

3.1.1 Primary functionality outsourcing:
Computation-hungry applications such as speech processing,

video indexing, and super-resolution are automatically split, so

that the user-interface and other low-octane processing is

retained at the smartphone, while the high-power, expensive

computation is off-loaded to the infrastructure, synchronously.

This is similar to designing the application as a client-server

service, where the infrastructure provides the service (e.g., the

translation of speech to text), or as a thin-client environment.

3.1.2 Background augmentation:
Unlike primary functionality outsourcing, this category deals

with functionality that does not need to interact with users in a

short time scale. Such is functionality that typically happens in

the back-ground, such as scanning the file system for viruses,

indexing files for faster search, analyzing photos for common

faces, crawling news web pages, etc. In this case, entire

processes can be marked (by the user or by the programmer) or

automatically inferred as “background” processes, and

migrated to the infrastructure wholesale. Furthermore, off-

loaded functionality can take on the role of a “virtual client.”

Even when the smartphone is turned off, the virtual client can

continue to run background tasks. Later when the smartphone

returns online, it can synchronize its state with the

infrastructure.

3.1.3 Mainline augmentation:

This category sits between primary functionality outsourcing

and background augmentation. Here the user may opt to run a

particular application in a wrapped fashion, altering the method

of its execution but not its semantics. Examples are private-

data leak detection (e.g., to taint-check an application or

application set), fault-tolerance (e.g., to employ multi-variant

execution analysis to protect the application from trans-parent

bugs), or debugging (e.g., keep track dynamically of allocated

memory in the heap to catch memory leaks). Unlike

background augmentation, mainline augmentation is

interspersed in the execution of the application. Many

possibilities exist: for example, when a decision point is

reached in the taint-check example, the application on the

smartphone may block, perhaps causing the clone to rewind

back to a known checkpoint, and to re-execute for-ward with

taint-tracking, before deciding.

3.1.4 Hardware augmentation:

This category is interestingbecause it compensates for

fundamental weaknesses of the smartphone platform, such as

memory caps or other constraints, and hardware peculiarities.

3.1.5 Augmentation through multiplicity:

The last category we consider is unique in that it uses multiple

copies of the system image executed in different ways. This

can help running data parallel applications (e.g., doing

indexing for disjoint sets of images). This can also help the

application to “see the future,” by exhaustively exploring all

possible next steps within some small horizon as would be

done for model checking or to evaluate in maximum detail all

possible choices for a decision before making that decision.

Consider, for example, an energy-conserving process scheduler

that, in the absence of future knowledge, can only guarantee

decisions close but not at the optimum. Instead, the whole

system image could be replicated multiple times in the

infrastructure, choosing all possible interleaving of processes

during execution, and evaluating energy expenditure via some

consumption model for the device, ultimately making the

scheduling decision that results in the minimum expenditure.

In this category of augmentation, infrastructure cycles are

lavished on essentially a Monte-Carlo simulation of all

possible outcomes of the scheduler's choices to make the

optimal decision. We end up wasting much energy (at the

infrastructure) to save a little bit of energy on the mobile

device. However, given the opportunity cost of being left with

a dead battery during a critical time, this rather extravagant use

of the infrastructure may have significant benefits.

4.1 Architecture:-
Conceptually, our system provides a way to boost a

smart-phone application by utilizing heterogeneous computing

platforms through cloning and computation transformation. For

doing so, our system (semi)-automatically trans-forms a single-

machine execution (e.g., smartphone com-putation) into a

distributed execution (e.g., smartphone plus cloud

computation) in which the resource-intensive part of the

execution is run in powerful clones. An additional benefit of

cloning is that if the smartphone is lost or destroyed, the clone

can be used as a backup. Figure 2 illustrates the high-level

system model of our approach.

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9980

Figure 4.1: CloneCloud system model. CloneCloud

transforms a single-machine execution (mobile device

computation) into a distributed execution (mobile device

and cloud computation) automatically. [3]

Augmented execution is performed in four steps:

1. Initially, a clone of the smartphone is created within the

cloud (laptop, desktop, or server nodes);

2. The state of the primary (phone) and the clone is

periodically or on-demand synchronized;

3. Application augmentations (whole applications or

augmented pieces of applications) are executed in the

clone, automatically or upon request; and

4. Results from clone execution are re-integrated back into

the smartphone state.

Figure 4.2: Clone execution architecture for

smartphones.

The CloneCloud prototype described here meets all

our design goals, by rewriting an unmodified application

executable. While the modified executable runs, at

automatically chosen points individual threads migrate from

the mobile device to a device clone in a cloud. There the thread

executes, possibly accessing native features of the hosting

platform such as the fast CPU, network, hardware accelerators,

storage, etc. Eventually, the thread returns back to the mobile

device, along with any state it created abroad, which it merges

back into the original pro-cess. The choice of where to migrate

off and back onto the mobile device is made by a partitioning

component, which uses static analysis to discover constraints

on possible migration points, and dynamic profiling to build a

cost model for execution and migration. A mathematical

optimizer chooses migration points that optimize execution

time given the application and the cost model.

4.2 Application VMs

Figure 4.2.1: A general architecture for an application-

layer virtual machine.

An application-level VM is an abstract computing

ma-chine that provides hardware and operating system in-

dependence. Its instruction sets are platform-independent

bytecodes; an executable is a blob of byte-codes. The VM

runtime executes bytecodes of methods with threads. There is

typically a separation between the virtual portion of an

execution and the native portion; the former is only expressed

in terms of objects directly visible to the bytecode, while the

latter include management machinery for the virtual machine

itself, data and computation invoked on behalf of a virtual

computation, as well the process-level data of the OS process

containing the VM. Interfacing between the virtual and the

native portion happens via native interface frameworks.

Runtime memory is split between VM-wide and per-

thread areas. The Method Area, which contains the types of the

executing program and libraries as well as static variable

contents, and the Heap, which holds all dynamically allocated

data, are VM-wide. Each thread has its own Virtual Stack

(stack frames of the virtual hardware), the Virtual Registers

(e.g., the program counter), and the Native Stack (containing

any native execution frames of a thread, if it has invoked native

functions).

Most computation, data structure manipulation, and

memory management are done within the abstract ma-chine.

However, external processing such as file I/O, networking,

using local hardware such as sensors, are done via APIs that

punch through the abstract machine into the process's system

call interface.

4.3 Partitioning

The partitioning mechanism in CloneCloud aims to

modify an application executable by deciding where to execute

methods in the code. No special considerations are required for

the executable beyond targeting the same application VM; that

is, it need not be written in a particular idiom, e.g., a dataflow

language. The output of the partitioning mechanism is the

executable with partitioning points, optimal for a choice of

execution conditions (network link characteristics between

mobile device and cloud, relative CPU speeds). The

partitioning mechanism can be run multiple times for different

execution conditions, resulting in a database that maps

partitioning to conditions. At runtime, the distributed execution

mechanism we describe in Section 4 implements the choice of

partition for the current execution conditions. Partitioning of an

application operates according to the conceptual workflow of

Figure 4.3.1.

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9981

Figure 4.3.1: Partitioning analysis framework.

Our partitioning frame-work combines static program

analysis with dynamic program profiling to produce

partitioning that optimizes goals while meeting correctness

constraints.

The first component, the Static Analyzer, identifies le-gal

partition choices for the application executable, ac-cording to a

set of constraints (Section 3.1). Constraints codify the needs of

the distributed execution engine used, as well as the particular

usage model we target; however, different mechanisms can

seamlessly be plugged into the partitioning component by

changing these constraints.

The second component, the Dynamic Profiler

(Section 3.2), runs the input executable on different platforms

(the mobile device and on the cloud clone) under a set of

inputs, and returns a set of profiled executions. Profiled

executions are used to compose a cost model for the ap-

plication under different partitioning.

Finally, the Optimization Solver finds a legal

partitioning among those enabled by the static analyzer that

minimizes an objective function, using the cost model

derived by the profiler (Section 3.3). The resulting

partitioning is used to modify the executable, yielding the

final output of the partitioner. This partitioning is an offline

process th t generates a model that the runtime uses.

4.3.1 Static Analyzer
The partitioner uses static analysis to identify legal

choices for placing migration and re-integration points in the

code. In principle, these points could be placed any-where in

the code, but we reduce the available choices to make the

optimization problem tractable. In particular, we restrict

migration and re-integration points to the entry and exit

points, respectively, of methods. In addition, to focus on our

application program, we restrict these partitioning points to

methods of application classes as op-posed to methods of

system classes (e.g., the core classes for Java) or native

methods.

4.3.2 Constraints

Three properties required by the migration component of any

legal partitioning

Property 1: Methods that access specific features of

amachine must be pinned to the machine.

Property 2: Methods that share native state must be collocated

at the same machine.

Property 3: Prevent cyclic migration.

4.3.3 Dynamic Profiler

 The job of the profiler is to collect the data that will be

used to construct a cost model for the application under

different execution settings. The cost metric can be different

things, including energy expenditure, resource foot-print, etc.;

we focus on execution time in the prototype presented here.

The profiler is invoked on multiple executions of the

application, each using a different set of input data (e.g.,

command-line arguments and user-interface events), and each

executed once on the mobile device and once on the clone in

the cloud. The profiler outputs a set S of executions, and for

each execution a profile tree T and T ′, from the mobile device

and the clone, respectively.

 A profile tree is a compact representation of an

execution on a single platform. It is a tree with one node for

each method invocation in the execution; it is rooted at the

starting (user-defined) method invocation of the application

(e.g., main). Specific method calls in the execution are

represented as edges from the node of the caller method

invocation (parent) to the nodes of the callers (children); edge

order is not important. Each node is annotated with the cost of

its particular invocation in the cost metric (execution time in

our case). In addition to its called-method children, every non-

leaf node also has a leaf child called its residual node. The

residual node I′ for node I represent the residual cost of

invocation I that is not due to the calls invoked within I; in

other words, node I′ represents the cost of running the body of

code excluding the costs of the methods called by it. Finally,

each edge is annotated with the state size at the time of

invocation of the child node, plus the state size at the end of

that invocation; this would be the amount of data that the

migrator would need to capture and transmit in both directions,

if the edge were to be a migration point. Edges between a node

and its residual child have no cost.

4.3.4 Optimization Solver

 The purpose of our optimizer is to pick which

application methods to migrate to the clone from the mobile

device, so as to minimize the expected cost of the partitioned

application.

4.4 Distributed Execution

The purpose of the distributed execution mechanism in

CloneCloud is to implement a specific partitioning of an

application process running inside an application-layer virtual

machine, as determined during partitioning.

The lifecycle of a partitioned application is as follows. When

the user attempts to launch a partitioned application, current

execution conditions (availability of cloud resources and

network link characteristics between the mobile device and the

cloud) are looked up in a database of pre-computed partitions.

The lookup result is a binary, modified with particular

migration and re-integrationpoints (special VM instructions in

our prototype), which is then launched in a new process. When

execution of the process on the mobile device reaches a

migration point, the executing thread is suspended and its state

(including virtual state, program counter, registers, and stack)

is packaged and shipped to a synchronized clone. There, the

thread state is instantiated into a new thread with the same

stack and reachable heap objects, and then resumed. When the

migrated thread reaches a re-integration point, it is similarly

suspended and packaged as before, and then shipped back to

the mobile device. Finally, the returned packaged thread is

merged into the state of the original process. When conditions

change, or upon explicit user input via a simple configuration

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9982

inter-face, a different partition and corresponding binary can be

substituted for subsequent invocations of the application.

CloneCloud migration operates at the granularity of a

thread. This allows a multi-threaded process to off-load

functionality, one thread-at-a-time. CloneCloud enables

threads, local and migrated, to use but not migrate native, non-

virtualized features of the platform on which they operate: this

includes the network, un-virtualized hardware accelerators,

natively implemented API functionality (such as expensive-to-

virtualize image processing routines), etc. In contrast, most

prior work providing application-layer virtual-machine

migration keeps native features and functionality exclusively

on the original plat-form, only permitting the off-loading of

pure, virtualized computation.

Figure 4.4.1: Migration overview.

These two unique features of CloneCloud, thread-

granularity migration and native-everywhere operation,

enable new execution models. For example, a mobile

application can retain its user interface threads running and

interacting with the user, while off-loading worker threads to

the cloud if this is beneficial. This would have been

impossible with monolithic process or VM suspend-resume

migration, since the user would have to migrate to the cloud

along with the code. Similarly, a mobile application can

migrate a thread that performs heavy 3D rendering operations

to a clone with GPUs, without having to modify the original

application source; this would have been impossible to do

seamlessly if only migration of virtualized computation were

allowed.

CloneCloud migration is effected via three distinct

components:

(a) A per-process migrator thread that assists a process

with the mechanics of suspending, pack-aging,

resuming, and merging thread state,

(b) A per-node node manager that handles node-to-

node communicationof packaged threads, clone

image synchronization and provisioning; and

(c) A simple partition database that determines what

partitioning to use.

The migrator functionality manipulates internal state of

the application-layer virtual machine; consequently we chose

to place it within the same address space as the VM,

simplifying the procedure significantly. A manager, in

contrast, makes more sense as a per-node component shared

by multiple applications, for several reasons. First, it enables

application-unspecific node maintenance, including file-

system synchronization between the device and the cloud.

Second, it amortizes the cost of communicating with the

cloud over a single, possibly authenticated and encrypted,

transport channel. Finally, it paves the way for future

optimizations such as chunk-based or similarity-enhanced

data transfer.

4.4.1 Suspend and Capture

Upon reaching a migration point, the job of the thread

migrator is to suspend a migrant thread, collect all of its state,

and pass that state to the node manager for data transfer. The

thread migrator is a native thread, operating within the same

address space as the migrant thread, but outside the virtual

machine. As such, the migrator has the ability to view and

manipulate both native process state and virtualized state.

To capture thread state, the migrator must collect

several distinct data sets: execution stack frames and relevant

data objects in the process heap, and register con-tents at the

migration point. Virtualized stack frames each containing

register contents and local object types and contents are readily

accessible, since they are maintained by the VM management

software. Starting with local data objects in the collected stack

frames, the migrator recursively follows references to identify

all relevant heap objects, in a manner similar to any mark-and-

sweep garbage collector. For each relevant heap object, the

migrator stores its field values, and collects all relevant static

fields as well (e.g., static class fields).

Captured state must be conditioned for transfer to be

portable. First, object field values are stored in network byte

order to allow for incompatibilities between differ-ent

processor architectures. Second, whereas typically a stack

frame contains a local native pointer to the particular class

method it executes (which is not portable across ad-dress

spaces or processor architectures), we store instead the class

name and method name, which are portable.

4.4.2 Resume and Merge
As soon as the captured thread state is transferred to

the target clone device, the node manager passes that state to

the migrator of a newly allocated process. To resume that

migrant thread, the migrator must overlay the thread con-text

over the clean process address space. The executable text is

loaded (it can be found under the same filename in the

synchronized file system of the clone). Then all captured

classes and object instances are allocated in the virtual

machine's heap, updating static and instance field contents with

those from the captured context. As soon as the address space

contains all the data relevant to the migrant thread, the thread

itself is created, given the stack frames from the capture, the

register contents are filled to match the state of the original

thread at the migration point in the mobile device, and the

thread is marked as runnable to resume execution.

As described above, the cloned thread will eventually

reach a reintegration point in its executable, signaling that it

should migrate back to the mobile device. Reintegration is

almost identical conceptually to the original migration: the

clone's migrator captures and packages the thread state, the

node manager transfers the capture back to the mobile device,

and the migrator in the original process is given the capture for

resumption. There is, how-ever, a subtle difference in this

reverse migration direction. Whereas in the forward direction

from mobile de-vice to clone a captured thread context is used

to create a new thread from scratch, in the reverse direction

from clone to mobile device the context must update the

original thread state to match the changes effected at the clone.

We call this process a state merge.

A successful design for merging states in such a

fashion depends on our ability to map objects at the original

address space to the objects they “became” at the cloned

address space; object references themselves are not sufficient

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9983

in that respect, since in most application-layer VMs, references

are implemented as native memory addresses, which look

different in different processes, across different devices and

possibly architectures, and tend to be reused over time for

different objects.

4.4.3 Optimization

The VM offers a unique opportunity for optimizing

the amount of information transferred during migration. Be-

cause new processes are forked as copies of a “template”

process the Zygote, in the Android nomenclature—and

because that template exists in all booted instances of the

Android platform, we can avoid transmitting all sys-tem heap

objects that have not changed since an application was copied

from Zygote. This typically saves about 40,000 object

transmissions with every migration operation, a significant

time and bandwidth overhead reduction. Furthermore, even

ignoring the transmission cost, some of those objects are static

or platform-dependent system objects so should not be

migrated anyway.

5. Applications

The uses of Application Migration through CloneCloud are

many; as a computing technique it may be applied to many

different use scenarios.

 Continuous Speech Recognition

 Augmented Reality

 Image Manipulation

 Video streaming

 Web browsing

 Speech recognition

 3D rendering

 Selective, application specific fetching of large data

sets

 Data mining / Data staging

 Document preparation

 Natural language translation

 Facial recognition

 Text to speech

 Optical character recognition

6. SECURITY ANALYSIS

In cloud computing, offloading of data to the cloud

has implications for privacy and security. Because the data is

stored and managed in the cloud, security and privacy settings

depend on the IT management the cloud provides. A bug or

security loophole in the cloud might result in a breach of

privacy. For example, in March 2009, a bug in Google caused

documents to be shared without the owners’ knowledge,9

while a July 2009 breach in Twitter allowed a hacker to obtain

confidential documents. Cloud service providers typically

work with many third-party vendors, and there is no guarantee

as to how these vendors safeguard data. For example, a

phishing attack in 2007 duped a staff member for

salesforce.com into revealing a password; 13 the attacker then

used the password to access confidential data. Obviously,

some type of data cannot be stored in the cloud considering the

privacy and security issues. One possible solution is to encrypt

the data before offloading. But encryption alone cannot solve

the problem. A technique called Steganography is also used in

the proposed system to hide the data from the cloud vendor.

6.1 Encryption of Data

The data can be encrypted in the mobile system itself

before offloading. Here Random Key Generation Algorithm is

used. The mobile user can encrypt the data before offloading

to the cloud using the random key generated. The cloud vendor

before performing computations in it requests for the key to

the mobile users, then the cloud vendor after receiving the key

decrypts the data and performs computations in it.

6.2 Steganography

Steganography is to hide data before sending them to

servers so that unauthorized access of data can be prevented.

Steganography hides data so that the server is unaware of the

existence of information. Image processing is computation-

intensive and a good candidate for offloading. Fig.2 shows two

examples of Steganography. A coverimage is used to disguise

the data image so that the data image is hard to recognize. The

combined image is called astego image. A key challenge is to

allow offloaded computation to be performed on

steganographic data because thecomputation must remain

meaningful on stego images. Suppose we want to compare the

images in Figure 6.2.1 (b) and (c), Figure 6.2.1 (d) and (e) are

sent to the server instead. Figure 6.2.1 (f) shows the pixel-wise

difference between (d) and (e). Since the cover image is never

sent to server, the server cannot detect hidden data

Fig.6.2.1: Two examples of Steganography. (a) Is the cover

image. (b), (c) are hidden in (a) and their corresponding

stego images are (d) and (e). (f) is the difference of (d) and

(e)

Fig.6.2.2: Offloading image computation protected by

Steganography

As shown in Fig.6.2.2, before sending the data to the

server, the images are processed using Steganography. The

stego images are sent to the server for further processing. The

adopted protection techniques must ensure the computation

performed at the server remains meaningful. Mean-while, the

hidden data must be difficult for the server to detect.

Privacy in the distributed platform and security of

data transmission between mobile device and cloud server

node are important concerns in cloud based application

processing. Privacy measures are required to ensure the

execution of mobile application in isolated and trustworthy

environment, whereas security procedures are required to

protect against network threats. Security and privacy are very

important aspects for the establishing and maintaining the trust

of mobile users in cloud based application processing. Security

in MCC is important from three different perspectives: security

for mobile devices, security for data transmission over the

wireless medium and security in the cloud datacenter nodes.

SMDs are subjected to a number of security threats such as

viruses and worms. SMDs are the attractive targets for

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9984

attacker. According to a report the number of new

susceptibilities in mobile operating systems increased 42

percent from 2009 to 2010. The number and sophistication of

attacks on mobile phones is increasing speedily as compared to

the countermeasures.

Data transmission over the wireless networks is

highly vulnerable to network security threats. For example,

using radio frequencies, the risk of interruption is higher than

with wired networks therefore attacker can easily compromise

confidentiality [58]. Similarly, in cloud datacenters the security

threats are associated with the transmission between physical

elements on the network, and traffic between the virtual

elements in the network, such as between virtual machines

within a single physical server. Therefore, in order to leverage

the application processing services of computational clouds, a

highly secure environment is expected at all the three entities

of MCC model.

In current DAPFs, transmission of the running states

of mobile application which is encapsulated in VM or binary

transfer of the application code at runtime is continuously

subjected to security threats at mobile device, wireless medium

and cloud datacenters. Therefore, secure transmission of the

entire components of the application is a challenging issue for

MCC. It is imperative to implement reliable security measures

for the data transmission, and synchronization between SMD

and cloud datacenters in distributed processing platform.

Similarly, access control, fidelity and privacy of distributed

application components in the remote cloud datacenters is an

important consideration for the distributed application

processing in MCC.

Cloud datacenters provide augmentation services

which are unapproachable to mobile users. Therefore, it is

highly demanding to ensure the privacy of data and computing

operations in remote server nodes. A trustworthy distributed

application model is highly expected to cope with such

important issues and ensure the trustworthiness of remote

computing environment. A reliable distributed environment is

expected to provide authentic access to authorized mobile user

for legitimate operations on cloud server nodes.

7. CONCLUSION

This seminar takes a step towards seamlessly

interfacing be-tween the mobile and the cloud in the context of

mobile cloud computing. Our system overcomes design and

implementation challenges to achieve basic augmented

execution of mobile applications on the cloud, represent

execution of mobile applications on the cloud, representing to

address these challenges.

CloneCloud approach is the first to replicate the

whole smartphone image and to run the application code with

few or no modifications in powerful VM replicas to transform

a single-machine computation to a distributed computation

(semi)-automatically.

We believe that the CloneCloud architecture enables

new, exciting modes of augmented execution for applications

in diverse environments, and offers intriguing opportunities for

research and for practical deployments that marry the

convenience of hand-held devices with the power of cloud

computing.

REFERENCES

[1] Muhammad Shiraz, Abdullah Gani, Rashid

HafeezKhokhar and RajkumarBuyya,” A Review on

Distributed Application Processing Frameworks in Smart

Mobile devices for Mobile Cloud Computing,” in IEEE

communications surveys & tutorials, vol. 15, no. 3, third

quarter 2013

[2] Byung-Gon Chun, PetrosManiatis,”Augmented

Smartphone Applications Through Clone Cloud

Execution,”

[3] Byung-Gon Chun†, SunghwanIhm⋆, PetrosManiatis†,

MayurNaik†,”CloneCloud: Boosting Mobile Device

Applications Through Cloud Clone Execution.”in

arXiv:1009.3088v2 [cs.DC] 26 Sep 2010

[4] R. Balan, D. Gergle, M. Satyanarayanan, and J.

Herbsleb, “Simplifying cyber foraging for mobile

devices,” in Proc. 5th international conferenceon Mobile

systems, applications and services. ACM, 2007, pp. 272–

285.

[5] Flinn, S. Park, and M. Satyanarayanan, “Balancing

performance, energy, and quality in pervasive

computing,” in Distributed ComputingSystems,

Proceedings. 22nd International Conference on. IEEE,

2002, 217–226.

[6] Y. Su and J. Flinn, “Slingshot: Deploying stateful

services in wireless hotspots,” in Proc. 3rd international

conference on Mobile systems,applications, and services.

ACM, 2005, pp. 79–92.

[7] J. Porras, O. Riva, and M. Kristensen, “Dynamic

resource management and cyber foraging,” Middleware

for Network Eccentric and MobileApplications, vol. 1, p.

349, 2009.

[8] B. Chun and P. Maniatis, “Augmented smartphone

applications through clone cloud execution,” in Proc. 8th

Workshop on Hot Topics inOperating Systems (HotOS),

Monte Verita, Switzerland, 2009.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,

“The case for vm-based cloudlets in mobile computing,”

IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23,

2009.

[10] M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and

taxonomy of cyber foraging of mobile devices,” IEEE

Commun. Surveys Tuts., 2011.

[11] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs,

“Towards an elastic application model for augmenting

the computing capabilities of mobile devices with cloud

computing,” Mobile Networks and Applica-tions, vol. 16,

no. 3, pp. 270–284, 2011.

[12] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I.

Brandic, “Cloud computing and emerging it platforms:

Vision, hype, and reality for delivering computing as the

5th utility,” Future Generation computersystems, vol. 25,

no. 6, pp. 599–616, 2009.

[13] K. Kumar and Y. Lu, “Cloud computing for mobile

users: Can offloading computation save energy?”

Computer, vol. 43, no. 4, pp. 51–56, 2010.

[14] “White paper, mobile cloud computing solution brief,

aepona,” Novem-ber 2010.

[15] H. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of

mobile cloud computing: architecture, applications, and

approaches,” WirelessCommunications and Mobile

Computing, 2011.

[16] S. Abolfazli, Z. Sanaei, and A. Gani, “Mobile cloud

computing: A review on smartphone augmentation

approaches,” in Proc. 1st Inter-national Conference on

Computing, Information Systems and Commu-nications,

2012.

[17] W. Zheng, P. Xu, X. Huang, and N. Wu, “Design a cloud

storage platform for pervasive computing environments,”

Cluster Computing, vol. 13, pp. 141–151, 2010.

Prajakta R. Mali, IJECS Volume 4 Issue 1 January, 2015 Page No.9977-9985 Page 9985

[18] M. Satyanarayanan, “Pervasive computing: Vision and

challenges,” IEEE Pers. Commun., vol. 8, no. 4, pp. 10–

17, 2001.

[19] S. Goyal and J. Carter, “A lightweight secure cyber

foraging infrastruc-ture for resource-constrained

devices,” in Mobile Computing SystemsandApplications,

2004. WMCSA 2004. Sixth IEEE Workshop on.

IEEE,2004, pp. 186–195.

[20] C. Li and L. Li, “Energy constrained resource allocation

optimization for mobile grids,” Journal of Parallel and

Distributed Computing, vol. 70, no. 3, pp. 245–258,

2010.

[21] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D.

Chen, T. Giuli, and X. Gu, “Towards a distributed

platform for resource-constrained devices,” in

Distributed Computing Systems, 2002. Proceedings.

22ndInternational Conference on. IEEE, 2002, pp. 43–

51.

[22] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen,

and V. Tuulos, “Misco: a mapreduce framework for

mobile systems,” in Proc. 3rdInternational Conference

on PErvasive Technologies Related to Assistive

Environments. ACM, 2010, p. 32.

[23] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,

“Clonecloud: elastic execution between mobile device

and cloud,” in Proc. sixth conferenceon Computer

systems, 2011, pp. 301–314.

[24] Q. Liu, X. Jian, J. Hu, H. Zhao, and S. Zhang, “An

optimized solution for mobile environment using mobile

cloud computing,” in WirelessCommunications,

Networking and Mobile Computing, 2009. WiCom’09.

5th International Conference on. IEEE, 2009, pp. 1–5.

[25] R. Iyer, S. Srinivasan, O. Tickoo, Z. Fang, R. Illikkal,

S. Zhang, Chadha, P. Stillwell, and S. Lee, “Cogniserve:

Heterogeneous server architecture for large-scale

recognition,” IEEE Micro, vol. 31, no. 3, pp. 20–31,

2011.

[26] Cuervo, A. Balasubramanian, D. Cho, A. Wolman,

S. Saroiu, Chandra, and P. Bahl, “Maui: making

smartphones last longer with code offload,” in Proc. 8th

international conference on Mobile systems,applications,

and services. ACM, 2010, pp. 49–62.

[27] S. Hung, T. Kuo, C. Shih, J. Shieh, C. Lee, C. Chang, and

J. Wei, “A cloud-based virtualized execution

environment for mobile applications,” ZTE

Communications, vol. 9, no. 1, pp. 15–21, 2011.

[28] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Communications of the

ACM, vol. 51, no. 1, pp. 107– 113, 2008.

[29] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso,

“Calling the cloud: Enabling mobile phones as interfaces

to cloud applications,” Middleware 2009, pp. 83–102,

2009.

[30] O. Alliance, “Osgi service platform, core specification,

release 4, version 4.1,” OSGi Specification, 2007.

	PointTmp
	page3
	page18
	page19

