

www.ijecs.in

International Journal of Engineering and Computer Science

Volume02Issue 01, Jan2013, PageNo.183,-187 ,ISSN:2319-7242

183

Enhancing Distributed Software Development with Collaborative Technology
Bharat C. Patel1

patelbharat99@yahoo.co.in
1Smt. Tanuben & Dr. Manubhai Trivedi college of Information science, Surat, Gujarat, India.

Jagin M. Patel2
2 M. K. Institute of Computer studies, Bharuch, Gujarat, India.

, jagin_2k@yahoo.com

Abstract:

Distributed Software Development Has Become Increasingly Common In Recent Years Due To Its Poten-

tial For Cost Savings And Access To A Larger Talent Pool. However, It Poses Significant Challenges Re-

lated To Coordination, Communication, And Collaboration. Collaborative Technology Can Enhance Dis-

tributed Software Development By Enabling Effective Communication And Coordination Among Team

Members. This Paper Explores The Concept Of Enhancing Distributed Software Development With Col-

laborative Technology, Including An Overview Of The Various Collaboration Tools, Such As Version Con-

trol Systems, Issue Tracking Systems, And Project Management Tools. The Paper Serves As A Useful Ref-

erence For Researchers, Practitioners, And Stakeholders Involved In Distributed Software Development.

Key words: Collaboration, Distributed Software Development, collaborative development tools

.

1- INTRODUCTION:

Software engineering is by its very nature a team-

based, collaborative activity [1]. Software engi-

neers must work together, communicate, and coor-

dinate at all stages of a project. However, the great

majority of currently available software engineer-

ing tools, from complex CASE tools to programme

editors, are solely intended to support single-user

activity [1]. Such tools make it harder to collabo-

rate and share knowledge, which limits the poten-

tial advantages of teams of developers working

closely together [2].Our limitations as humans

make it difficult for us to develop practically any

kind of software. We are slow and prone to mis-

takes while working at high levels of abstraction,

such as when defining requirements, designing

software, and writing code, or developing test cas-

es. As a result, we need to collaborate in order to

finish big tasks on time and rely on others to see

our errors. As soon as we start working together,

other issues may arise. [3] discuss the objectives of

software engineering collaboration which is helpful

in the full development lifecycle. Distributed soft-

ware development has become increasingly popu-

lar over the years as companies look to leverage

the skills and expertise of developers located in

different parts of the world. Although this strategy

has several advantages, such as cost savings and

access to a larger talent pool, it also has several

problems. One of the biggest challenges is ensuring

effective communication and collaboration among

team members who are geographically dispersed.

Collaborative technology has emerged as a key so-

lution to this challenge. By leveraging tools and

platforms designed specifically for distributed

teams, companies can enhance their ability to

communicate, coordinate, and collaborate effec-

tively. These tools can range from simple chat apps

to more sophisticated project management plat-

forms that facilitate real-time collaboration on

code, documents, and other project assets. [4] pro-

posed GWSE (Global Working in Software Engi-

neering) system to support geographically distrib-

uted teams which are flexible, resilient and scalable

for use in demanding geographically distributed

project environments. Whitehead [3] categorized

collaboration tools into four categories namely

model-based, Process centered collaboration, Col-

laboration infrastructure, and Awareness tools. To

encourage teamwork on their projects, software

developers have created a wide range of model-

oriented technologies. These technologies cover

every stage of the lifecycle, and they include col-

http://www.ijecs.in/
mailto:patelbharat99@yahoo.co.in
mailto:jagin_2k@yahoo.com

www.ijecs.in

International Journal of Engineering and Computer Science

Volume02Issue 01, Jan2013, PageNo.183,-187,ISSN:2319-7242

184

laborative requirements tools [5], software configu-

ration management systems [6] etc. The goal of the

WebDAV [7, 8, 9] project was to provide the Web

with open interfaces for generating content. This

would make it possible to integrate data among

various software engineering tools. Additionally,

WebDAV will lower the price of interorganiza-

tional and workgroup collaboration [9].In this con-

text, the purpose of this paper is to explore how

collaborative technology can enhance distributed

software development. Specifically, we will dis-

cuss some of the key benefits of using these tools,

as well as some of the challenges that teams may

face when implementing them. We will also ex-

plore some of the best practices and strategies for

successfully integrating collaborative technology

into the software development process.

1. Collaborative Development Tools:

Here we will look into various Collaborative De-

velopment Tools in detail.

i. Web 2.0 Applications

Web 2.0 applications are now widely used. They

serve as a useful tool for increasing team members’

exchanges of information. For instance, wiki plat-

forms have become a useful, affordable solution

for building and preserving group documentation.

Web 2.0 expands the capabilities of conventional

collaborative software by allowing for direct user

input, in-depth user interactions, and community

development. Several web 2.0 applications can en-

hance distributed software development with col-

laborative technology. One example is Source-

Forge[9] which was launched in 1999 and quickly

became a popular platform for hosting and distrib-

uting open-source software. Source Forge offered

version control and collaboration tools including

code repositories, issue tracking, and project man-

agement. Some other essential Web 2.0 applica-

tions include Blogging platforms e.g. Word Press,

micro blogging platforms e.g. Twitter[10], social

networking sites e.g. LinkedIn[11], Online market-

places e.g. Amazon, etc.

ii. Project management tools

Project management collaboration tools are soft-

ware applications that enable teams to plan, organ-

ize, track, and collaborate on tasks and projects.

These tools provide managers with an overview of

the status of a project at various detail levels, in-

cluding the location and contact details of team

members. Web-based interfaces are provided by

collaborative project management software like

ActiveCollab [12] and WorldView[13]. Work-

SpaceActivityViewer uses data taken from devel-

opers' workspaces to present a summary of ongo-

ing project activities [14].

iii. Version-Control Systems:

Version control system collaborative tools are

software applications that enable teams to manage

changes to source code and other types of files.

These tools are commonly used by software devel-

opment teams to collaborate on code and keep

track of changes made to it.

To effectively manage the configuration of distrib-

uted software engineering, it is essential to use a

version-control system. This system allows team

members to share artefacts in a regulated way. Dis-

tributed file sharing is made possible using the

well-known open-source version-control system.

However, in recent years, Peer-to-peer (P2P) ver-

sion-control systems have become increasingly

popular. A peer-to-peer version control system is a

type of version control system that operates in a

decentralized manner, allowing for collaboration

between team members without the need for a cen-

tral server. In a P2P version control system, every

developer has a complete copy of the project's re-

pository on their local machine, rather than just a

limited view of the data.This approach to version

control provides several benefits, including in-

creased resilience to network failures and improved

collaboration in distributed teams. It allows devel-

opers to work on the codebase independently,

without being dependent on a central server. P2P

version control systems also enable developers to

easily share changes with their peers and merge

those changes seamlessly.

Examples of P2P version control systems include

Darcs[15], Git[16], and Mercurial[17]. These tools

have gained popularity in recent years due to their

flexibility, scalability, and support for distributed

http://www.ijecs.in/

www.ijecs.in

International Journal of Engineering and Computer Science

Volume02Issue 01, Jan2013, PageNo.183,-187,ISSN:2319-7242

185

teams.

iv. Tracker collaborative development tools

Tracker collaborative development tools are soft-

ware applications that enable teams to track and

manage issues, bugs, tasks, and other types of work

items related to software development. These tools

are commonly used by software development

teams to collaborate on projects and keep track of

progress.Distributed trackers are software applica-

tions that work in a decentralized manner. In a dis-

tributed tracker system, every team member has a

complete copy of the project's work items database

on their local machine, allowing for independent

work and offline collaboration.Distributed trackers

provide several benefits over traditional centralized

tracker systems. They offer increased resilience to

network failures, improved collaboration in dis-

tributed teams, and better security by eliminating

the need for a central server. Distributed trackers

also enable developers to work on their local cop-

ies of the database and synchronize changes with

their peers in a peer-to-peer manner.Examples of

distributed tracker systems include Jira[18] and

Bugzilla[19]: Jira is a tool that provides issue

tracking and project management. Bugzilla is tool

that provides bug tracking and team collaboration

features.

v. knowledge centres

These content management systems enable the

online sharing of explicit knowledge among team

members. A knowledge centre may include fre-

quently asked questions (FAQs), internal papers,

technical references, standards, and best practices.

vi. Communication tool

 Effective communication is critical for coordinat-

ing efforts, sharing information, and resolving is-

sues. By providing a platform for real-time com-

munication, information sharing, and collaboration,

these tools can help to improve productivity, re-

duce errors, and ensure successful software devel-

opment outcomes.Some examples of communica-

tion tools are Instant Messaging, Email, news-

groups, web forums, social media etc. that can be

used as collaborative development tools:Email re-

mains a popular communication tool for software

development teams. It can be used to share project

updates, send reports, or coordinate efforts with

stakeholders who are not part of the development

team. Social media tools, such as Twitter or

LinkedIn, can be used to share project updates or to

connect with other professionals in the industry.

These tools can help to build relationships, facili-

tate information sharing, and promote collabora-

tion.

vii. Requirements engineering

Requirements engineering tools used by engineers

and stakeholders to support the process of eliciting,

analyzing, documenting, validating, and managing

software requirements. For example, DOORS and

Borland CaliberRM [20].

viii. Test Tools

A testing team and a development team often work

together during testing. Test collaborative tools

used by software testing teams to manage and co-

ordinate their testing activities, exchange infor-

mation, and collaborate on testing tasks.

TestLink[21] is test management tool that provides

support for test case management, test plan man-

agement, and test execution.Selenium is a tool

suite for automating web application. It provides a

set of tools and libraries that enable developers to

write automated tests for web applications. It sup-

ports multiple programming languages such as Ja-

va, C#, JavaScript, etc., making it a versatile tool

for automating web applications in different envi-

ronments.

ix. Customer Relationship Management

(CRM)

Customer Relationship Management (CRM) tools

help businesses manage their interactions with cus-

tomers, automate sales and marketing processes,

and improve customer satisfaction and retention.

CRM tools are used to manage customer data,

track customer interactions, and provide insights

that can be used to improve customer engagement

and loyalty.

2. Developments in Collaboration Tools

Nearly every day, new collaboration technologies

and related best practices are developed. Mainly

there are two key developments seen. First, all en-

http://www.ijecs.in/

www.ijecs.in

International Journal of Engineering and Computer Science

Volume02Issue 01, Jan2013, PageNo.183,-187,ISSN:2319-7242

186

gineering tools will have functionality for team-

work. These characteristics support the team's use

of individual tools, but because they differ amongst

tools, data integration is not possible. Improved

engineering tool federation is a second, related de-

velopment. Federation of engineering tools refers

to the integration of different software applications

or platforms used in engineering, to allow for

seamless data exchange, collaboration, and work-

flow automation. It includes computer-aided de-

sign (CAD), product lifecycle management (PLM),

and computer-aided manufacturing (CAM).There

is currently no tool or Collaborative Development

Environments (CDE) that handles all the tasks re-

quired for software engineering. Users must give

priority to the tools they need to fulfil their collab-

orative needs.In the field of software engineering

technology, nowadays, the idea of a Portable

Common Tool Environment (PCTE) is widely ac-

cepted. The objective is to provide an enhanced,

user interface integration while standardising a

Public Common Tool Interface for software tools

[22].

Conclusion:

Any business with scattered resources should prior-

itise providing effective tool support for collabora-

tion. The most effective, dependable, and safe

method for sharing software is with the use of the

proper tool assistance.Overall, the use of collabora-

tive technology has revolutionized the way soft-

ware development teams work together, enabling

them to work more efficiently and effectively. As

technology continues to evolve, collaborative tech-

nology will continue to play an increasingly im-

portant role in distributed software development.

References:

[1] Vessey I and Sravanapudi A P: "CASE

tools as collaborative support technolo-

gies", Comms ACM, Vol. 38, No 1, 1995,

pp 83-95,1995

[2] Sellars P: "IPSEs in support of teams, in

automating systems development", Ben-

yon and Skidmore, Plenum Press, New

York, 1987.

[3] Whitehead, Jim. "Collaboration in soft-

ware engineering: A roadmap," In Future

of Software Engineering (FOSE'07), pp.

214-225. IEEE, 2007.

[4] Gorton, I., Hawryszkiewycz, I. and Ra-

goonaden, K. Collaborative tools and pro-

cesses to support software engineering

shift work. BT Technology Journal 15,

189–198,1997

[5] B. Boehm and A. Egyed, "Software Re-

quirements Negotiation: Some Lessons

Learned," in the 20th International Confer-

ence on Software Engineering (ICSE'98),

Kyoto, Japan, pp. 503-507, 1998

[6] Bolcer, Gregory Alan, and Richard N.

Taylor. "Endeavors: A process system in-

tegration infrastructure." In Proceedings of

Software Process, pp. 76-89. IEEE, 1996.

[7] L. Dusseault, "WebDAV: Next-Generation

Collaborative Web Authoring", Prentice

Hall PTR, 2003.

[8] E. J. Whitehead, Jr. and Y. Y. Goland,

"WebDAV: A Network Protocol for Re-

mote Collaborative Authoring on the

Web," in 6th European Conference on

Computer Supported Cooperative Work

(ECSCW'99), Copenhagen, Denmark, pp.

291-310, 1999

[9] Whitehead, E. James, and Meredith Wig-

gins. "WebDAV: IEFT standard for col-

laborative authoring on the Web." IEEE

Internet Computing 2, no. 5, pp. 34-40,

1998

[10] http://sourceforge.net

[11] http://twitter.com/

[12] www.linkedin.com

[13] www.activecollab.com

[14] A. Sarma and A. van der Hoek, "Towards

Awareness in the Large," Proc. Int’l Conf.

Global Software Engineering (ICGSE 06),

IEEE CS Press, pp. 127–131, 2006

[15] R. Ripley, A. Sarma, and A. van der Hoek,

“A Visualization for Software Project

Awareness and Evolution,” Proc. Int’l

Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT),

pp. 137–144,2007

[16] www.darcs.net

[17] www.git-scm.com

[18] http://mercurial.selenic.com

http://www.ijecs.in/

www.ijecs.in

International Journal of Engineering and Computer Science

Volume02Issue 01, Jan2013, PageNo.183,-187,ISSN:2319-7242

187

[19] www.atlassian.com

[20] www.bugzilla.org

[21] Borland Software Corporation, "Cali-

berRM 2006 User Tutorial", 2006

[22] http://testlink.sourceforge.net

[23] Campbell, Ian. "Portable common tool en-

vironment." Computer standards & inter-

faces 8, no. 1: 67-74, 1988

http://www.ijecs.in/
http://www.bugzilla.org/

	Abstract:
	.
	1- INTRODUCTION:

