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Abstract: Modeling large-scale flood inundation requires weeks of calculations using complex fluid 

software. The state-of-the-art in operational hydraulic modeling does not currently allow flood real-time 

forecasting fields. Data driven models have small computational costs and fast computation times and may 

be useful to overcome this problem. In this paper, we propose a new modeling approach based on a coupled 

of Hydrodynamics finite element model and Multi-headed Deep convolutional neural network (MH-CNN) 

with rain precipitations as input to forecast rapidly the water depth reached in large floodplain with few 

hours-ahead. For this purpose, one first builds a database containing different simulations of the physical 

model according to several rain precipitation scenarios (historic and synthetic). The multi-headed 

convolutional neural network is then trained using the constructed database to predict water depths. The pre-

trained model is applied successfully to simulate the real July 2014 flood inundation in an 870 km
2
 area of 

La Nive watershed in the south west of France. Because rain precipitation forecast data is more accessible 

than discharge one, this approach offers great potential for real-time flood modelling for ungauged large-

scale territories, which represent a large part of floodplain in the world. 

Keywords: Rapid flood forecasting; Large-scale flood inundation, Deep learning, Convolutional neural 

network; Rainfall, hydrodynamics model.  

1. Introduction 

Floods occur on a more frequent base than ever 

before. Due to climate change weather patterns 

change and rain intensity increases. Climate change 

also influences rainfall events. This causes 

increasing rainfall to flood more often. The 

increasing amount of rain is problematic especially 

in urban areas, which drainage system can often not 

handle this large amount in a short time. 

Two-dimensional hydrodynamic models are widely 

used tools for simulating flows rivers and floodplain 

inundation phenomena. In these models, the flood 

propagation is generally described by the two-

dimensional shallow water equations (2D), which 

must be solved using an appropriate numerical 

technic. Different methods exist for solving the 

large-scale environmental flow simulations problem, 

one can cite for example the Saint-Venant 

hyperbolic partial differential equations solved by 

explicit finite elements method (FEM) or finite 

difference method on single-node multi-GPU 

architectures [1, 2]. Another technic to solve this 

problem is the lattice Boltzmann method (LBM). It 

is a relatively recent technique which is able to 

approximate the Navier-Stokes equations by a 

collision-propagation scheme [3]. Lattice Boltzmann 

method however differs from standard approaches 

as finite element method (FEM) by its mesoscopic 

approach. It is an interesting alternative which is 

able to simulate complex phenomena on complex 

geometries. Its high parallelization makes also this 

method attractive in order to perform simulations on 

parallel hardware. Moreover, the emergence of high-

performance computing (HPC) architectures using 

GPUs is also a great interest for many researchers 

[4]. Although physical models showed great 

capabilities for predicting a diverse range of 

flooding scenarios, they often require intensive 

computation, which prohibits short-term prediction. 

This makes the use of the hydraulic model for real-

time simulations nearly infeasible, specifically for 
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emergency responses. 

The advanced data-driven models such as Machine 

learning or Deep learning also have a tradition in 

flood modeling, which recently gained more 

popularity. Data-driven methods of prediction 

assimilate the measured climate indices and 

hydrometeorological parameters to provide better 

insight. A further reason for the popularity of such 

models is that they can numerically formulate the 

flood nonlinearity, solely based on historical data 

without requiring knowledge about the underlying 

physical processes. Another reason for using those 

methods is the easiest implementation with low 

computation cost, as well as fast training, validation, 

testing, and evaluation, with high performance 

compared to physical models, and relatively less 

complexity [5, 6, 7]. Nonetheless, those advanced 

data-driven algorithms have important drawback: If 

the data history is not sufficient or does not cover 

varieties of the task, their learning falls short, and 

hence, they cannot perform well when they are put 

into work. Therefore, using robust data enrichment 

is essential through for example numerical 

simulations with physical models. 

The purpose of present study is to investigate the 

efficiency of a coupled Hydrodynamic - MH-CNN 

model to solve and predict rapidly the maximum 

water depths reached for large flood event in La 

Nive watershed in France. The modeled domain 

covers an area of approximately 870 km
2
 and 

meshed by more than million finite elements nodes. 

The coupled hydrodynamics-Deep learning focused 

method suggested in this study can help specialist 

engineers make more accurate and effective 

predictions. This proposed study may be considered 

as a part of creative prediction approaches and 

stochastic views in hydrology. 

2. Hydrodynamic flow model 

The two-dimensional finite element hydrodynamical 

model developed in this study was based on the 

resolution of shallow-water equations, which were 

obtained by using hydrostatic and Boussinesq 

approximations and by integrating Navier-Stokes 

equations over total water depth. Notice, that for 

many practical surface-water flow applications, 

knowledge of the full three-dimensional flow 

behaviors is not needed, and it is enough to use the 

depth average flow quantities in two perpendicular 

horizontal directions. Thus, the depth-averaged 

momentum, and continuity equations lead to the 

following Saint-Venant set of equations: 

{
  
   

  
                              

  

  
                                                    

     (1) 

where uf = (uf , vf) the depth average cartesian velocity with uf  

and vf  are the components in the x and y coordinate directions, 

defined by: 
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H (x, y, t) is the water depth, zb(x, y, t) the bed 

elevation of the river and h(x, y, t) = zb(x, y, t) + H 

(x, y, t) is the water surface elevation. µ is the 

effective viscosity, which includes the dispersion 

and the turbulence contributions. F = (Fx, Fy) 

integrate volume forces (Coriolis), actions exerted 

on the bottom (friction) or on the free surface (wind) 

and forces as radiation constraints. r is a source term 

due to rainfall. Thus: 
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where k = (0, 0, 1) is the vertical unit vector; ω is 

the earth velocity in rd/sec,   the latitude in degrees, 

s is a coefficient equal to 0.0026, W = (wx, wy) are 

wind components in x and y directions, Sx =(sxx, sxy) 

are radiation constraints components in x and y 

directions early calculated by a water waves model. 

 a and   are densities of air and water respectively. 

β depends on the value of the following coefficient γ 

defined by: 
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To satisfy the Ladyzhenskaya-Babuška-Brezzi 

(LBB) condition and avoid numerical instability and 

spurious oscillations, we develop a P2-P1 element 

for finite element approximation: A triangle is 

composed of 4 sub-triangles; velocity field is linear 

on each sub-triangle and free surface field is linear 

on the base triangle (Figure 1). 

 

Over each sub-triangle: 

        ∑             
          ∑     

          

Over each base triangle:  

     ∑      
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Figure 1: P2-P1 element: left, reference triangle for sub-

triangle; right, 6 nodes base triangle composed of 4 sub-

triangles 

3. Multi-Headed CNN model 

During the last decade, Convolutional Neural 

Networks (CNNs) have become the de facto 

standard for various Machine Learning operations. 

CNNs are feed-forward Artificial Neural Networks 

(ANNs) with alternating convolutional and 

subsampling layers. Deep 2D-CNNs with many 

hidden layers and millions of parameters have the 

ability to learn complex objects and patterns 

providing that they can be trained on a massive size 

visual database with ground-truth labels. With a 

proper training, this unique ability makes them the 

primary tool for various engineering applications for 

2D signals such as images and video frames. Yet, 

this may not be a viable option in numerous 

applications over 1D signals especially when the 

training data is scarce or application specific. 

To address this issue, 1D-CNNs have recently been 

proposed and immediately achieved the state-of-the-

art performance levels in several applications such 

as personalized biomedical data classification and 

early diagnosis, structural health monitoring (SHM), 

anomaly detection and identification in power 

electronics and electrical motor fault detection [8, 9, 

10]. Another major advantage is that a real-time and 

low-cost hardware implementation is feasible due to 

the simple and compact configuration of 1D-CNNs 

that perform only 1D convolutions (scalar 

multiplications and additions). CNNs share the same 

characteristics and follow the same approach, no 

matter if it is 1D, 2D or 3D. The key difference is 

the dimensionality of the input data and how the 

feature detector (or filter) slides across the data. 

 
Figure 2: CNN model with a single output head 

Multi-head neural networks or multi-head deep 

learning models are also known as multi-output deep 

learning models. The Multi-headed 1D-CNN 

presented in figure 3, is a more elaborate 

architecture to model our problem. This architecture 

consists of applying the 1D-CNN to each of the 

input sequences separately, the outputs of each of 

the sub models will be combined before making the 

prediction. This model offers more flexibility and 

better performance compared to a single head 1D-

CNN presented in figure 2. For example, it allows to 

configure each sub-model differently for each input 

sequence such as the number of filters or the kernel 

size. 

 

Figure 3: CNN model having multiple output heads 

In this work we propose a multi-head Convolutional 

Neural Network (MH-CNN) architecture trained to 

predict rapidly with more accuracy the water depth 

in La Nive watershed. The proposed CNN model is 

developed in Python programming language using 

Keras module within the Tensorflow 2.1 framework. 

The sequential application programming interface 

Spyder 5.0.5 (The Scientific Python Development 

Environment) is used to build the model, layer-by 

layer. The core structure of the MH-CNN model 

developed is graphically illustrated in figure 4. 

 

Each of the sub model network has five hidden 

layers, including two convolutional layers and three 

dense layers. The dense layers are fully connected 

and act like a multi-layer perceptron (MLP) 

network. The output layer contains nodes equal to 

the number of finite elements nodes in the 

simulation domain (i.e. 1,072,000 for the current 

case study), and the input layer receives the different 

rainfall curve values from different scenarios 

(historical and synthetical curves). In addition to the 

MH-CNN, a simple CNN flood modelling method is 

also considered and constructed herein for 

comparison. 





N1 = 1   
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Figure 4: Multi-Headed CNN architecture for water depth 

time series forecasting 

The hyperparameters of the proposed model were 

found using a Bayesian optimization approach. The 

procedure consists in launching a succession of 

calculation by changing and test for each time the 

parameters values. The best set of parameters are 

those gives the optimal performance measured on 

the validation data. The approach is the same as that 

proposed in [5]. 

Table 1: Hyperparameters of the proposed model 

Model 
Filter 

(size) 
Neurons 

Kernel 

(size) 
Optim. 

Batch 

(size) 

CNN1 32-64 128-64-32 6   

CNN2 32-64  6   

Merge: 

CNN1 

+ 

CNN2 

 512  Adam 20 

The ReLU (Rectified Linear Unit) is used as the activation 

function to increase the feature expression ability of the model. 

One selects the « mse » as loss function to optimize the 

multiple fully connected heads. 

4. Study area 

La Nive watershed is located in the west of the 

Atlantic Pyrenees. It covers more than 100,000 ha. It 

is composed by 53 municipalities with 97,600 

inhabitants. The area is about 110,100 ha (i.e. more 

than 14% of the departmental area). The altitude 

varies from 5m to 1472 m and it contain 1,300 km 

of watercourses, including 365 km of watercourses 

over 10 km. 66,460 ha of the area are forests and 

semi-natural environments (67% of the territory). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Study domain 

Like most other Pyrenean rivers, La Nive is a very 

abundant river. Its flow was observed over a period 

of 42 years (1967-2008), in Cambo-les-Bains, a 

small city located about fifteen kilometers from its 

confluence with the Adour river. The surface area 

thus observed is 870 km
2
 or 85% of the entire 

watershed of the river. The interannual hydrological 

flow of the river at Cambo-les-Bains station is 30.2 

m
3
/s. 

 

Figure 6: Average flow in m
3
/s at Cambo-les-Bains station 

At low water, the minimum consecutive volume for 

3 days can drop to 4.8 m3/s, in the event of a dry 

five-year period, i.e. 4,800 liters per second, which 

is far from being severe, and rather normal 

compared to the average of the Pyrenean rivers in 

the basin. Floods can be very significant, especially 

as the size of the watershed is relatively large. The 

QIX 2 (maximum instantaneous flow of biennial 

flood) and quinquennial are respectively 390 and 

530 m³/s. The QIX 10 (decennial flood) is 620 m³/s, 

the QIX 20 (20-year event)is 710 m³/s, while the 

QIX 50 (50-year event) is 820 m³/s. This is a 

probability of occurrence, not an average of 

occurrence. La Nive basin depends strongly on the 

rain precipitation. 

https://www.linguee.fr/anglais-francais/traduction/watershed.html
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5. Methodology 

The methodology to solve the predicting model is 

presented as follow: 

 

Figure 7: General structure of the proposed model 

1. The rainfall stations on the ground provide 

punctual observations of the rains. One needs to 

know the rain precipitation on the basin: It is 

therefore necessary to estimate the rain at any point 

from a (small) number of point observations. 

Different interpolation methods are used. In our 

study, one uses the Thiessen's polygon method. The 

Thiessen polygon in figure 8 is a commonly used 

methodology for computing the mean areal 

precipitation for a catchment from rain gauge 

observations. The Thiessen method is based on the 

assumption that measured amounts at any station 

can be applied halfway to the next station in any 

direction, which means that for any point rainfall is 

equal to the observed rainfall at the closest gauge. 

The weights of the rain gauges are computed by 

their relative areas (Ai), which are estimated with the 

Thiessen polygon network. 
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Figure. 8: Thiessen polygon for the Mean rainfall estimation 

The historical curves are obtained by extracting 

from the curve of 2014 rainfall evolution (figure 9), 

25 precipitation curves with a duration of 3 days 

each. The extraction is done in a random manner 

and include the July event from 3 to 5 July. 

 

 

Figure 9: Historic rain precipitation for year 2014 and for July 

2014 event witch cause strong damage 

The synthetic curves are generated to create 

precipitation scenarios that have never happened but 

that allow better extrapolation by neural networks. 

For this purpose, one extract 25 other precipitation 

curves with 3 days duration each from the 2014 

historic rainfall and adjust various peaks using the 

following formula [5] to increase their magnitudes 

as appropriate: 

             
     

    
                            (5) 

in which    is the synthetic rain precipitation,       

is the user specified peak,     is the historic rainfall 

and     is the historic peak rainfall. This generates 

the synthetic rainfall as shown in figure 9. 
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Figure 9: Examples of synthetic rain precipitation with 3 days 

duration each 

2. The finite element hydrodynamics model based 

on equations 1, 2, 3 and 4 is then used to generate 

training and validation samples for the data-driven 

predictive models considered in this work. All the 

50 (25 historic and 25 synthetic) rain precipitation 

curves were introduced as input rainfall sources to 

generate the different scenarios stocked in the 

database. 

3. To evaluate the results of the prediction model, 

the database is divided into two sets: the training set 

and the test set. The test set is exclusively used to 

evaluate the model. For the evaluation of the 

network, the root mean squared error (RMSE), the 

Nash-Sutcliffe Efficiency coefficient (NSE) and the 

coefficient of determination R
2
 of the predicted and 

measured water levels are used. The RMSE is 

defined through equation (6): 

       √
∑                  
   

 
          (6) 

where n is the number of nodes in the finite element 

mesh, yobs and ypred are the ‘observed’ and 

‘predicted’ depth water values, respectively. RMSE 

represents the standard deviation of the differences 

between the values predicted by numerical model 

and those by MH-CNN model. RMSE = 0 returns a 

perfect fit between the predicted and the observed 

data.  

The NSE coefficient is defined through Equation 

(7): 

            
∑                  
   

∑                  
   

         (7) 

The mean of all water levels from the pre-calculated 

scenarios is written as ymean. NSE = 1 represents a 

perfect fit between the reference and predicted data. 

 

The coefficient of determination R
2
 is a measure of 

the goodness of fit of a statistical model. 

           
∑           ̅       
   

∑                  
   

         (8) 

Where  ̅     are the predicted values from a 

statistical model and       is the mean of observed 

values of the variables. 

4. As presented in figure 4, the Multi-Headed-CNN 

is presented in the pseudo code in Algorithm 1. 

Algorithm 1 : Construct and merge two sub model 

1: Split from database and extract training data  

x1_train,  y1_train 

x2_train,  y2_train 

2: Split from database and extract validation data 

x1_val,  y1_ val 

x2_ val,  y2_ val 

3: Construct the multi-headed model 

 3.1: First neural network 

visible1 = Input (shape = (steps, features)) 

cnn1 = Conv1D ( )(visible1) 

cnn1 = Conv1D ( )(cnn1) 

cnn1 = Flatten () (cnn1) 

cnn1 = Dense ( )(cnn1) 

cnn1 = Dense ( )(cnn1) 

cnn1 = Dense ( )(cnn1) 

 3.2: Second neural network 

visible2 = Input (shape = (steps, features)) 

cnn2 = Conv1D ( )(visible2) 

cnn2 = Conv1D ( )(cnn2) 

cnn2 = Flatten () (cnn2) 

cnn2 = Dense ( )(cnn2) 

cnn2 = Dense ( )(cnn2) 

cnn2 = Dense ( )(cnn2) 

4: Merge the two input sub-models 

merge = concatenate ([cnn1, cnn2]) 

dense = Dense ( )(merge) 

output = Dense (outputs) (dense) 

model=Model(inputs=[visible1,visible2],outputs= output) 

model.fit([x1_train,x2_train],[y1_train,y2_train], 

validation_data=([x1_val,x2_val],[y1_val,y2_val])) 

The hyperparameters of the proposed model were found using 

a Bayesian optimization approach. The pseudo code in 

Algorithm 2 show how it was done: 

Algorithm 2 : Minimize model for given data and implicit 

hyperparameters 

1: Construct the model with different parameters  

Model=Sequential () 

model.add(Conv1D(choice([10,16,32,64,128,256,512]), 

kernel_size=choice([1,2,3,4,5,6,7,8,9,10])) 
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model.add(Conv1D(choice([10,16,32,64,128,256,512]), 

kernel_size=choice([1,2,3,4,5,6,7,8,9,10])) 

model.add(Flatten()) 

model.add(Dense(choice([10,16,32,64,128,256,512])) 

model.add(Dense (choice([10,16,32,64,128,256,512])) 

model.add(Dense(choice [10,16,32,64,128,256,512])) 

model.add(Dense(outputs)) 

model.compile(loss='mse',optimizer='adam') 

result=model.fit(x_train,y_train,batch_size=choice([10, 

20,30,40,50,80])) 

2: Optimize and output the optimized hyperparameters  

optim.minimize(model) 

6. Application 

The developed MH-CNN model for maximum water 

level prediction was tested in La Nive watershed 

which represent a surface of 870 km
2
. From the 

results of our finite element hydrodynamic model, 

only the water level was considered, although more 

information would in principle be available. 

Hydrometric and topographic data are required to set 

up and run the hydrodynamic model for predicting 

large flood inundation. The initial digital elevation 

model (DEM) was a 5 m grid downloaded from 

SRTM DEM [12]. One could use this DEM to 

obtain a very precise simulation results, but that 

requires a mesh of more than 30 million finite 

element nodes, which is inconceivable. For our 

study, the spatial resolution taken was of 30 m. It is 

effectively wide to capture all the details of the 

flood, but this was considered sufficient to 

reproduce the dynamics of floods. Remember that 

the main goal is to obtain the peak of the water 

reached during a flood as well as their spatial 

positions. 
 

   

Figure 10: DEM of the study area and Manning’s roughness 

coefficient 

One has deliberately enclosed the domain by a 

rectangular shape and meshed it by finite elements 

in order to compare our simulations CPU times with 

the LBM method which is based on the finite 

difference method. This leads to a finite elements 

mesh of 1,072,000 nodes. The bottom friction of the 

river is set using Manning’s roughness coefficient. 

Figure 10 shows the spatial distribution of this 

coefficient which will be interpolated over the entire 

mesh. Figure 11 show a zoom of the mesh used in 

this study with a refinement of it at the minor bed.  

 

 

Figure 11: Zoom of the finite element mesh 

 

 

      

 

 

Figure 12: Simulation results show the flood at its maximum 

for validation rain precipitation sample and zoom at Ossess and 

Cambo-Les-Bains (t=24 hours against maximum flood) 
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One imposes “Inflow” boundary condition at the 

upstream and “free outflow” at the downstream of 

the domain. The time step used to simulate the 50 

rain precipitation scenarios of three days each is 

equal to Δt = 1.0 second. The CPU time spent for 

simulating one scenario (3 days or 72 hours) is equal 

to 15 hours on an Intel Core i7 at 2.9 Ghz and 16 Go 

RAM, which leads to a total simulation time for all 

the scenarios equal to 31 days. To calibrate and 

validate the hydrodynamic model, one uses the 

historic event of rainfall from 03 July 2014 to 06 

July 2014 (figure 9). The measured depth water was 

read at the two hydrological stations: Ossess and 

Cambo-Les-Bains (figure 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Comparing the time-series of water depths read at 

the two hydrological stations against our hydrodynamics model 

The performance of the hydrodynamic model is 

reasonably good with a DEM grid equal to 30 m. 

The mismatch is mainly due to the coarsening of the 

grid. Notice that the objective in this study is to 

capture the dynamics of the flow and the extend of 

flood and also to obtain the maximum water level 

reached for a given scenario.  

The proposed MH-CNN inundation modelling 

framework is explained in figure 14. 

 

Figure 14: The proposed MH-CNN inundation modelling 

framework with different size time window 

Several values of the size time window (antecedent 

or previous time-steps) are tested for 6, 12 and 24 

hours (figure 15). The objective is to determine the 

optimal value of the size time window to obtain the 

longest period predicted (number of hours-ahead) 

for the water heights with good precision. This leads 

to a total of 7, 13 and 25 input variables. The input 

and target variables are defined by converting the 

fifteen rain precipitation curves applied on the 

domain and the corresponding depths predicted by 

the hydrodynamics model into matrices. This lead 

an input feature matrix of 3198x7, 2952x13 and 

2460x25 respectively for 6, 12 and 24 hours size 

time window. The target matrix is created by 

converting the sequential water depth into arrays. 

This results in a matrix of size [3198×1,072,000], 

[2952×1,072,000] and [2460×1,072,000] 

respectively where 1,072,000 is the total number of 

finite element nodes in the domain. 

 

Figure 15: Example of the different size time window 

proposed (6h, 12h and 24h) 
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Fifty rain events were used for testing the model 

with the duration of 3 days each. The 

hydrodynamics model is then run fifty times using 

those historic and synthetic rain precipitations to 

produce different flood conditions in the study site 

described by DEM. These samples are divided into 

48 samples for the training set, one sample for 

validation and one for the test set. This division was 

made manually to obtain a good representation of 

strong and weak rain events in all sets. The sample 

for validation corresponds to the 03/07/2014 rain 

precipitation and the sample for test corresponds to 

an arbitrary synthetic rain precipitation (figure 16). 

For each calculation, one varies the size time 

window to 6, 12 and 24 hours. 

During the running process of the CNN and MH-

CNN, different regularization techniques, including 

„early stopping‟ (stops the training process when the 

model performance does not improve after a certain 

number of iterations), and „dropout‟ are applied to 

prevent the model from overfitting. 

 

Figure 16: Test and validation rain precipitation samples 

To validate the model, for example, for 24 hours 

size time window, the CNN model run at around 0.6 

s per epoch, and the total time spent on the model 

training was shown to be about 18 minutes. The 

MH-CNN model run at around 1.6 s per epoch, and 

the total time spent on the model training was shown 

to be about 26 minutes. Figure 18 shows the two 

models training results. Figure 18a shows loss and 

validation loss for CNN, and figure 18b shows loss 

and validation loss for MH-CNN. When the model 

was stably trained, the change in loss and validation 

loss were similar to an exponential function with 

base less than one. The training loss initially 

exhibited unstable changes; however, it gradually 

decreased as the epochs progressed, indicating that 

the model training and generalization were stably 

performed. 

  

(a)           (b) 

Figure 18: (a) Result of the CNN training; (b) Result of the 

MH-CNN training 

To test our approach, one compares the results with 

those obtained by the hydrodynamic model at two 

points (Ossess and Cambo-Les-Bains stations) 

where the flooding reached its peak. The test rain 

precipitation is the blue curve in (figure 16). The 

computation time for whole test for one rain event (3 

days) is in the range from 3 to 5 seconds. The 

computation time with the physically based 

numerical model was on average equal to 15 hours. 

The results are compared for size time window of 6, 

12 and 24 hours. The maximal depth reached at 

Ossess station is about 4.5 meters and 5.5 meters at 

Cambo-Les-Bains station.  

 

   

 

 

Figure 19: Osses station: Prediction with different size time 

window 
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Figure 20: Cambo-Les-Bains station: Prediction with different 

size time window 

To demonstrate the importance of the size time 

window on the quality of water height predictions, 

the following figures show the number of hours 

predicted by MH-CNN method for each time size at 

the Ossess station. Notice that the same results were 

obtained at Cambo-Les-Bains station. Increasing the 

size time window improves significantly the 

prediction in terms of number of hours-ahead 

predicted. Indeed, one see that for size time window 

equal to 24 hours, the prediction is exact with four-

hours-ahead while for time size equal to 12 hours, 

the prediction is exact with two-hours-ahead and it 

doesn‟t exceed one-hour-ahead for a time size equal 

to 6 hours. 

   

   

Figure 21: MH-CNN for hours prediction ahead at Ossess 

station 

The test data set described above was used to 

evaluate the model‟s performance. Figure 22 shows 

the dispersion of the model‟s predicted and actual 

values according to 3 days simulations results. R
2
, 

which indicates the relationship between the actual 

and predicted value, was relatively high at 0.99. The 

predicted values showed a similar trend to the actual 

values overall. Table 2 shows the R
2
, NSE, and 

RMSE to evaluate the model for 6, 12 and 24 hours 

size time window.  

 

 

 

 

 

 

 

 

 

Figure 22: Scatter plot of predicted and actual values of depth 

water at Ossess station 

The values were more 0.99, indicating a very high 

correlation between the predicted and actual values. 

For NSE, values of 0.60 - 0.80 are generally judged 

as moderate to good and values exceeding 0.80 as 

good. As NSE in this model was greater than 0.90, 

its performance could be judged as good for all size 

time window. RMSE were 0.57 m, 0.44 m and 0.12 

m for 6, 12 and 24 hours size time window 

respectively indicating higher model performance 

for the last one. 

Table 2: Score for MH-CNN at Ossess station 

 

Contents 

 

 

R
2 

 

 

NSE 

 

 

RMSE (m) 

 

6 hours 0.9978 0.83 0.57 

12 hours 0.9972 0.87 0.44 

24 hours 0.9987 0.92 0.12 
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7. Conclusion 

A Multi-headed CNN based ensemble approach for 

real-time water level prediction in large-scale areas 

was implemented and tested in large floodplain of 

870 km
2
 area. The model is based on feedforward 

neural network and trained with only precipitation 

rates as input and 2D distributed water depth levels 

as output. The model was tested with test events and 

compared with the physically based numerical 

model. The Multi-headed CNN model has the 

capability to make predictions for a domain 

consisting of more than millions of finite element 

nodes and it is shown that size time window 

improves hours-ahead predictions. 

The developed model achieves computation times 

and accuracies that can be considered as sufficient 

for real-time forecasts and can be seen as a step 

towards 2D real-time flood prediction for large-scale 

areas. 

If the minimum length of the input data is obtained, 

the use of MH-CNN compared to the results 

calculated by the traditional CFD models is 

evaluated as an important achievement as it can 

effectively predict the flow rates quickly and 

accurately. 
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