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Abstract: The objective of this paper is to present an effective new methodology to optimize the 

maintenance costs of bridges stock. Optimization takes place at the network level and not in a project level 

(bridge by bridge). The dynamics of passage between bridges condition state (from 1 to 5) is achieved by the 

Markov chains probabilistic method. The Markov transition matrix is determined either by ratios of total 

areas and areas degraded annually, or by the resolution of an optimization problem. In the latter case, the 

nonlinear optimization algorithm SQP (Sequanciel Quadratic Programming) is developed. A bridge 

maintenance matrix is introduced in the calculation of the repair cost. The originality of our approach is to 

parameterize this matrix by introducing the different optimization variables of the problem. Finally, the cost 

function to be optimized annually is calculated and optimized by a genetic algorithm. This cost function 

represents the cost of maintaining the entire asset. 

Keywords: Markov chain simulation; Genetic SQP optimization; Bridge deterioration modeling; Transition 

probability matrix, Maintenance matrix, Network level.  

1. Introduction 

An efficient maintained transportation system is a 

fundamental factor for the economic and social 

developments. For managing highway bridges, 

decision makers require efficient and practical 

decision making techniques. In a context of 

limited bridge management budget, it is important 

to determine the most effective breakdown of 

financial resources over the different structures of 

a bridge network. 

Infrastructure management systems have been 

developed to apply the life-cycle costing approach 

to optimize maintenance decisions at both network 

and project levels and achieving network/project 

performance requirements under financial 

constraints [12, 13]. A strong interest was 

expressed within the managers for an objective 

analysis at the network level [6, 7] of the 

compromises between performance and financing. 

In fact, an approach at the network level initially 

allows us to directly have the different financial 

investments ratios without worrying about repairs 

for each bridge (project level). Once the right 

financial ratios have been optimized, one can 

scheduling maintenance for each bridge over the 

simulation duration  

[4, 5]. 

The objective of this article is to provide 

infrastructure managers with a simple and 

effective decision-making tool capable of 

optimizing bridges maintenance at the macro 

level. The formulation is based on the 

probabilities of Markov chains, maintenance 

matrix, SQP and genetic optimization methods. 

The originality of our approach relates to the 

search for the optimum through the bridge 

maintenance matrix which is not predefined.  

The construction of this tool requires the 

development of the following elements: 

 Network condition rating system 

 Deterioration models for prediction of bridge 

aging based on the condition ratings  

 Cost model  

 Maintenance model 

 Appropriate maintenance cost function and its 

optimization 

2. Condition rating 

The IQOA scoring system in France (quality 

assessment of engineering structures) was 

developed to give each year a global assessment 

of the state of the bridge stock managed by the 

French Highway Agency or by private agencies. 

The bridge stock is assessed every 3 years (i.e., by 

applying IQOA inspections annually on 1/3 of the 

total number of assets). The IQOA scoring (table 

1) contain five level score 1 (the best state) to 5 
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(the worst state). The definition of the condition 

rating is given in table below: 

Table 1:  IQOA scoring 

Rating Condition 

1 
Bridge in good condition needing nevertheless 

common maintenance 

2 

Bridge with defects on equipment or protection 

elements or minor structural damages, needing 

specialized maintenance without urgency 

3 

Bridge with defects on equipment or protection 

elements or minor structural damages, needing 

specialized maintenance with urgency on order 

to prevent increase of defects in the structure 

4 
Damaged structure needing repair without 

urgency 

5 Damaged structure needing repair with urgency 

To carry out the correspondence between the 

various international notations systems, one can 

concentrate on the definition of each notation. For 

example, one could translate the US scoring to 

French one as follows: 

Table 2: Translation between French and US 

scoring 

French Scoring US Scoring 

1 
9 Excellent condition 

8 Very good condition 

2 7 Good condition 

3 
6 Satisfactory condition 

5 Fair condition 

4 
4 Poor condition 

3 Serious condition 

5 
2 Critical condition 

1 "Imminent" Failure condition 

3. Markov chain approach 

In a discrete-time Markov process as a stochastic 

process with states X(t), for any n time points t1, t2 

,…,tn, the conditional distribution of X(tn) for 

given values of {X(t1),…,X(tn-1)} depends only on 

X(tn-1), which is the most recent known value. This 

can be stated as: 

P [X(tn) ≤ xn | X(t1) = x1,,,..,X(tn) = xn] = P[X(tn) ≤ 

xn | X(t1) = x1]. 

Bridge condition decays with time (year) and can 

be considered as discrete condition states at 

certain time intervals [9, 10, 11]. Thus, Markov 

chains could be the proper tool to model the 

bridge deterioration process. As the bridge 

condition is usually evaluated through several 

rating levels, the transition probabilities should be 

expressed as a matrix [P], called the transition 

probability matrix. The five bridge condition 

ratings (from 1 to 5) can be defined as five 

Markovian states with each condition rating 

corresponding to one of the five states. The matrix 

[P] denotes the transition probability from state i 

to state j during time t, as shown below: 
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Notice that the under diagonal values represent the 

actual maintenance activities while the over 

diagonal values are linked to the degradation of 

the structure. Two kinds of deterioration process 

can be modeled using the database, natural decay 

or “do nothing” under routine maintenance or 

minor repair and conventional recoverable decay 

with medium or major repair as well as 

reconstruction. The two situations are modelled 

using the two transitions matrices: 

(i) Modeling with natural decay or “do nothing” 
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To obtain pure degradation, free of any 

maintenance strategy, each term in row i and 

column j under the main diagonal is set to 0, and 

its previous value is added to the main diagonal 

term. 

(ii) Modeling with actual maintenance activities 





















 















1,
55

1,
54

1,
53

1,
52

1,
51

1,
45

1,
44

1,
43

1,
42

1,
41

1,
34

1,
33

1,
32

1,
31

1,
23

1,
22

1,
21

1,
11

1,
11

1,
0

00

0001

tttttttttt

tttttttttt

tttttttt

tttttt

tttt

tt

ppppp

ppppp

pppp

ppp

pp

P   (1c) 



 

Sofiane HADJI, IJECS Volume 09 Issue 09 September, 2020 Page No. 25161-25174                      Page 25163 

To simplify the transition matrix, one could take 

the assumption that deterioration will not take 

place in the form of skipping a condition state. 

The approach proposed in this section is used to 

determine transition matrices from an inspection 

database during some years. Instead of examining 

repartition by bridges age for a particular year and 

deduce then the transition matrix, the overall 

breakdown in condition states with each year is 

considered. The vector state 

   ttttt qqqqqtq 54321  include breakdown 

per year of the five-condition rating. For example, 

from database, the vector state q = [0.2, 0.3, 0.28, 

0.15, 0.07] means that the bridge stock is 

composed by 20% of state 1, 30% of state 2, 28% 

of state 3, 15% of state 4 and 7% of state 5. The 

goal is then determining the evolution of this 

vector over time. The matrix’s values keep the 

same as the values of the general matrix (1). 

Therefore, if the initial bridge condition vector 

q(0) is known, the future condition after 𝑡 time 

intervals can be obtained by the following 

equations, where q(t) at time t, is the condition 

state vector: 
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q(0) is the initial bridge condition and q(t-1) the 

bridge condition at time (t-1). One could also 

calculate the condition rating number at time t, r(t) 

of the bridge stock as follow: 

 






















54321

xx)0()(

xx)1()(

R

RPqtr

RPtqtr

Tt

T

         (2b) 

Where R
T
 is the transpose of R 

4.  Markov transition matrix calculation 

The transition probability matrix is the key of the 

Markov chain model and is commonly obtained 

by statistical data of bridge conditions. Two 

methods can be used to calculate transition 

probability matrix, the regression method based on 

nonlinear optimization [2, 3] and the percentage 

prediction method [4]. 

 

4.1 Regression based optimization approach 

The regression-based optimization method 

estimates transition probabilities by solving the 

nonlinear optimization problem that minimizes the 

sum of absolute differences between the 

regression curve that best fits the condition data 

and the conditions predicted using the Markov-

chain model. The objective function and the 

constraints of this optimization problem can be 

formulated as follows: 
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where N is the number of inspection data used in 

the minimization problem and q(t) the vector 

states. The vector < x1, x2, x3, x4 > contain the four 

optimization variables which correspond to the 

transition matrix modeling with natural decay: 
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The SQP (Sequential Quadratic Programming) 

algorithm is used to solve this nonlinear problem. 

This algorithm is one of the most effective 

methods for nonlinearly constrained optimization 

problems. The method generates steps by solving 

quadratic subproblems. SQP is well-suited to 

solving problems with significant nonlinearities. 

The method can be viewed as a generalization of 

Newton's method for unconstrained optimization 

in that it finds a step away from the current point 

by minimizing a quadratic model of the problem. 

The SQP algorithm replaces the objective function 

with the quadratic approximation and the 

constraint functions by linear approximations. 

4.2 Percentage prediction approach 

There are two variations possible for this 

approach. The first one is based on state transition 

index and the second on surface transition. 

State transition : 

Pi,j = ni,j / ni              (5) 

Where: 
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ni,j = number of transitions from state i to state j 

within a given time period, 

ni = total number of bridges in state i before the 

transition. 

 

 

Surface transition : 

Pi,j = Si,j / Si             (6) 

where: 

Si,j = surface of bridges with transitions from state 

i to state j within a given time period, 

Si = total surface of bridges in state i before the 

transition. 

5.  Cost matrix 

Maintenance costs require the introduction of 

repair costs. These costs are defined via a matrix 

[C] which represents the repair amounts to move 

from one state to another.  
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The cost reference is the one moving a bridge 

from state 2 to state 1. 

6. Maintenance matrix 

To model the effect of bridge repairs, one must 

introduce the bridge maintenance matrix [M]. This 

matrix represents the impact of each maintenance 

alternative on the condition of the bridges and 

represent the repair policy. A typical maintenance 

matrix [M] is presented as follow: 
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The maintenance matrix is a special type of matrix 

with several desirable properties that make it easy 

to process. This matrix adheres to the following 

rules: 

1.  All maintenance matrices are square, with the 

number of rows and the number of columns both 

equal to the number of possible condition states. 

 

2. Only the main diagonal and the lower triangle of 

the matrix can have non-zero values. This is 

another way of saying that there can be only 

movement from any condition state to a better 

state in a maintenance model. 

 

3. No elements of the matrix may be negative. 

 

4. All rows of the matrix must separately sum to 

100%. In other words, the maintenance matrix 

must account for all possible transitions. 

 

5. Because of the combination of these rules, the 

upper left corner element must be 100%. We can’t 

do better than 1 scoring. 

Each row of the matrix [M] contains a 

maintenance strategy.  

For example, for each year, the repair policy 

replacing 20% of  

The bridges in condition 3 and 10% of the bridges 

in condition  

4 moving to condition 2 can be modeled with the 

following  

Matrix: 
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The combined effect of natural deterioration ([P] 

matrix in  

equation 1b) and repair policy can be expressed 

as: 

  MPtqtq xx)(1           (9a) 

And the expected value of the maintenance cost 

corresponding  

cost can be expressed as: 

  CMPtqtCost xx x)(1        (9b) 

This approach will be used to build the new model 

for optimizing maintenance budgets. 

7. Optimization maintenance strategies 

From a review of the literature, most of 

maintenance optimization models, that combines 

the use of Markov-chain models and optimization 

algorithms use a set of predefined maintenance 

scenarios to solve the problem at the network 
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level. The predefined scenarios can give priority 

either to preventive or corrective actions, or both, 

with a view to controlling the budget and to 

ensuring the preservation of the asset. It is 

computationally practical for a network with a 

large number of bridges, which is the case of most 

infrastructure networks. 

Unlike the other existing methods cited in the 

above paragraph, our new approach consists in 

looking for, every year, all the possible 

maintenance scenarios allowing optimizing the 

repair cost of the bridges. This approach at the 

network level is interesting because it makes it 

possible to present financial managers with 

optimized maintenance cost ratios over the 

duration of the simulation without worrying about 

the maintenance of each bridge or generating a 

specific work plan. Another advantage for this 

method is the infinitely smaller computation time 

compared to its equivalent of a project level 

approach. In fact, the number of optimization 

variables does not depend on the size of the asset 

(i.e. the number of bridges) but only on the 

number of groups of defined bridges.  

The matrix [P] determined in the previous section 

makes possible to determine precisely the way the 

bridges conditions rating is going to evolve. The 

matrix [M] above allows to introduce maintenance 

policy for the bridge asset. The aim is now to 

optimize the maintenance strategies from an 

economical  

point of view with keeping a good serviceability 

for road users.  

The parameters of the proposed formulation are 

defined as follows: 

G: number of bridges groups, for example: 

concrete, steel, prestressed concrete, masonry, … 

Qg: total quantity of bridges in group g 

For each group, a cost matrix [Cg] is defined. For 

example, the term C51,g represent the unit costs to 

move from a bridge in state 5 to a bridge in state 1 

on the facilities in group g. (these unit costs have 

to be adjusted for inflation when long planning 

horizons are used). 
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For each group, a transitions matrix [Pg] is defined 

with a natural decay modeling. 
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For each group, a maintenance matrix [Mg] is 

defined. The maintenance matrix contains the 

unknowns of the problem to solve and represent 

the repair policy for each group and each year of 

the simulation. There are ten optimization 

variables per bridge group. 
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First problem to solve: Cost minimization 

approach 

The first optimization problem consists to 

minimize every year the sum of the maintenance 

cost of all the bridges groups while keeping the 

condition of every group at any time above a 

predefined threshold value. The constraints are on 

the vector state q(t) whose certain components 

must be more qinf and others less than qsup. The 

optimization problem can be formulated as 

follows: 
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The target values qinf et qsup contains the 

percentages of facilities whose condition is equal 

to or higher than a given condition state and are 

used to control quality of the asset. In general, the 

standard values are listed in the table below (table 

3) but are user defined by facility managers: 

Table 3: Example of target values for the states 

rating 

Index qinf qsup 

1 15 % x 

2 50 % x 

3 x 30 % 
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4 x 10 % 

5 x 1 % 

A heuristic method based on the well-known 

genetic algorithm was used to solve the model. 

The principle of the method is as follows: A 

population of chains (called chromosomes) which 

encode candidate solutions to an optimization 

problem evolves towards better solutions. Finally, 

the algorithm ends once either a maximum 

number of generations has been produced, or a 

satisfactory fitness level has been reached for the 

population. 

Second problem to solve: Quality maximization 

approach 

Another approach is to fix a budget Bt for each 

year and try to maximize the quality of the asset 

by combining different scenarios of maintenance 

actions while respecting the constraints. In this 

case, the objective function tends to maximize the 

average network condition given the annual 

budget constraints. 
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This approach is more practical for the bridge 

manager who often knows exactly how much he 

can spends each year for the maintenance and 

whose interest is to know how to allocate the 

funds in a best way. A genetic algorithm was also 

used to solve this problem. 

8. Application 

The data that support the findings of this study are 

openly available at: 

https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm. 

The datasets represent bridge data submitted 

annually to FHWA (Federal Highway 

Administration) by the States, Federal agencies, 

and Tribal governments in accordance with the 

National Bridge Inspection Standards and the 

Recording and Coding Guide for the Structure 

Inventory and Appraisal of the Nations Bridges. 

The data is published on this website at the end of 

each calendar year.  

Data from the State of Indiana [8] was chosen for 

the large size of its bridges network (15,000 

bridges shared in 6 groups). It should be noted that 

the study presented here does not reflect the actual 

maintenance policy in terms of costs for the 

Indiana state. This simulation was only carried out 

to demonstrate the relevance of the methodology 

and the reduced simulation time for a large 

bridges park. The National Bridge Inventory 

(NBI) dataset for the Indiana state was analyzed to 

demonstrate the proposed model. In the NBI 

dataset, the records for each bridge include a 

wealth of information, each identified by an item 

number. The data history for each bridge goes 

from year 1992 until year 2018. The 

characteristics of this network are given in the 

following tables 4 and 5: 

Table 4: Indiana bridges group 

Material & 

structure type 

Number of 

bridges 

%  

of 

bridges 

Concrete 2155 14.8 

Concrete continuous 2339 16.1 

Steel 2261 15.5 

Steel continuous 1858 12.8 

Prestressed concrete 4506 31.0 

Prestressed concrete 

continuous 
1412 9.8 

Total 14531 100 

Actions are taken for extracting information from 

the NBI records for Indiana and filtering the 

bridges into six subgroups as shown in table 4. 

Only common structural materials are considered, 

excluding wood, masonry, or aluminum structures 

from the study. Condition Ratings is used to 

evaluate the bridge condition numerically, ranging 

from 0 to 9. A translation to a scoring from 1 to 5 

is operate following rules of table 2.  

Table 5: Indiana characteristics for six group 

bridges network 

Total 

length 

Average 

length 

Total bridges 

deck surface 

Average 

bridges deck 

surface 

493 

km 
34 m 6 011 005 m

2
 414 m

2
 

Fig. 1 shows the characteristics of the asset in 

term of age in 2018. 75% of the bridge network 

has less than 75-year-old. 

https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm
https://www.fhwa.dot.gov/bridge/nbis.cfm
https://www.fhwa.dot.gov/bridge/mtguide.pdf
https://www.fhwa.dot.gov/bridge/mtguide.pdf
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Fig. 1: Age composition of all bridges group in 

2018 for Indiana 

Fig. 2 show the historical rating evolution from 

1992 to 2018. One specify that the indicators 

scoring vary from 1 to 5. Two kind of evolution 

rating is considered: The first type is based on the 

evolution of the indicators by their number as a 

function of time (from 1992 to 2018). For each 

year, the number of bridges is determined in 

relation to its indicator. The second type considers 

the evolution of the indicators scoring by 

associating the corresponding area with each 

bridge deck. 

 

Fig. 2:  Historical rating evolution by number 

and by surface for Indiana 

This means that bridges with index 2 for example, 

have a larger area than the average and are 

therefore more represented by their areas than by 

their numbers. In the following, one will therefore 

work on the rating of bridges in terms of area. The 

explanation can be given in the following 

example: The vector state q = [0.2, 0.3, 0.28, 0.15, 

0.07] means that the bridge deck surface is 

composed by 20% of state 1, 30% of state 2, 28% 

of state 3, 15% of state 4 and 7% of state 5. 

Markov probability matrices 

The calculation of the transition probability 

matrices uses the historical data from the year 

1992 to the year 2018. Modeling with natural 

decay is adopted by following the equation 1c. 

Specific data processing has been carried out to 

calculate those transition matrices: The 

deterioration models were developed for bridge 

decks with no improvement works have been 

undertaken in between. Therefore, inspection 

records for bridge deck element, after repair and 

reconstruction actions, have been excluded from 

analysis data base. Also, bridge deck element 

whose condition rating had been improved over 

the years were removed from data base. 

In the circumstance of natural decay, only four 

transition probabilities are needed for each bridge 

group which gives 24 transition probabilities for 

all the groups. Each matrix was calculated by 

averaging the matrices calculated between two 

time steps t and t + 1. In total, between 1992 and 

2018, each matrix representing a group represents 

the average of 26 matrices. 
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Fig. 3: Transition matrix and condition state 

distribution with age for Concrete group 
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Fig. 4: Transition matrix and condition state 

distribution with age for Continue-Concrete 

group 
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Fig. 5: Transition matrix and condition state 

distribution with age for Steel group 
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Fig. 6: Transition matrix and condition state 

distribution with age for Continue-Steel group 
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Fig. 7: Transition matrix and condition state 

distribution with age for Prestressed group 
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Fig. 8: Transition matrix and condition state 

distribution with age for Continue-Prestressed 

group 

The above curves (fig. 3 to 8) describe network-

level bridge deterioration model output (condition 

state distribution), which is the percentage of 

bridges surface in each condition state along with 

age (1 to 5 are the percentage curves of condition 

states 1-5) for the selected group. According to the 

curve 1, it is clear that the condition state 1 value 

approaches 0 (well under 5%) after 30 years of 

age. Between ages 5 and 20, 2 is highest compared 

with the other condition states. The percentage of 

4 components continuously increases with time. 

Curve 5 does not vary greatly and remains close to 

0, which implies that almost all the bridges are 

repaired before reaching this last level of 

deterioration. 

Cost matrices 

The unit costs to move from a bridge in state i to a 

bridge in state j were estimated for example in 

France for public owner are given in the following 

matrix: 
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It is specified that this cost matrix is just an 

example to validate the methodology and does not 

represent the reality of the costs practiced in the 

Indiana state. For simplification reasons, the same 

cost matrix is assigned to all the bridge groups 

studied. The reality is different, but the calculation 

procedure remains the same. 

Scenarios optimizations 

Before calculating optimal scenarios, three 

predefined scenarios must be analyzed to obtain 

orders of magnitude of the ratios to be optimized. 

The simulation duration is 15 years for all 

scenarios. The steps for calculating these 

predefined scenarios are as follows:  

Scenario 1: in this case, one do nothing, so there 

is no maintenance at all. The maintenance strategy 

matrix [M] is then equal to: 
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Fig. 9: Rating (%) before and after simulation 

and Rating evolution 

The total cost per year is zero (table 6) since there 

is no maintenance and the average global rating (1 

the best to 5 the worst) goes from 2.57 to 2.81 

(figure 9). 

Table 6: Cost of maintenance per m
2
 of deck for 

the six groups for predefined scenario 1 

 1 2 3 4 5 6 Average 

Cost  

€/m
2
 

0 0 0 0 0  0 0 

Scenario 2: one calculates for each year t + 1, the 

costs to systematically restore the indicators to 

their levels in year t. One Keep all rating index 

constant. 

 

 

Fig. 10:  Rating (%) before and after simulation 

and Rating evolution 

The total cost per year for maintenance is equal to 

35.9 M€/year and the average cost per m
2
 is equal 

to 83.7 €/m
2
 (table 7). The average global rating 

(figure 10) keep the same value to 2.57. 

Table 7:  Cost of maintenance per m
2
 of deck for 

the six groups for predefined scenario 2 

 1 2 3 4 5 6 Average 

Cost 

€/m
2
 

72 76 115 72 100 94 83.7 

Scenario 3: one calculate for each year t + 1, the 

costs to systematically return the indicators to 

level 1. In this case the maintenance strategy 

matrix [M] is equal to: 
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Fig. 11:  Rating (%) before and after simulation 

and Rating evolution 

The total cost per year for maintenance is equal to 

166 M€/year and the average cost per m
2
 is equal 

to 387 €/m
2
 (table 8). The average global rating 

goes from 2.57 to 1 (figure 11). 

Table 8:  Cost of maintenance per m
2
 of deck for 

the six groups for predefined scenario 2 

 1 2 3 4 5 6 
Averag

e 

Cos

t 

€/m
2
 

501 
44

8 
523 338 388 333 387 

First problem to solve: Cost optimization 

To show the efficiency of our optimization 

algorithm, one propose to treat the " Keep all 

rating index constant scenario " and compare the 

results with those obtained in the table 7. The 

target values qinf et qsup imposed to the 

optimization solver to keep the same rating are: 

 

Index qinf qsup 

1 4.7 % x 

2 39.1 % x 

3 x 51.5 % 

4 x 4.2 % 

5 x 0.5 % 

 

 

Fig. 12: Rating (%) before and after simulation 

and Rating evolution 

Figure 12 show the constant evolution of the five-

condition state. 

Table 9:  Cost of maintenance per m
2
 of deck for 

the six groups for optimized scenario 2 

 1 2 3 4 5 6 Average 

Cost  

€/m
2
 

86 110 85 11 230 34 68.5 
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Fig. 13: Optimal maintenance cost for the six 

bridges group  

The optimized scenarios for each bridges group 

are proposed in figure 13. For each bridges group, 

one finds in graphs’ ordinates the percentage of 

surfaces which must be treated each year of 

simulation as well as the type of treatment. Notice 

that the goal is to find, for each group, the optimal 

variables values for the maintenance matrix [M]. 
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For this specific case, to optimize the 

maintenance, the solver allocates null values to x 4, 

x7, x9 and x10. The average cost weighted by the 

surface for all the groups is equal to 68.5€/m
2
 

(table 8), therefore a gain of 18% is realized 

compared to result of the predefined scenario 2 

(table 7). Notice that the CPU time spent for this 

simulation is equal to 120 seconds on an Intel 

Core i7 at 2.9Ghz 16 Go RAM. 

Second problem to solve: Quality optimization 

Another approach to test the robustness of the 

algorithm is to treat again the " Keep all rating 

index constant" scenario and impose its 

maintenance cost i.e. 35.9 M€/year over 15 years. 

The objective is to estimate the effect on the 

quality of the asset with this budget. In other 

words: how one improve the quality of the asset as 

much as possible by capping the budget to 35.9 

M€/year knowing that with this budget and with 

scenario 2, the global indicator has remained 

constant? The answer to this question is given 

below (figure 14) and (table 10): 
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Fig. 14: Rating (%) before and after simulation 

and Rating evolution 

Table 10: Cost of maintenance per m
2
 of deck for 

the six groups for optimized and scenario 2 

Cos

t 

(€)/

m
2 

1 2 3 4 5 6 
Averag

e 

Opti

m 
147 60 135 89 74 46 83.7 

Sce

n 2 

72 76 115 72 100 94 83.7 

The average amount of maintenance work is the 

same as that of scenario 2 (table 9). This is equal 

to 83.7 €/m
2
. This is normal since one imposed the 

same overall amount each year. By cons, the 

amount per group is different, which means that 

other scenarios were applied and that with the 

same amount, one can do better than keeping the 

rating indicators constant over time. 

 

 

 

 

 

 

Fig. 15: Optimal maintenance for the six bridges 

groups 

Figure 15 show the maintenance scenario for the 

six bridges group. The surfaces treated by year 

and by indices are presented on the ordinate. As in 

the previous case, the optimization algorithm is 

based on five maintenance possibilities to solve 

the problem. The five possibilities for moving 

surfaces are: 3 to 1, 3 to 2, 4 to 2, 4 to 3 and 5 to 2 

which corresponds to x 1, x2, x3, x6 and x8 

optimization variables in [M] matrix. 
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Fig. 16: Average rating for scenario 2 and 

optimized one 

Figure 16 show the bridges quality improve with 

an imposed maintenance budget equal to the one 

of scenario 2. The improvement is estimate to 6% 

compared to the scenario 2. The CPU time spent 

for this simulation is equal to 180 seconds. An 

example of cost distribution per group is proposed 

in the following figure (figure 17):  

 

Fig. 17:  Optimal maintenance cost per group 

or type 

One observe for example that one spend more for 

group 4 (1858 bridges) even if their number is not 

the highest 

9. Conclusion 

In this study, we presented a new approach to 

program maintenance alternatives for a bridges 

network. The originality of this approach is the 

determination of the optimal scenarios through the 

maintenance matrix [M]. For each bridges group, 

the ten optimization variables of this matrix 

represent the percentage of bridge deck areas 

passing from one condition state to another.  

A Markov chain approaches will be considered to 

provide a means to achieve optimal budget 

allocation to better manage the bridge stock and 

optimize the performance levels for individual 

bridges. This approach uses genetic algorithm 

optimization techniques to resolve the 

optimization problem and the nonlinear 

Sequanciel Quadratic Programming (SQP) 

algorithm for determining the components of the 

transition matrix [P].  

Data from the State of Indiana (14500 bridges) 

were used to develop six transition probability 

matrices that represent the deterioration of 

structural and material bridge categories (concrete, 

concrete-continuous, steel, steel-continuous, 

prestressed and prestressed-continuous). This 

application can be considered as a powerful 

financial tool for decision support and very 

efficient in terms of calculation time (less than 3 

minutes for a park of 15,000 bridges). 

Data Availability Statement 

Federal Highway Administration (FHWA) 

https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm 
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