
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 9 Issue 08 August 2020, Page No. 25125-25131

ISSN: 2319-7242 DOI: 10.18535/ijecs/v9i08.4504

Kaveri Bhatt, IJECS Volume 09 Issue 08 August, 2020 Page No. 25125-25131 Page 25125

Implementation of Big-Data Applications Using Map Reduce

Framework
1
Kaveri Bhatt

*
,

2
Prof. Amit Saxena,

3
Kaptan Singh

1
M-Tech Scholar Department of Computer Science & Engineering TIEIT, Bhopal (MP)

2
HOD (CSE) Department of Computer Science & Engineering TIEIT, Bhopal (MP)

3
PROFESSOR (CSE) Department of Computer Science & Engineering TIEIT, Bhopal (MP)

Abstract:

Clustering As a result of the rapid development in cloud computing, it & fundamental to investigate the

performance of extraordinary Hadoop MapReduce purposes and to realize the performance bottleneck in a

cloud cluster that contributes to higher or diminish performance. It is usually primary to research the underlying

hardware in cloud cluster servers to permit the optimization of program and hardware to achieve the highest

performance feasible. Hadoop is founded on MapReduce, which is among the most popular programming items

for huge knowledge analysis in a parallel computing environment. In this paper, we reward a particular

efficiency analysis, characterization, and evaluation of Hadoop MapReduce Word Count utility. The main aim

of this paper is to give implements of Hadoop map-reduce programming by giving a hands-on experience in

developing Hadoop based Word-Count and Apriori application. Word count problem using Hadoop Map

Reduce framework. The Apriori Algorithm has been used for finding frequent item set using Map Reduce

framework.

Keywords: Performance analysis, cloud computing, Hadoop Word Count, Apriori algorithm.

Introduction
Applied sciences and the pursuits of men and

women using smartphones, social media, internet of

things, sensor contraptions, online offerings and lots

of more. In a similar way, in improvements in

knowledge applications and broad distribution of

application, a couple of govt and commercial

organizations such as Monetary institutions,

healthcare institution, schooling and research

division, power sectors, retail sectors, lifestyles

sciences and environmental departments are all

producing a enormous amount of information every

day. For examples, international data enterprise

(IDC) said that 2.8 ZB (zettabytes) knowledge of

universe had been saved in the year of 2012 and this

may reach up to forty ZB through 2020 [1]. In a

similar fashion Facebook processes round 500 TB

(terabytes) knowledge per day [2] and Twitter

generates eight TB data daily [3]. The huge datasets

no longer handiest comprise structured form of

knowledge but greater than seventy five% of the

dataset includes uncooked, semi-structured and

unstructured type of data [4]. This large quantity of

information with one of a kind codecs can be

viewed as giant information.The derivation of big

knowledge is indistinct and there are a lot of

definitions on huge data. For examples, Matt Aslett

outlined massive knowledge as “tremendous data is

now virtually universally understood to refer to the

recognition of larger business intelligence through

storing, processing, and examining data that was

previously ignored because of problem of normal

data management applied sciences” [5]. Recently,

the term of giant data has got a brilliant momentum

from governments, industry and research

communities. In [6], significant information is

outlined as a term that encompasses using tactics to

capture, approach, analyze and visualize potentially

significant datasets in a cheap timeframe now not

obtainable to usual IT applied sciences. Hadoop is

L.O. Olatunbosun, IJECS Volume 09 Issue 07 July, 2020 Page No. 25116-25124 Page 25126

an industrial scale batch processing distributed

computing tool. It has the capability to connect

computers with multiple processor cores with a

scale ranging from hundreds to thousands. Vast

volumes of data can be efficiently distributed across

clusters of computers using Hadoop. The Hadoop

scale consists of hundreds of gigabytes of data at

the least. Hadoop has been built with the capability

to manage vast data sets whose size can easily lie

between couple of gigabytes to thousands of

petabytes. Hadoop provides its solution in the form

of a Distributed File System which splits the data

and stores it in several different machines. This

enables parallel processing of the problem and

efficient computation is possible. The design of

Hadoop is such that it can efficiently manage vast

quantity of data sets by taking advantage of

clustered computing or by connecting hundred of

machines with processing power in parallel.

Theoretically speaking, a single, powerful thousand

CPU machine would be much more expensive than

thousands of machines with individual CPUs thus

making it an easier investment. Hadoop offers a

cost effective solution by tying these smaller and

cheaper machines together.

After the data is loaded into clusters in Hadoop it is

distributed to all the nodes. The HDFS then splits

the data into sets which allow management by

individual nodes within the cluster. To handle

unavailability of data due to failure, each part is also

replicated across the cluster. The data is also re-

replicated in response to failure of the system. All

these parts of data are easily accessible through a

universal namespace, despite the parts being

distributed and replicated on multiple machines.

2. Literature Survey

1. Samneet Singh and Yan Liu,“A Cloud Service

Architecture for Analyzing Big Monitoring

Data”,ISSNll1007-0214ll05/10llpp55-70 Volume

21, Number 1, February 2016 .In this paper, author

proposed a structure that integrates search-

headquartered clusters and semantic media wiki by

using relaxation APIs to help the exploration of

cloud monitoring data. This structure advantages

from an internet-based Media-Wiki interface and

enables a person to outline the entry to monitoring

knowledge and prepare the processing results. The

quest-based cluster developed on SolrCloud permits

indexing of significant size of knowledge, and thus

makes the entire architecture compatible to explore

and display the ever-gathering data such as the

traces constructed from knowledge centers. The

structure additionally involves an extension, which

runs spark on Yarn cluster for deploying effective

evaluation ways for gigantic knowledge set. It

utilizes the spark‟s MapReduce paradigm to

establish the cluster in the dataset utilizing k-way

clustering approach.

2. JOSEPH A. ISSA, “Performance Evaluation and

Estimation Model Using Regression Method for

Hadoop WordCount”, Received November 19,

2015, accepted December 12, 2015, date of

publication December 18, 2015, date of current

version December 29, 2015. In this paper, the writer

offered a distinct performance analysis and analysis

for Hadoop WordCount workload utilizing different

processors similar to Intel‟s ATOM D525, Xeon

X5690, and AMD‟s Bobcat E350. Our analysis

suggests that Hadoop WordCount is compute-sure

workload in both map segment and scale down

segment. The outcome exhibit that enabling HT and

growing the number of sockets have a high impact

on the Hadoop WordCount performance even as

reminiscence velocity and capacity does now not

have an impact on efficiency vastly.

3. Yaxiong Zhao, Jie Wu, and Cong Liu, “Dache:

A Data Aware Caching for Big-Data Applications

Using the MapReduce

Framework”,ISSNll10070214ll05/10llpp39-50

Volume 19, Number 1, February 2014 .In this

paper, author recommends Dache, a knowledge-

conscious cache framework for big-data functions.

In Dache, tasks publish their intermediate outcome

to the cache manager. A project queries the cache

supervisor before executing the specific computing

work. A novel cache description scheme and a

cache request and reply protocol are designed. We

enforce Dache by means of extending Hadoop. Test

bed experiment results show that Dache

tremendously improves the completion time of

MapReduce jobs.

4. Zhuoyao Zhang Ludmila Cherkasova,

“Benchmarking Approach for Designing a

MapReduce Performance Model”, ICPE’13, April

21-24, 2013.In this work, author presents a novel

efficiency analysis framework for answering this

L.O. Olatunbosun, IJECS Volume 09 Issue 07 July, 2020 Page No. 25116-25124 Page 25127

question. We observe that the execution of every

map (lessen) duties consists of distinctive, good-

defined knowledge processing phases. Handiest

map and scale back services are customized and

their executions are consumer-outlined for

exclusive MapReduce jobs. The executions of the

remaining phases are time-honored and rely on the

amount of information processed by means of the

phase and the performance of underlying Hadoop

cluster. First, we design a suite of parameterizable

micro benchmarks to measure normal phases and to

derive a platform performance model of a given

Hadoop cluster.

3. Existing System

Based on Amdahl‟s law definition we discussed

before, the performance of a given processor can be

divided into two parts, the part which increases with

the performance improvement and is said to scale is

defined as variable a, and the other part which does

not improve due to the performance enhancement

and is said to not scale is defined as variable b. The

a and b variables can be derived using the basic

definition of Amdahl‟s law which can be written in

the form of:

where T1 is the measured execution time at a given

input size I1, and To be the non-scale execution

time. We can write To in terms of a second

measurement T2 at I2:

When we substitute Eq(2) for To in Eq(1) we obtain

Amdahl's law in terms of two specific

measurements without reference to:

The variables a and b can be transformed to the

performance instead of the time domain by using P

D 1/T. This will give us a and b variables in terms

of performance and input size as shown in Eq(6)

and Eq(7).

For two data points, we will have (I1; P1) and (I2;

P2), and for n data points, we will have (I1; P1); : :

: ; (In; Pn). We expect these points to satisfy an

equation of the form (except for noise):

Because of noise, we cannot expect to end values

for a and b that produce equality for each point i. In

this case, we resort to the theory of linear least-

squares estimation to obtain best estimates for a and

b. In particular, given a and b, we take the error in

our estimate for Pi in terms of Ii to be the difference

between the measured and estimated value for Pi:

The best estimates fora and b are those that

minimize the sum of the squares of these errors:

The estimates for a and b are those at which the

values of the partial derivatives @E=@a and

@E=@b are simultaneously zero. By computing

these derivatives explicitly, we obtain equations

satis_ed by the best choices for a and b, which is the

best functional _t to the measured data.

L.O. Olatunbosun, IJECS Volume 09 Issue 07 July, 2020 Page No. 25116-25124 Page 25128

Given these best estimates for a and b in terms of

(I1, P1); : : : ; (In, Pn), we have the following best

estimate for P in terms of I.

4. Problem Formulation

 Hadoop is specially designed for two core

concepts: HDFS and MapReduce. Both are related

to distributed computation. Hadoop architecture is

primarily a distributed master slave architecture that

consists of a single master and many slaves. The

Hadoop Distributed File System (HDFS) is used for

storage and MapReduce for computational

capabilities. The functions of Hadoop in the

architecture are data partitioning and parallel

computation of large datasets. Its storage and

computational capabilities scale with the addition of

hosts to a Hadoop cluster, and can reach volume

sizes in the petabytes on clusters with thousands of

hosts [2].

The MapReduce master schedules the

computational work on the slave nodes and

organizes where the computational work will be

scheduled. The HDFS master is responsible for

storing the files and partitioning the storage across

the slave nodes and keeping track of where data is

located. There is a need to extract useful

information from the data and to interpret the data.

The traditional Apriori algorithm is generally used

top to bottom approach.Scans the very big database

repeatedly to produce LK increase I/O load and

reduce efficiency. Each item in the candidate item

sets must scan database one time to decide whether

it can be joined to the Lk. So it needs to scan the

transaction database as the same number as the

elements of the frequent item set. When it carries on

the k-th scanning, the algorithm does not use the

former result. At the same time, the algorithms

mentioned above are improvement or extension 846

based on architecture of the existing algorithm, the

efficiency has not been much improved. The key of

the improved algorithm that we propose in this

work that how to reduce the scan through the results

of previous scan.

The main aim of this paper is to give implements of

Hadoop map-reduce programming by giving a

hands-on experience in developing Hadoop based

Word-Count and Apriori application. Word count

problem using Hadoop Map Reduce framework.

The Apriori Algorithm has been used for finding

frequent item set using Map Reduce framework.

5. Proposed Work

Word count is a typical example where Hadoop

map reduce developers start their hands on with.

This sample map reduce is intended to count the no

of occurrences of each word in the provided input

files.

The word count operation takes place in two stages

a mapper phase and a reducer phase. In mapper

phase first the test is tokenized into words then we

form a key value pair with these words where the

key being the word itself and value „1‟. For example

consider the sentence

“tring tring the phone rings”

In map phase the sentence would be split as words

and form the initial key value pair as

<tring,1>

<tring,1>

<the,1>

<phone,1>

<rings,1>

In the reduce phase the keys are grouped together

and the values for similar keys are added. So here

there are only one pair of similar keys „tring‟ the

L.O. Olatunbosun, IJECS Volume 09 Issue 07 July, 2020 Page No. 25116-25124 Page 25129

values for these keys would be added so the out put

key value pairs would be

<tring,2>

<the,1>

<phone,1>

<rings,1>

This would give the number of occurrence of each

word in the input. Thus reduce forms an

aggregation phase for keys. Here is tha apriori

algorithm where map reduce framework has been

applied.

Algorithm Mapper()

{

String line = value.toString();

String[] words=line.split(",");

for(String word: words)

{

Text outputKey = new

Text(word.toUpperCase().trim());

 IntWritable outputValue = new IntWritable(1);

 con.write(outputKey, outputValue);

}

}

Algorithm Reducer()

{

int sum = 0;

 for(IntWritable value : values)

 {

 sum += value.get();

 }

 con.write(word, new IntWritable(sum));

}

}

6. Result

The main aim of this paper is to give implements of

Hadoop map-reduce programming by giving a

hands-on experience in developing Hadoop based

Word-Count and Apriori application. Word count

problem using Hadoop Map Reduce framework.

The Apriori Algorithm has been used for finding

frequent item set using Map Reduce framework.

We evaluate our proposed system on different

parameters, which describe below:

 Execution Time

 Memory

 Input: database (D), minimum support (min_sup).

 Output: frequent item sets in D.

 L1= frequent item set (D)

 j=k; /* k is the maximum number of element in a

transaction from the database*/

for k= maxlength to 1

 {

fori=k to 2

 {

for each transaction Ti of order i

 {

if (Ti has repeated)

 {

Ti.count++;

 }

 m=0;

while (i<j-m)

 {

if (Ti is a subset of each transaction Tj-m of order j-m)

Ti.count++; m++; }

If (Ti.count>=min_sup)

 Rule Ti generated

 }

L.O. Olatunbosun, IJECS Volume 09 Issue 07 July, 2020 Page No. 25116-25124 Page 25130

Figure 1.2 Result Analysis of Proposed

Implementation

7. Conclusion

Map-Reduce have become an important platform

for a variety of data processing applications. Word

Count Mechanisms in Map-Reduce frameworks

such as Hadoop, suffer from performance

degradations in the presence of faults. Word Count

Map-Reduce, proposed in this paper provides an

online, on-demand and closed-loop solution to

managing these faults. The control loop in word

count mitigates performance penalties through early

detection of anomalous conditions on slave nodes.

Anomaly detection is performed through a novel

sparse-coding based method that achieves high true

positive and true negative rates and can be trained

using only normal class (or anomaly-free) data. The

local, decentralized nature of the sparse-coding

models ensures minimal computational overhead

and enables usage in both homogeneous and

heterogeneous Map-Reduce environments.

Map-Reduce have become an important platform

for a variety of data processing applications. Word

Count Mechanisms in Map-Reduce frameworks

such as Hadoop, suffer from performance

degradations in the presence of faults. Our

algorithm provides an online, on-demand and

closed-loop solution to managing these faults. The

local, decentralized nature of the sparse-coding

models ensures minimal computational overhead

and enables usage in both homogeneous and

heterogeneous Map-Reduce environments.

8. References

[1.] Samneet Singh and Yan Liu,“A Cloud

Service Architecture for Analyzing Big

Monitoring Data”,ISSNll1007-

0214ll05/10llpp55-70 Volume 21, Number

1, February 2016

[2.] JOSEPH A. ISSA, “Performance Evaluation

and Estimation Model Using Regression

Method for Hadoop WordCount”, Received

November 19, 2015, accepted December 12,

2015, date of publication December 18,

2015, date of current version December 29,

2015.

[3.] Yaxiong Zhao, Jie Wu, and Cong Liu,

“Dache: A Data Aware Caching for Big-

Data Applications Using the MapReduce

Framework”,ISSNll10070214ll05/10llpp39-

50 Volume 19, Number 1, February 2014

[4.] Zhuoyao Zhang Ludmila Cherkasova,

“Benchmarking Approach for Designing a

MapReduce Performance Model”, ICPE’13,

April 21-24, 2013

[5.] Nikzad Babaii Rizvandi, Albert Y. Zomaya

,

Ali Javadzadeh Boloori, Javid Taheri1, “On

Modeling Dependency between MapReduce

Configuration Parameters and Total

Execution Time”, 2012

[6.] Nikzad Babaii Rizvandi, Javid Taheri1,

Reza Moraveji, Albert Y. Zomaya, “On

Modelling and Prediction of Total CPU

Usage for Applications in MapReduce

Enviornments”, 2011.

[7.] Baratloo, M. Karaul, Z. Kedem, and

P.Wyckoff, ``Charlotte: Meta computing on

theWeb,'' in Proc. 9th Int. Conf. Parallel

Distrib. Comput. Syst., 1996, pp. 1_13.

[8.] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R.

H. Arpaci-Dusseau, and M. Livny,

``Explicit control in the batch-aware

distributed _le system,'' in Proc. 1st

USENIX Symp. Netw. Syst. Design

L.O. Olatunbosun, IJECS Volume 09 Issue 07 July, 2020 Page No. 25116-25124 Page 25131

Implement. (NSDI), Mar. 2004, pp.

365_378.

[9.] Fox, S. D. Gribble, Y. Chawathe, E. A.

Brewer, and P. Gauthier,``Cluster-based

scalable network services,'' in Proc. 16th

ACMSymp. Oper. Syst. Principles, Saint-

Malo, France, 1997, pp. 78_91.

[10.] S. Ghemawat, H. Gobioff, and S.-T. Leung,

``The Google _le system,'' in Proc. 19th

Symp. Oper. Syst. Principles, New York,

NY, USA, 2003, pp. 29_43.

