

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 1, Jan 2014 Page No. 3660-3667

Rohini, IJECS Volume3 Issue 1 Jan, 2014 Page No.3660-3667 Page 3660

Survey of Defense-In-Depth Intrusion Detection Framework in

Virtual Network System

Rohini, Ratnavel Dr. M. Kamarajan

Subramaniam College Of Engineering, M.E., Ph.D., Ratnavel

Subramaniam College Of Engineering.

Abstract-To prevent vulnerable virtual machines from being compromised in the cloud. A multiphase

distributed vulnerability detection, measurement, and countermeasure selection mechanism called NICE.

Built on attack graph-based analytical models and reconfigurable virtual network-based countermeasures.

Attackers can explore vulnerabilities of a cloud system and compromise virtual machines to deploy further

large-scale Distributed Denial-of-Service (DDoS). Open Flow network programming APIs to build a

monitor and control plane over distributed programmable virtual switches to significantly improve attack

detection and mitigate attack consequences. The system and security evaluations demonstrate the efficiency

and effectiveness of the proposed solution.

INTRODUCTION

 Network and security management has to

assure uninterrupted access to the communication

infrastructure. With growing networks and

increasing amount of transported data, it gets

more and more complicated to supervise the

operation of the communication systems.

Sometimes computer networks are not well

protected against attacks from the outside, so

additional surveillance may be necessary. But

even well protected networks need surveillance. A

lot of these networks are threatened from the

inside. Intrusion Detection Systems (IDSs) help

securing these networks. This paper focuses on a

tool for visualizing and detecting anomalies of the

traffic structure. Several distributed Denial of

Service attacks have shown the necessity of better

protecting computers and networks connected to

the Internet. Due to widely available attack tools,

attacks of this kind can be carried out by persons

without in-depth knowledge of the attacked

system. Insufficient protected Open University

networks are an example for networks that need

additional surveillance. These networks often

include vulnerable computers and offer high

bandwidth connections to the Internet. These

features are the reason why attackers are

interested in these networks. The machines in

these networks are not the goal of the attacks.

Normally, they do not contain interesting

information for the attacker, but they are suitable

for scanning other networks and starting (for

example) Denial of Service attacks.

 The Internet is increasingly important as the

vehicle for global electronic commerce. Many

organize- tins also use Internet TCP/IP protocols

to build intra-networks (intranets) to share and

disseminate internal information. A large scale

attack on these networks can cripple important

world-wide Internet operations. The Internet

Worm of 1988 caused the Internet to be

unavailable for about _vet days Seven years later,

there is no system to detect or an- laze such a

problem on an Internet-wide scale. The

development of a secure infrastructure to defend

the Internet and other networks is a major

challenge. In this paper, we present the design of

the Graph-based Intrusion Detection System

(Girds).

Rohini, IJECS Volume 3 Issue 1 Jan, 2014 Page No.3660-3667 Page 3661

 Girds‟ design goal is to analyze network

activity on TCP/IP networks with up to several

thousand hosts. Its primary function is to detect

and anal- lyre large-scale attacks, although it also

has the ca- ability of detecting intrusions on

individual hosts. Girds aggregates network

activity of interest into

Activity graphs, which are evaluated and possibly

re- ported to a system security ocher (SSO). The

hiker- archival architecture of Grids allows it to

scale to large networks. Grads is being designed

and built by the authors using formal consensus

decision-making and a well- documented software

process. We have completed the Grids design and

have almost _knishes building a prototype.

 This paper is organized as follows. Brier

describes related work on intrusion detection

systems and motivates the need for Grids‟.

Section 1.2 discusses classes of attacks that we

expect to detect. In the simple Grids‟ detection

algorithm is described, followed by a more

detailed discussion in has a treat- meant of the

hierarchical approach to scalability and discusses

how the hierarchy is managed. outlines the

policy language. Covers some limitations of

Girds. Finally, presents conclusions and discusses

future work.

 Network security is a complicated subject,

historically only tackled by well-trained and

experienced experts. However, as more and more

people become ``wired'', an increasing number of

people need to understand the basics of security in

a networked world.

1.above the Clouds: A Berkeley View of Cloud

Computing

 Cloud Computing refers to both the

applications delivered as services over the Internet

and the hardware and systems software in the

datacenters that provide those services. The

services themselves have long been referred to as

Software as a Service (Seas), so we use that term.

The datacenter hardware and software is what we

will call a Cloud. When a Cloud is made available

in a pay-as-you-go manner to the public, we call it

a Public Cloud; the service being sold is Utility

Computing. Current examples of public Utility

Computing include Amazon Web Services,

Google Apennine, and Microsoft Azure. We use

the term Private Cloud to refer to internal

datacenters of a business or other organization that

are not made available to the public.

 Thus, Cloud Computing is the sum of

Seas and Utility Computing, but does not

normally include Private Clouds. We‟ll generally

use Cloud Computing, replacing it with one of the

other terms only when clarity demands it. The

roles of the people as users or providers of these

layers of Cloud Computing, and we‟ll use those

terms to help make our arguments clear. The

advantages of Seas to both end users and service

providers are well understood. Service providers

enjoy greatly simplified software installation and

maintenance and centralized control over

versioning; end users can access the service

“anytime, anywhere”, share data and collaborate

more easily, and keep their data stored safely in

the infrastructure. Cloud Computing does not

change these arguments, but it does give more

application providers the choice of deploying their

product as Seas without provisioning a datacenter:

just as the emergence of semiconductor foundries

gave chip companies the opportunity to design

and sell chips without owning a fib, Cloud

Computing allows deploying Seas—and scaling

on demand—without building or provisioning a

datacenter.

 Analogously to how Seas allows the user to

offload some problems to the Seas provider, the

Seas provider can now offload some of his

problems to the Cloud Computing provider. From

now on, we will focus on issues related to the

potential Seas Provider (Cloud User) and to the

Cloud Providers, which have received less

attention.

We will argue that all three are important to the

technical and economic changes made possible by

Cloud Computing. Indeed, past efforts at utility

computing failed, and we note that in each case

one or two of these three critical characteristics

were missing. For example, Intel Computing

Services in 2000-2001 required negotiating a

contract and longer-term use than per hour. As a

successful example, Elastic Compute Cloud (EC2)

from Amazon Web Services (AWS) sells 1.0-GHz

x86 ISA “slices” for 10 cents per hour, and a new

“slice”, or instance, can be added in 2 to 5

minutes. Amazon‟s Scalable Storage Service (S3)

Rohini, IJECS Volume 3 Issue 1 Jan, 2014 Page No.3660-3667 Page 3662

charges $0.12 to $0.15 per gigabyte-month, with

additional bandwidth charges of $0.10 to $0.15

Per gigabyte to move data in to and out of AWS

over the Internet. Amazon‟s bet is that by

statistically multiplexing multiple instances onto a

single physical box, that box can be

simultaneously rented to many customers who

will not in general interfere with each others‟

usage While the attraction to Cloud Computing

users (Seas providers) is clear, who would become

a Cloud Computing provider, and why? To begin

with, realizing the economies of scale afforded by

statistical multiplexing and bulk purchasing

requires the construction of extremely large

datacenters. Building, provisioning, and launching

such a facility is a hundred-million-dollar

undertaking. However, because of the phenomenal

growth of Web services through the early 2000‟s,

many large Internet companies, including

Amazon, eBay, Google, Microsoft and others,

were already doing so. Equally important, these

companies also had to develop scalable software

infrastructure (such as Map Reduce, the Google

File System, Bitable, and Dynamo and the

operational expertise to armor their datacenters

against potential physical and electronic attacks.

Therefore, a necessary but not sufficient condition

for a company to become a Cloud Computing

provider is that it must have existing investments

not only in very large datacenters, but also in

large-scale software infrastructure

And operational expertise required running them.

Given these conditions, a variety of factors might

influence these companies to become Cloud

Computing providers:

2.Secure Network ID and Attack measure

Count in Virtual Systems

 A recent Cloud Security Alliance (CSA)

survey shows that among all security issues, abuse

and nefarious use of cloud computing is

considered as the top security threat in which

attackers can exploit vulnerabilities in clouds and

utilize cloud system resources to deploy attacks.

In traditional data centers, where system

administrators have full control over the host

machines, Vulnerabilities can be detected and

patched by the system administrator in a

centralized manner. However, patching known

security holes in cloud data centers, where cloud

users usually have the privilege to control

software installed on their managed VMs, may not

work effectively and can violate the Service Level

Agreement (SLA). Furthermore, cloud users can

install vulnerable software on their VMs, which

essentially contributes to loopholes in cloud

security. The challenge is to establish an effective

vulnerability/attack detection and response system

for accurately identifying attacks and minimizing

the impact of security breach to cloud users.

 In M. Armrest et al. addressed that

protecting” Business continuity and services

availability” from service outages is one of the top

concerns in cloud computing systems. In a cloud

system where the infrastructure is shared by

potentially millions of users, abuse and nefarious

use of the shared infrastructure benefits attackers

to exploit vulnerabilities of the cloud and use its

resource to deploy attacks in more efficient ways.

Such attacks are more effective in the cloud

environment since cloud users usually share

computing resources, e.g., being connected

through the same switch, sharing with the same

data storage and file systems, even with potential

attackers. The similar setup for VMs in the cloud,

e.g., virtualization techniques.

In this paper, we propose Secure Intrusion

Detection and Attack measure exquisite in Virtual

Systems to establish a defense-in-depth intrusion

detection framework. For better attack detection,

NICE incorporates attack graph analytical

procedures into the intrusion detection processes.

We must note that the design of NICE does not

intend to improve any of the existing intrusion

detection algorithms; indeed, NICE employs a

reconfigurable virtual networking approach to

detect and counter the attempts to compromise

VMs, thus preventing zombie VMs.

 In general, NICE includes two main

phases: deploy a lightweight mirroring-based

network intrusion detection agent (NICE-A) on

each cloud server to capture and analyze cloud

traffic. A NICE-A periodically scans the virtual

system vulnerabilities within a cloud server to

establish Scenario Attack Graph (SAGs), and then

based on the severity of identified vulnerability

towards the collaborative attack goals, NICE will

decide whether or not to put a VM in network

inspection state. Once a VM enters inspection

state, Deep Packet Inspection (DPI) is applied,

and/or virtual network reconfigurations can be

Rohini, IJECS Volume 3 Issue 1 Jan, 2014 Page No.3660-3667 Page 3663

deployed to the inspecting VM to make the

potential attack behaviors prominent.

 The rest of paper is organized as follows.

Section II presents the related work. Section III

describes system approach and implementation.

System models are described in Section IV

describes the approach to hardening the network

in NICE. The proposed NICE is presented in

Section V and Section VI evaluates NICE in terms

of network performance and security. Finally,

Section VII describes future work and concludes

this paper.

3. BotSniffer: Detecting Bitnet Command and

Control Channels In Network Traffic

 Bonnets (or, networks of zombies) are

recognized as one of the most serious security

threats today. Bonnets are different from other

forms of malware such as worms in that they use

command and control (C&C) channels. It is

important to study this bonnet characteristic so as

to develop effective countermeasures. First, a

bonnet C&C channel is relatively stable and

unlikely to change among bots and their variants.

Second, it is the essential mechanism that allows a

“postmaster” (who controls the Bitnet) to direct

the actions of bots in a Bitnet. As such, the C&C

channel can be considered the weakest link of a

boned. That is, if we can take down an active

C&C or simply interrupt the communication to the

C&C, the postmaster will not be able to control

his bonnet. Moreover, the detection of the C&C

channel will reveal both the C&C servers and the

bots in a monitored network. Therefore,

understanding and detecting the C&Cs has great

value in the battle against bonnets.

 Many existing Bitnet C&Cs are based on

IRC (Internet Relay Chat) protocol, which

provides a centralized command and control

mechanism. The postmaster can interact with the

bots (e.g., issuing commands and receiving

responses) in real-time by using IRC PRIVMSG

messages.

 This simple IRC-based C&C mechanism

has proven to be highly successful and has been

adopted by many bonnets‟. There are also a few

bonnets‟ that use the HTTP protocol for C&C.

HTTP-based C&C is still centralized, but the

postmaster does not directly interact with the bots

using chalice mechanisms. Instead, the bots

periodically contact the C&C server(s) to obtain

their commands. Because of its proven

effectiveness and efficiency, we expect that

centralized C&C (e.g., using IRC or HTTP) will

still be widely used by burnets in the near future.

In this paper, we study the problem of detecting

centralized boned C&C channels using network

anomaly detection techniques. In particular, we

focus on the two commonly used Bitnet C&C

mechanisms, namely, IRC and HTTP based C&C

channels. Our goal is to develop a detection

approach that does not require prior knowledge of

a bonnet, e.g., signatures of C&C patterns

including the name or IP address of a C&C server.

We leave the problem of detection of P2P

bonnets‟ and Peacomm as our future work.

 Few bots in the monitored network, and may

contain encrypted communication. However, we

observe that the bots of a burnet demonstrate

spatial-temporal correlation and similarities due to

the nature of their pre-programmed response

activities to control commands. This invariant

helps us identify C&C within network traffic. For

instance, at a similar time, the bots within a

bonnet will execute the same command (e.g.,

obtain system information, scan the network), and

report to the C&C server with the progress/result

of the task (and these reports are likely to be

similar in structure and content). Normal network

activities are unlikely to demonstrate such a

synchronized or correlated behavior. Using a

sequential hypothesis testing algorithm, when we

observe multiple instances of correlated and

similar behaviors, we can conclude that a boned is

detected. Our research makes several

contributions.

 First, we study two typical styles of control

used in centralized bonnet C&C. The first is the

“push” style, where commands are pushed or sent

to bots. IRC-based C&C is an example of the push

style. The second is the “pull” style, where

commands are pulled or downloaded by bots.

HTTP-based C&C is an example of the pull style.

Observing the spatial temporal correlation and

similarity nature of these bonnet C&Cs, we

provide a set of heuristics that distinguish C&C

traffic from normal traffic.

Second, we propose anomaly-based detection

algorithms to identify both IRC and HTTP based

C&Cs in a port independent manner. The

Rohini, IJECS Volume 3 Issue 1 Jan, 2014 Page No.3660-3667 Page 3664

advantages of our algorithms include: they do not

require prior knowledge of C&C servers or

content signatures, they are able to detect

encrypted C&C, they do not require a large

number of bots to be present in the monitored

network, and may even be able to detect a Bitnet

with just a single member in the

monitored network in some cases, they have

bounded false positive and false negative rates,

and do not require a large number of C&C

communication packets.

4.NUSMV: a new symbolic model checker

 This paper describes the results of a joint

project between Carnegie Mellon University

(CMU) and Institute per la Ricers Sciatica e

Technologic (IRST) whose goal is the

development of a new symbolic model checker.1

the new model checker, called NUSMV, is

designed to be a well structured, open, _exiles and

documented platform for model checking. To be

usable in technology transfer projects, NUSMV

was designed to be very robust, easy to modify,

and close to the standards required by industry.

NUSMV is the result of the reengineering and

reimplementation of the CMU SMV symbolic

model checker. With respect to CMU SMV,

NUSMV has been upgraded along three

dimensions.

 From the point of view of the system

functionalities, NUSMV has some features (e.g.,

multiple interfaces, LTL speci_cations) that

enhance the user ability to interact with the

system, and provide more heuristics for, e.g.,

achieving efficiency or partially controlling the

state explosion. The system architecture of

NUSMV is highly modular (thus allowing for the

substitution or elimination of certain modules) and

open (thus allowing for the addition of new

modules). A further feature is that in NUSMV the

user can control, and possibly change, the order of

execution of some system modules.

 The quality of the implementation is much

enhanced. NUSMV is a very robust and well

documented system, whose code is (relatively)

easy to modify. The paper is organized as follows

we briery introduce the logical framework below

symbolic model checking; describes the

interaction with the system explains the

functionalities provided by the system describes

the NUSMV system architecture; describes the

NUSMV implementation features. Finally,

describes the results of some tests and future

development directions

 The most widely used frication techniques

are testing and simulation. In the case of complex,

asynchronous systems, however, these techniques

can cover only a limited portion of possible

behaviors. A complementary frication technique is

Temporal Logic Model Checking. In this

approach, the varied system is modeled as a niter

state transition system, and the speci_cations are

expressed in a propositional temporal logic. Then,

by exhaustively

Exploring the state space of the state transition

system, it is possible to check automatically if the

speci_cations are stashed. The termination of

model checking is guaranteed by the niceness of

the model. One of the most important features of

model checking is that, when a speci_cations is

found not to hold, a counterexample (i.e., a

witness of the offending behavior of the system) is

produced.

 The current NUSMV input language is

essentially the same as the CMU SMV input

language The NUSMV input language is designed

to allow for the description of _niter state systems.

The only data types provided by the language are

Booleans, bounded integer sub ranges, and

symbolic enumerated types. Moreover, NUSMV

allows for the dentitions‟ of bounded arrays of

basic data types. The description of a complex

system can be decomposed into modules, and

each of them can be instantiated many times.

 This provides the user with a modular and

hierarchical description, and supports the dentition

of reusable components. Each module dense a

_niter state machine. Modules can be composed

either synchronously or asynchronously using

interleaving. In synchronous composition a single

step in the composition corresponds to a single

step in each of the components. In asynchronous

composition with interleaving a single step of the

composition corresponds to a single step

performed by exactly one component. The

NUSMV input language allows describing

Deterministic and non deterministic systems. A

NUSMV program can describe both the model

and the speci_cations.

 Gives a small example of a NUSMV program.

The example in Figure 4 is a model of a 3 bit

Rohini, IJECS Volume 3 Issue 1 Jan, 2014 Page No.3660-3667 Page 3665

binary counter circuit. It illustrates the damnation

of Reusable modules and expressions. The module

counter cell is instantiated three times, with names

bit0, bit1 and bit2. The module counter cell has a

formal parameter carry in. In the instantiation of

the module, actual signals (1 for the instance bit0,

bit0.carry out for the instance bit1 and bit1.carry

out for the instance bit2) are plugged in for the

formal parameters, thus linking the module

instance to the program (a module can be seen as

a subroutine). The property that we want to check

is .invariantly eventually the counter count till 8.

Which is expressed in CTL using the design state

variables as .

 It is also possible to specify the transition relation

and the set of initial states of a module by means

of propositional formulas, using the keywords

TRANS, and INIT respectively. This provides the

user with a lot of freedom in designing systems

there is an equivalent damnation of module

counter cell using propositional formulas.

there is an equivalent damnation of module

counter cell using propositional formulas

5.Scalable, Graph-Based Network

Vulnerability Analysis

 Researchers and penetration testers often

organize these chains of exploits into graphs or

trees. In either case, a designated node (or set of

nodes) represents the initial state(s), where a state

is defined by assigning a set of values to relevant

system attributes, including specific

vulnerabilities on various hosts in the network,

connectivity between hosts, and attacker access

privileges on various hosts. Each transition in the

tree (or graph) represents a specific exploit that an

attacker can carry out. For example, the „sshd

buffer overflow‟ exploit, carried out from a

specific host controlled by the attacker towards a

victim host, lets the attacker obtain root access

privileges on the victim, thereby changing the

state of the system. Although the precise

definitions of attack graph and attack tree vary by

author, it is useful to think of an attack tree as a

structure in which each possible exploit chain

ends in a leaf state that satisfies the attacker‟s

goal, and an attack graph as a consolidation of the

attack tree in which some or all common states are

merged.

 The basic observation behind this paper is

that attack graphs can easily be far too large to be

practical. Paper provides some support for our

position on this: in a scaling exercise with 5 hosts,

8 exploits, and the vulnerabilities associated with

those exploits, Mums reportedly Took 2 hours to

execute, with most of that time spent on graph

manipulation. The resulting attack graph had 5948

nodes and 68364 edges. The state space in that

example was represented with 229 bits. By

contrast, to encode such a problem with the

methods Presented in this paper, we need, at most,

229 nodes, one for each bit in the state

representation. Each of these nodes must be able

to store a constant amount of information about

however many exploits can change the value of

that particular node from „false‟ to „true‟. It is

clear that our structure is dramatically smaller,

even for this relatively limited, from a real world

perspective, example.

 However, we don‟t lose any of the

information in our encoding. That is, we present

an algorithm that explodes our structure into an

attack tree. At the same time, we aren‟t required to

generate an attack tree (or graph) to carry out our

subsequent analysis. We give worst case bounds

on our algorithms as we give our presentation.

 The cost we pay in this paper for our

dramatically smaller data structure is

monotonicity. Simply stated, monotonicity means

that no action an attacker takes interferes with the

attacker‟s ability to take any other action. We

return to the issue of monotonicity throughout the

paper. Our basic position is that monotonicity is a

reasonable modeling assumption in many network

analysis situations.

 Commercial vulnerability scanners are

quite effective at what they do - namely

identifying vulnerabilities in a specific host.

However, a variety of authors have noted that

identifying vulnerabilities in isolation is only a

small part of securing a network, and that a

significant issue is identifying which

vulnerabilities an attacker can take advantage of

through a chain of exploits. For example, an

attacker might exploit a defect in a particular

version of ftp to overwrite the .roosts file on a

victim machine. In the next step, the attacker

could remotely log in to the victim. In a

subsequent step, the attacker could use the victim

machine as a base to launch another exploit on a

Rohini, IJECS Volume 3 Issue 1 Jan, 2014 Page No.3660-3667 Page 3666

new victim, and so on. There are numerous

examples of such chains in the literature, and

extensive databases of exploits tailored to specific

software and services are available on the web.

 We treat vulnerabilities, attacker access

privileges, and network connectivity in a way

similar to other authors but with some

simplification. A vulnerability is a fact about the

system that, on the one hand, potentially enables

some exploit to be carried out, and on the other, is

the

 Result of some exploit. Vulnerability might

be running a particular version of some operating

system on a given host. Attacker privileges and

network connectivity are both straightforward to

model; the fact that an attacker has a certain

privilege level on a given host is an atomic fact, as

is whether two hosts have a type of connectivity

required for a given exploit.

 The simplification is that we group together

attacker access privileges, network connectivity,

and vulnerabilities into generic attributes in our

model. Thus, if an attacker has ftp access to a

given host, we model this as an atomic attribute.

Similarly, if a „.roosts‟ file includes a given host,

we record that as an atomic attribute as well.

The state space in that example was

represented with 229 bits. By contrast, to encode

such a problem with the methods Presented in this

paper, we need, at most, 229 nodes, one for each

bit in the state representation.

CONCLUSION

The event generating system has to be

improved. The concepts are interesting, but

additional work is needed to optimize the process.

The system is still early work. It is possible to

automatically detect anomalies in the

communication structure of a surveyed network,

but the goal of detecting a large number of

different attacks is not yet reached. The fact that

some of the attacks could be discovered by the

system without any knowledge on the used attack

techniques encourages us to further research. It is

easy to see that this approach to intrusion

detection only is appropriate for intruders causing

an significant traffic in the supervised network.

The proposed framework leverages Open Flow

network programming APIs to build a monitor

and control plane over distributed programmable

virtual switches to significantly improve attack

detection and mitigate attack consequences. The

system and security evaluations demonstrate the

efficiency and effectiveness of the proposed

solution.

REFERENCES

[1] “A View of Cloud Computing,” M.

Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.

Katz, A.Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and M.Zaharia, ACM Comm.,

vol. 53,no. 4, pp. 50-58, Apr. 2010.

[2] “Measuring Network Security Using

Bayesian Network-Based Attack Graphs,”

M.Frigault and L. Wang, Proc. IEEE 32nd Ann.

Int‟l Conf. Computer Software and Applications

(COMPSAC ‟08),pp. 698-703, Aug. 2008.

[3] “Security and Privacy Challenges in Cloud

Computing Environments,” H. Takabi, J.B. Joshi,

and G. Ahn, IEEE Security and Privacy, vol. 8,

no. 6, pp. 24-31, Dec. 2010.

[4] “BotSniffer: Detecting Botnet Command

and Control Channels in Network Traffic,”G. Gu,

J. Zhang, and W. Lee, Proc. 15
th

 Ann. Network

and Distributed Sytem Security Symp. (NDSS

‟08), Feb.2008.

[5] “NuSMV: A New Symbolic Model

Checker,” http://afrodite .itc.it:1024/nusmv. Aug.

2012.

[6] “Scalable, graphbasednetwork

vulnerability analysis,” P. Ammann, D.

Wijesekera, and S. Kaushik, Proc. 9th ACM

Conf.Computer and Comm. Security (CCS ‟02),

pp. 217-224, 2002

[7] “Dynamic Security Risk Management

Using Bayesian Attack Graphs,”N. Poolsappasit,

R. Dewri, and I. Ray,IEEE Trans.Dependable and

Secure Computing, vol. 9, no. 1, pp. 61-74, Feb.

2012.

[8] “A New Alert Correlation Algorithm

Based on Attack Graph,” S. Roschke, F. Cheng,

and C. Meinel, Proc. Fourth Int‟l

Conf.Computational Intelligence in Security for

Information Systems,pp. 58-67, 2011

Rohini, IJECS Volume 3 Issue 1 Jan, 2014 Page No.3660-3667 Page 3667

[9] “Network Security Management Using

ARP Spoofing,”K. Kwon, S. Ahn, and J. Chung,

Proc. Int‟l Conf. Computational Science and Its

Applications (ICCSA ‟04), pp. 142-149, 2004.

[10] “Automated Generation and Analysis of

Attack Graphs,”O. Sheyner, J. Haines, S. Jha, R.

Lippmann, and J.M. Wing,Proc. IEEE Symp.

Security and Privacy, pp. 273-284, 2002,

