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Abstract-To prevent vulnerable virtual machines from being compromised in the cloud. A multiphase 

distributed vulnerability detection, measurement, and countermeasure selection mechanism called NICE. 

Built on attack graph-based analytical models and reconfigurable virtual network-based countermeasures. 

Attackers can explore vulnerabilities of a cloud system and compromise virtual machines to deploy further 

large-scale Distributed Denial-of-Service (DDoS). Open Flow network programming APIs to build a 

monitor and control plane over distributed programmable virtual switches to significantly improve attack 

detection and mitigate attack consequences. The system and security evaluations demonstrate the efficiency 

and effectiveness of the proposed solution. 

INTRODUCTION 

 

           Network and security management has to 

assure uninterrupted access to the communication 

infrastructure. With growing networks and 

increasing amount of transported data, it gets 

more and more complicated to supervise the 

operation of the communication systems. 

Sometimes computer networks are not well 

protected against attacks from the outside, so 

additional surveillance may be necessary. But 

even well protected networks need surveillance. A 

lot of these networks are threatened from the 

inside. Intrusion Detection Systems (IDSs) help 

securing these networks. This paper focuses on a 

tool for visualizing and detecting anomalies of the 

traffic structure. Several distributed Denial of 

Service attacks have shown the necessity of better 

protecting computers and networks connected to 

the Internet. Due to widely available attack tools, 

attacks of this kind can be carried out by persons 

without in-depth knowledge of the attacked 

system. Insufficient protected Open University 

networks are an example for networks that need 

additional surveillance. These networks often 

include vulnerable computers and offer high 

bandwidth connections to the Internet. These 

features are the reason why attackers are 

interested in these networks. The machines in 

these networks are not the goal of the attacks. 

Normally, they do not contain interesting 

information for the attacker, but they are suitable 

for scanning other networks and starting (for 

example) Denial of Service attacks. 

            

       The Internet is increasingly important as the 

vehicle for global electronic commerce. Many 

organize- tins also use Internet TCP/IP protocols 

to build intra-networks (intranets) to share and 

disseminate internal information. A large scale 

attack on these networks can cripple important 

world-wide Internet operations. The Internet 

Worm of 1988 caused the Internet to be 

unavailable for about _vet days Seven years later, 

there is no system to detect or an- laze such a 

problem on an Internet-wide scale. The 

development of a secure infrastructure to defend 

the Internet and other networks is a major 

challenge. In this paper, we present the design of 

the Graph-based Intrusion Detection System 

(Girds).  
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        Girds‟ design goal is to analyze network 

activity on TCP/IP networks with up to several 

thousand hosts. Its primary function is to detect 

and anal- lyre large-scale attacks, although it also 

has the ca- ability of detecting intrusions on 

individual hosts. Girds aggregates network 

activity of interest into 

Activity graphs, which are evaluated and possibly 

re- ported to a system security ocher (SSO). The 

hiker- archival architecture of Grids allows it to 

scale to large networks. Grads is being designed 

and built by the authors using formal consensus 

decision-making and a well- documented software 

process. We have completed the Grids design and 

have almost _knishes building a prototype. 

 

             This paper is organized as follows. Brier 

describes related work on intrusion detection 

systems and motivates the need for Grids‟. 

Section 1.2 discusses classes of attacks that we 

expect to detect. In   the simple Grids‟ detection 

algorithm is described, followed by a more 

detailed discussion in has a treat- meant of the 

hierarchical approach to scalability and   discusses 

how the hierarchy is managed.   outlines the 

policy language.   Covers some limitations of 

Girds. Finally, presents conclusions and discusses 

future work.   

           Network security is a complicated subject, 

historically only tackled by well-trained and 

experienced experts. However, as more and more 

people become ``wired'', an increasing number of 

people need to understand the basics of security in 

a networked world.  

1.above the Clouds: A Berkeley View of Cloud 

Computing 

 

             Cloud Computing refers to both the 

applications delivered as services over the Internet 

and the hardware and systems software in the 

datacenters that provide those services. The 

services themselves have long been referred to as 

Software as a Service (Seas), so we use that term. 

The datacenter hardware and software is what we 

will call a Cloud. When a Cloud is made available 

in a pay-as-you-go manner to the public, we call it 

a Public Cloud; the service being sold is Utility 

Computing. Current examples of public Utility 

Computing include Amazon Web Services, 

Google Apennine, and Microsoft Azure. We use 

the term Private Cloud to refer to internal 

datacenters of a business or other organization that 

are not made available to the public.  

 

             Thus, Cloud Computing is the sum of 

Seas and Utility Computing, but does not 

normally include Private Clouds. We‟ll generally 

use Cloud Computing, replacing it with one of the 

other terms only when clarity demands it. The 

roles of the people as users or providers of these 

layers of Cloud Computing, and we‟ll use those 

terms to help make our arguments clear. The 

advantages of Seas to both end users and service 

providers are well understood. Service providers 

enjoy greatly simplified software installation and 

maintenance and centralized control over 

versioning; end users can access the service 

“anytime, anywhere”, share data and collaborate 

more easily, and keep their data stored safely in 

the infrastructure. Cloud Computing does not 

change these arguments, but it does give more 

application providers the choice of deploying their 

product as Seas without provisioning a datacenter: 

just as the emergence of semiconductor foundries 

gave chip companies the opportunity to design 

and sell chips without owning a fib, Cloud 

Computing allows deploying Seas—and scaling 

on demand—without building or provisioning a 

datacenter.  

 

           Analogously to how Seas allows the user to 

offload some problems to the Seas provider, the 

Seas provider can now offload some of his 

problems to the Cloud Computing provider. From 

now on, we will focus on issues related to the 

potential Seas Provider (Cloud User) and to the 

Cloud Providers, which have received less 

attention. 

 

 

 

We will argue that all three are important to the 

technical and economic changes made possible by 

Cloud Computing. Indeed, past efforts at utility 

computing failed, and we note that in each case 

one or two of these three critical characteristics 

were missing. For example, Intel Computing 

Services in 2000-2001 required negotiating a 

contract and longer-term use than per hour. As a 

successful example, Elastic Compute Cloud (EC2) 

from Amazon Web Services (AWS) sells 1.0-GHz 

x86 ISA “slices” for 10 cents per hour, and a new 

“slice”, or instance, can be added in 2 to 5 

minutes. Amazon‟s Scalable Storage Service (S3) 
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charges $0.12 to $0.15 per gigabyte-month, with 

additional bandwidth charges of $0.10 to $0.15 

Per gigabyte to move data in to and out of AWS 

over the Internet. Amazon‟s bet is that by 

statistically multiplexing multiple instances onto a 

single physical box, that box can be 

simultaneously rented to many customers who 

will not in general interfere with each others‟ 

usage While the attraction to Cloud Computing 

users (Seas providers) is clear, who would become 

a Cloud Computing provider, and why? To begin 

with, realizing the economies of scale afforded by 

statistical multiplexing and bulk purchasing 

requires the construction of extremely large 

datacenters. Building, provisioning, and launching 

such a facility is a hundred-million-dollar 

undertaking. However, because of the phenomenal 

growth of Web services through the early 2000‟s, 

many large Internet companies, including 

Amazon, eBay, Google, Microsoft and others, 

were already doing so. Equally important, these 

companies also had to develop scalable software 

infrastructure (such as Map Reduce, the Google 

File System, Bitable, and Dynamo and the 

operational expertise to armor their datacenters 

against potential physical and electronic attacks. 

Therefore, a necessary but not sufficient condition 

for a company to become a Cloud Computing 

provider is that it must have existing investments 

not only in very large datacenters, but also in 

large-scale software infrastructure 

And operational expertise required running them. 

Given these conditions, a variety of factors might 

influence these companies to become Cloud 

Computing providers: 

 

2.Secure Network ID and Attack measure 

Count in Virtual Systems 

 

             A recent Cloud Security Alliance (CSA) 

survey shows that among all security issues, abuse 

and nefarious use of cloud computing is 

considered as the top security threat in which 

attackers can exploit vulnerabilities in clouds and 

utilize cloud system resources to deploy attacks. 

In traditional data centers, where system 

administrators have full control over the host 

machines, Vulnerabilities can be detected and 

patched by the system administrator in a 

centralized manner. However, patching known 

security holes in cloud data centers, where cloud 

users usually have the privilege to control 

software installed on their managed VMs, may not 

work effectively and can violate the Service Level 

Agreement (SLA). Furthermore, cloud users can 

install vulnerable software on their VMs, which 

essentially contributes to loopholes in cloud 

security. The challenge is to establish an effective 

vulnerability/attack detection and response system 

for accurately identifying attacks and minimizing 

the impact of security breach to cloud users.  

    In M. Armrest et al. addressed that 

protecting” Business continuity and services 

availability” from service outages is one of the top 

concerns in cloud computing systems. In a cloud 

system where the infrastructure is shared by 

potentially millions of users, abuse and nefarious 

use of the shared infrastructure benefits attackers 

to exploit vulnerabilities of the cloud and use its 

resource to deploy attacks in more efficient ways. 

Such attacks are more effective in the cloud 

environment since cloud users usually share 

computing resources, e.g., being connected 

through the same switch, sharing with the same 

data storage and file systems, even with potential 

attackers. The similar setup for VMs in the cloud, 

e.g., virtualization techniques. 

 

 

 

In this paper, we propose Secure Intrusion 

Detection and Attack measure exquisite in Virtual 

Systems to establish a defense-in-depth intrusion 

detection framework. For better attack detection, 

NICE incorporates attack graph analytical 

procedures into the intrusion detection processes. 

We must note that the design of NICE does not 

intend to improve any of the existing intrusion 

detection algorithms; indeed, NICE employs a 

reconfigurable virtual networking approach to 

detect and counter the attempts to compromise 

VMs, thus preventing zombie VMs. 

 

 

           In general, NICE includes two main 

phases:  deploy a lightweight mirroring-based 

network intrusion detection agent (NICE-A) on 

each cloud server to capture and analyze cloud 

traffic. A NICE-A periodically scans the virtual 

system vulnerabilities within a cloud server to 

establish Scenario Attack Graph (SAGs), and then 

based on the severity of identified vulnerability 

towards the collaborative attack goals, NICE will 

decide whether or not to put a VM in network 

inspection state.  Once a VM enters inspection 

state, Deep Packet Inspection (DPI) is applied, 

and/or virtual network reconfigurations can be 
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deployed to the inspecting VM to make the 

potential attack behaviors prominent. 

 

 The rest of paper is organized as follows. 

Section II presents the related work. Section III 

describes system approach and implementation. 

System models are described in Section IV 

describes the approach to hardening the network 

in NICE. The proposed NICE is presented in 

Section V and Section VI evaluates NICE in terms 

of network performance and security. Finally, 

Section VII describes future work and concludes 

this paper. 

 

3. BotSniffer: Detecting Bitnet Command and 

Control Channels In Network Traffic 

 

              Bonnets (or, networks of zombies) are 

recognized as one of the most serious security 

threats today. Bonnets are different from other 

forms of malware such as worms in that they use 

command and control (C&C) channels. It is 

important to study this bonnet characteristic so as 

to develop effective countermeasures. First, a 

bonnet C&C channel is relatively stable and 

unlikely to change among bots and their variants. 

Second, it is the essential mechanism that allows a 

“postmaster” (who controls the Bitnet) to direct 

the actions of bots in a Bitnet. As such, the C&C 

channel can be considered the weakest link of a 

boned. That is, if we can take down an active 

C&C or simply interrupt the communication to the 

C&C, the postmaster will not be able to control 

his bonnet. Moreover, the detection of the C&C 

channel will reveal both the C&C servers and the 

bots in a monitored network. Therefore, 

understanding and detecting the C&Cs has great 

value in the battle against bonnets. 

             Many existing Bitnet C&Cs are based on 

IRC (Internet Relay Chat) protocol, which 

provides a centralized command and control 

mechanism. The postmaster can interact with the 

bots (e.g., issuing commands and receiving 

responses) in real-time by using IRC PRIVMSG 

messages.  

 

               This simple IRC-based C&C mechanism 

has proven to be highly successful and has been 

adopted by many bonnets‟. There are also a few 

bonnets‟ that use the HTTP protocol for C&C. 

HTTP-based C&C is still centralized, but the 

postmaster does not directly interact with the bots 

using chalice mechanisms. Instead, the bots 

periodically contact the C&C server(s) to obtain 

their commands. Because of its proven 

effectiveness and efficiency, we expect that 

centralized C&C (e.g., using IRC or HTTP) will 

still be widely used by burnets in the near future. 

In this paper, we study the problem of detecting 

centralized boned C&C channels using network 

anomaly detection techniques. In particular, we 

focus on the two commonly used Bitnet C&C 

mechanisms, namely, IRC and HTTP based C&C 

channels. Our goal is to develop a detection 

approach that does not require prior knowledge of 

a bonnet, e.g., signatures of C&C patterns 

including the name or IP address of a C&C server. 

We leave the problem of detection of P2P 

bonnets‟ and Peacomm as our future work. 

 

 

        Few bots in the monitored network, and may 

contain encrypted communication. However, we 

observe that the bots of a burnet demonstrate 

spatial-temporal correlation and similarities due to 

the nature of their pre-programmed response 

activities to control commands. This invariant 

helps us identify C&C within network traffic. For 

instance, at a similar time, the bots within a 

bonnet will execute the same command (e.g., 

obtain system information, scan the network), and 

report to the C&C server with the progress/result 

of the task (and these reports are likely to be 

similar in structure and content). Normal network 

activities are unlikely to demonstrate such a 

synchronized or correlated behavior. Using a 

sequential hypothesis testing algorithm, when we 

observe multiple instances of correlated and 

similar behaviors, we can conclude that a boned is 

detected. Our research makes several 

contributions.  

 

        First, we study two typical styles of control 

used in centralized bonnet C&C. The first is the 

“push” style, where commands are pushed or sent 

to bots. IRC-based C&C is an example of the push 

style. The second is the “pull” style, where 

commands are pulled or downloaded by bots. 

HTTP-based C&C is an example of the pull style. 

Observing the spatial temporal correlation and 

similarity nature of these bonnet C&Cs, we 

provide a set of heuristics that distinguish C&C 

traffic from normal traffic.  

 

 

Second, we propose anomaly-based detection 

algorithms to identify both IRC and HTTP based 

C&Cs in a port independent manner. The 
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advantages of our algorithms include: they do not 

require prior knowledge of C&C servers or 

content signatures, they are able to detect 

encrypted C&C,  they do not require a large 

number of bots to be present in the monitored 

network, and may even be able to detect a Bitnet 

with just a single member in the 

monitored network in some cases,  they have 

bounded false positive and false negative rates, 

and do not require a large number of C&C 

communication packets. 

 

4.NUSMV: a new symbolic model checker 

 

              This paper describes the results of a joint 

project between Carnegie Mellon University 

(CMU) and Institute per la Ricers Sciatica e 

Technologic (IRST) whose goal is the 

development of a new symbolic model checker.1 

the new model checker, called NUSMV, is 

designed to be a well structured, open, _exiles and 

documented platform for model checking. To be 

usable in technology transfer projects, NUSMV 

was designed to be very robust, easy to modify, 

and close to the standards required by industry. 

NUSMV is the result of the reengineering and 

reimplementation of the CMU SMV symbolic 

model checker. With respect to CMU SMV, 

NUSMV has been upgraded along three 

dimensions.   

 

           From the point of view of the system 

functionalities, NUSMV has some features (e.g., 

multiple interfaces, LTL speci_cations) that 

enhance the user ability to interact with the 

system, and provide more heuristics for, e.g., 

achieving efficiency or partially controlling the 

state explosion.  The system architecture of 

NUSMV is highly modular (thus allowing for the 

substitution or elimination of certain modules) and 

open (thus allowing for the addition of new 

modules). A further feature is that in NUSMV the 

user can control, and possibly change, the order of 

execution of some system modules.  

 

           The quality of the implementation is much 

enhanced. NUSMV is a very robust and well 

documented system, whose code is (relatively) 

easy to modify. The paper is organized as follows 

we briery introduce the logical framework below 

symbolic model checking; describes the 

interaction with the system explains the 

functionalities provided by the system describes 

the NUSMV system architecture; describes the 

NUSMV implementation features. Finally, 

describes the results of some tests and future 

development directions  

 

 

            The most widely used frication techniques 

are testing and simulation. In the case of complex, 

asynchronous systems, however, these techniques 

can cover only a limited portion of possible 

behaviors. A complementary frication technique is 

Temporal Logic Model Checking. In this 

approach, the varied system is modeled as a niter 

state transition system, and the speci_cations are 

expressed in a propositional temporal logic. Then, 

by exhaustively 

Exploring the state space of the state transition 

system, it is possible to check automatically if the 

speci_cations are stashed. The termination of 

model checking is guaranteed by the niceness of 

the model. One of the most important features of 

model checking is that, when a speci_cations is 

found not to hold, a counterexample (i.e., a 

witness of the offending behavior of the system) is 

produced. 

 

               The current NUSMV input language is 

essentially the same as the CMU SMV input 

language The NUSMV input language is designed 

to allow for the description of _niter state systems. 

The only data types provided by the language are 

Booleans, bounded integer sub ranges, and 

symbolic enumerated types. Moreover, NUSMV 

allows for the dentitions‟ of bounded arrays of 

basic data types. The description of a complex 

system can be decomposed into modules, and 

each of them can be instantiated many times.  

       This provides the user with a modular and 

hierarchical description, and supports the dentition 

of reusable components. Each module dense a 

_niter state machine. Modules can be composed 

either synchronously or asynchronously using 

interleaving. In synchronous composition a single 

step in the composition corresponds to a single 

step in each of the components. In asynchronous 

composition with interleaving a single step of the 

composition corresponds to a single step 

performed by exactly one component. The 

NUSMV input language allows describing 

Deterministic and non deterministic systems. A 

NUSMV program can describe both the model 

and the speci_cations.  

 

      Gives a small example of a NUSMV program. 

The example in Figure 4 is a model of a 3 bit 
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binary counter circuit. It illustrates the damnation 

of Reusable modules and expressions. The module 

counter cell is instantiated three times, with names 

bit0, bit1 and bit2. The module counter cell has a 

formal parameter carry in. In the instantiation of 

the module, actual signals (1 for the instance bit0, 

bit0.carry out for the instance bit1 and bit1.carry 

out for the instance bit2) are plugged in for the 

formal parameters, thus linking the module 

instance to the program (a module can be seen as 

a subroutine). The property that we want to check 

is .invariantly eventually the counter count till 8. 

Which is expressed in CTL using the design state 

variables as .  

          

 It is also possible to specify the transition relation 

and the set of initial states of a module by means 

of propositional formulas, using the keywords 

TRANS, and INIT respectively. This provides the 

user with a lot of freedom in designing systems  

there is an equivalent damnation of module 

counter cell using propositional formulas. 

 

there is an equivalent damnation of module 

counter cell using propositional formulas 

 

5.Scalable, Graph-Based Network 

Vulnerability Analysis 

 

             Researchers and penetration testers often 

organize these chains of exploits into graphs or 

trees. In either case, a designated node (or set of 

nodes) represents the initial state(s), where a state 

is defined by assigning a set of values to relevant 

system attributes, including specific 

vulnerabilities on various hosts in the network, 

connectivity between hosts, and attacker access 

privileges on various hosts. Each transition in the 

tree (or graph) represents a specific exploit that an 

attacker can carry out. For example, the „sshd 

buffer overflow‟ exploit, carried out from a 

specific host controlled by the attacker towards a 

victim host, lets the attacker obtain root access 

privileges on the victim, thereby changing the 

state of the system. Although the precise 

definitions of attack graph and attack tree vary by 

author, it is useful to think of an attack tree as a 

structure in which each possible exploit chain 

ends in a leaf state that satisfies the attacker‟s 

goal, and an attack graph as a consolidation of the 

attack tree in which some or all common states are 

merged.  

 

        The basic observation behind this paper is 

that attack graphs can easily be far too large to be 

practical. Paper provides some support for our 

position on this: in a scaling exercise with 5 hosts, 

8 exploits, and the vulnerabilities associated with 

those exploits, Mums reportedly Took 2 hours to 

execute, with most of that time spent on graph 

manipulation. The resulting attack graph had 5948 

nodes and 68364 edges. The state space in that 

example was represented with 229 bits. By 

contrast, to encode such a problem with the 

methods Presented in this paper, we need, at most, 

229 nodes, one for each bit in the state 

representation. Each of these nodes must be able 

to store a constant amount of information about 

however many exploits can change the value of 

that particular node from „false‟ to „true‟. It is 

clear that our structure is dramatically smaller, 

even for this relatively limited, from a real world 

perspective, example.  

 

         However, we don‟t lose any of the 

information in our encoding. That is, we present 

an algorithm that explodes our structure into an 

attack tree. At the same time, we aren‟t required to 

generate an attack tree (or graph) to carry out our 

subsequent analysis. We give worst case bounds 

on our algorithms as we give our presentation.  

 

       The cost we pay in this paper for our 

dramatically smaller data structure is 

monotonicity. Simply stated, monotonicity means 

that no action an attacker takes interferes with the 

attacker‟s ability to take any other action. We 

return to the issue of monotonicity throughout the 

paper. Our basic position is that monotonicity is a 

reasonable modeling assumption in many network 

analysis situations. 

 

           Commercial vulnerability scanners are 

quite effective at what they do - namely 

identifying vulnerabilities in a specific host. 

However, a variety of authors have noted that 

identifying vulnerabilities in isolation is only a 

small part of securing a network, and that a 

significant issue is identifying which 

vulnerabilities an attacker can take advantage of 

through a chain of exploits. For example, an 

attacker might exploit a defect in a particular 

version of ftp to overwrite the .roosts file on a 

victim machine. In the next step, the attacker 

could remotely log in to the victim. In a 

subsequent step, the attacker could use the victim 

machine as a base to launch another exploit on a 
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new victim, and so on. There are numerous 

examples of such chains in the literature, and 

extensive databases of exploits tailored to specific 

software and services are available on the web.  

 

        We treat vulnerabilities, attacker access 

privileges, and network connectivity in a way 

similar to other authors but with some 

simplification. A vulnerability is a fact about the 

system that, on the one hand, potentially enables 

some exploit to be carried out, and on the other, is 

the  

 

          Result of some exploit. Vulnerability might 

be running a particular version of some operating 

system on a given host. Attacker privileges and 

network connectivity are both straightforward to 

model; the fact that an attacker has a certain 

privilege level on a given host is an atomic fact, as 

is whether two hosts have a type of connectivity 

required for a given exploit.  

     

         The simplification is that we group together 

attacker access privileges, network connectivity, 

and vulnerabilities into generic attributes in our 

model. Thus, if an attacker has ftp access to a 

given host, we model this as an atomic attribute. 

Similarly, if a „.roosts‟ file includes a given host, 

we record that as an atomic attribute as well. 

 

The state space in that example was 

represented with 229 bits. By contrast, to encode 

such a problem with the methods Presented in this 

paper, we need, at most, 229 nodes, one for each 

bit in the state representation. 

 

 

 

 

CONCLUSION 

 

The event generating system has to be 

improved. The concepts are interesting, but 

additional work is needed to optimize the process. 

The system is still early work. It is possible to 

automatically detect anomalies in the 

communication structure of a surveyed network, 

but the goal of detecting a large number of 

different attacks is not yet reached. The fact that 

some of the attacks could be discovered by the 

system without any knowledge on the used attack 

techniques encourages us to further research. It is 

easy to see that this approach to intrusion 

detection only is appropriate for intruders causing 

an significant traffic in the supervised network. 

The proposed framework leverages Open Flow 

network programming APIs to build a monitor 

and control plane over distributed programmable 

virtual switches to significantly improve attack 

detection and mitigate attack consequences. The 

system and security evaluations demonstrate the 

efficiency and effectiveness of the proposed 

solution. 
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