
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume – 5 Issue -02 February, 2016 Page No. 15784-15786

Prof. Sushilkumar N. Holambe, IJECS Volume 05 Issue 2 February 2016 Page No.15784-15786 Page15784

Efficient Instant Fuzzy Search With Proximity Ranking And Query Logs
Prof. Sushilkumar N. Holambe, Bhagyashri G. Patil

PG Coordinator ME(CSE), TPCT’s College of Engineering,

 Osmanabad, India

snholambe@yahoo.com

Perusing ME(CSE), TPCT’s College of Engineering,

 Osmanabad, India

bhagyapatil11@gmail.com

Abstract: Instant fuzzy search is important developing technique from which users can find results character by character with better

search experiences. The results must have high speed, good relevancy score and also good ranking functions used to get top results. Many

functions are used to consider proximity of keywords which ultimately gives good relevancy score. In this paper, proximity information is

used to ranking query results with which gives good time and space complexities. Many previously proposed techniques are used to achieve

proximity ranking into instant fuzzy search. Most of the techniques firstly compute results and rank then according to some ranking

functions, but if the dataset used is large then it takes time to compute all results and its very time consuming. At this state early termination

technique is used to minimize space and time complexity. In this paper, incremental computation algorithm is used to overcome all

drawbacks of previous systems and compute relevant results. Also query logs are used which are very useful for most of query suggestion

systems, which ultimately reduces time complexity efficiently. The experimental results are computed to show space, time complexity and

quality of results.
Keywords: Auto complete, Algorithm, Term pair, edit distance.

1. INTRODUCTION

Instant search:

In Instant search as user typing query one or more possible

matches are given to the user. Because of these immediate

feedback users typing efforts minimizes. Suppose in IMDB

movie dataset user typing query “Amit”, the instant search

system returns “Amit”, “Amitabh”, “Amita” and or “Amitabh

Bachhan”. Nearly all users want to reduce typing efforts [1].

There are two types of instant search systems as, instant-

suggestion system and instant-result systems. Instant suggestion

systems suggest the possibilities and user has to choose correct

query and search. In instant result systems according to user’s

type query results are shown. As user’s type incomplete query

then result matching to these typed queries is shown. Example,

if user types, “Hum” , the results maybe “Hum Tum” and

“Hum Apake Hai kon”.

Fuzzy search:

 Fuzzy search is a technique in which if users make

typographical mistakes and type wrong query spellings then

automatically suggests correct queries and search that query.

Exactly and highly matching matching results appear on top.

Fuzzy search technique is like spelling corrector. Example,

suppose user wants to type query as “ Venkatesh” but by

mistakenly user type as “wenkatesh” , then fuzzy search

technique suggest correct spelling. Mostly on mobile phones

typing mistakes are more because of small screen, at that time

fuzzy search is important.

Related work:

Auto completion

In all user input systems auto completion is mostly useful

technique. Auto complete technique not also used for one word

but also for many words. There are many proposed methods for

auto completion [2], Fuzzy tree structure and significant phrase

prediction concepts are used.

Early termination

Many systems consists steps such as firstly find out all results

and after that rank these results according to some ranking

function. It is very insufficient to extract all matching results if

the dataset used is very large. So early termination technique is

used in which, sufficient results are extracted then searching

stops. Early termination reduces time and space complexity [3],

[4], [5].

Proximity ranking

Proximity ranking improves the relevancy and top results.

Proximity ranking achieved by using different indexing method

such as inverted index, forward index and tries. Proximity

ranking can be achieved with early termination [3], [4], [6], [7].

In this paper main focus on incremental search with query

logs. Query logs stores all the interactions of users with system.

Different experimental results are conducted with this concept.

2. LITERATURE REVIEW:

2.1 Ranking

Most of the searching techniques use good ranking functions

which are based on relevance score of query, query

occurrences in datasets and distance between two query

keywords in record. In proximity ranking main focus is on

exact query matching as user type query.

2.2 Indexing

In instant search mainly three basic indexing techniques are

used as inverted index, forward index and tries. Each query

keyword is represented using tries. In tries each leaf node

http://www.ijecs.in/

DOI: 10.18535/ijecs/v5i2.21

Prof. Sushilkumar N. Holambe, IJECS Volume 05 Issue 2 February 2016 Page No.15784-15786 Page 15785

presents the inverted list of prefix and in forward index records

id is represented for each record according to inverted list [8].

2.3 Top-k answers

Most of the searching techniques prefer top-k result. Firstly

results matching to query condition are computed and secondly

these results are ranked based on their relevance score. The

main disadvantage of this technique is results matching to

query keywords are many which reduce the system

performance by increasing time to extract query. So it does not

give the higher performance. This disadvantage is removed by

using early termination technique [9].

3. IMPLEMENTATION:

3.1 Server architecture of instant search:

In server architecture of instant fuzzy search, server receives

requests and create inverted list of all query keywords present

in dataset dictionary. Phrase validator mainly identifies the

valid phrases present in dictionary. By comparing all matches

and segmentations exact similar phrase is identified. Phrase

validator computes valid phrases and based on trei structure

inverted index is also computed. Query plan builder computes

valid query plan which consists the valid segmentations with

definite order. After query plan index searcher take each

segmentation one by one and top-k results are computed. Cache

module is used to store results computed by previous search

and can be used to next query keyword search.

3.2 Computation of valid phrases:

As algorithm described in [10], incrementally valid phrases are

computed. Algorithm explains how active nodes are computed

from inverted list and from cache, computing valid phrase

incrementally based on cached valid phrase of previous

queries. In this, query logs are used before searching query

incrementally. If user has previously searched the query, search

logs are created and searching results are stored in log. Next

time when user searching same query, then firstly searcher

search for log if that query present in log then get retrieved if

not then according to incremental search that query is searched.

Query log reduces searching time for those queries which are

previously searched.

Fig.1: Server architecture of instant fuzzy search with query

log

3.3 Segmenting and ranking queries:

From incremental computation valid phrase vector is

computed. From valid phrase vector all possible segmentations

are generated by using divide and conquer algorithm [10].

Example, suppose query q=< Life is beautiful > then possible

segmentations are present in following table.

Table 1: Segmentations for query q.

1. “Life is beautiful”

2. “Life is | beautiful”

3. “Life | is | beautiful”

According to computed segmentations, these segmentations

are ranked based on some ranking segmentations.

Segmentations are ranked based on minimum edit distance and

number of phrases present in segmentation. If any two

segmentations have same minimum edit distance then they have

same rank.

4. EXPERIMENTAL RESULTS

Experimental results consists time and task depending upon the

previous systems used for instant search. For edit distance 1/3

as threshold value is used. Experimental results are conducted

on windows 7, with 1.90 GHz RAM.

There are three datasets are examined IMDB movie

dataset, IMDB book dataset and Enron dataset. Following

methods are implemented:

1. Find all (FA)

2. Query segmentation (QS)

3. Term pair (TP)

Fig. 3: Efficiency of different approaches

Fig. 4: Final result based on graph

When no of datasets increases the computation time is also get

increases. Cache hit for FA is better for all datasets. In 2-

keyword search and 3-keyword search QA performs best, FA

outperforms and TP mostly fail for 2 and more keyword search.

From experimental results conclusion is,

-Term pair is very slow.

DOI: 10.18535/ijecs/v5i2.21

Prof. Sushilkumar N. Holambe, IJECS Volume 05 Issue 2 February 2016 Page No.15784-15786 Page 15786

-Find all is good for lengthy keyword search, but its slightly

better for 1-keyword search.

- Query segmentation is good for 2-keyword or 3-keyword

search as most of the applications use this and its better as the

size of dataset increase.

5. Conclusion:

In this paper, incremental search with query logs is used. The

previously proposed techniques are studied in this paper which

consist incremental search, segmentation and proximity

ranking. Query logs not only decrease execution time but also

it helps users to find out appropriate results even if they have

low partial knowledge. Query logs returns answers before

typing full query and ultimately reduce typing efforts of users.

Query logs are helpful for small devices as it reduce typing

efforts.

References:

[1]. Centidil, J. Esmaelnezad, C. Li, and D. Newman,

“Analysis of instant search query log,” in WebDB,

2012, p.p.7-12.

[2]. Nandi, H. V. Jagadish, “Effective phrase prediction,” in

VLDB, 2007, p.p. 219-230.

[3]. R. Schenkel, A.Broschart, S.won Hwang, M. Theobald

and G.Weikum, “Efficient text proximity search,” in

SPIRE, 2007,p.p. 287-299.

[4]. M. Zhu, S. Shi, N. Yu, J. R. Wen, “Can phrase indexing

helps to predict non-phrase queries,” in CIKM, 2008,

p.p.679-688.

[5]. H. Yan, S. Shi, F. Zhang, t. Suel, and J. R. Wen,

“Efficient term proximity search with term-proximity

indexes,” in CIKM, 2010.p.p. 1229-1238.

[6]. R. Song, M. J. Taylor, R. Wen, H. W. Hon, Y.Yu,

“Viwing term proximity by different perspective,” in

ECIR, 2008, p.p. 346-357.

[7]. T. Tao, C. Zhai, “An exploration of proximity measure in

information retrieval,” in SIGIR, 2007,p.p. 295-302.

[8]. S. Ji, G. Li, C. Li, and J. Feng. “Efficient interactive fuzzy

keyword search,” in WWW,2009,p.p. 371-380.

[9]. G. Li, J. Wang, C. Li, and J.Feng, “Supporting efficient

top-k queries in type-ahead search,” in SIGIR, 2012,

p.p. 355-364.

[10]. Centidil, J. Esmaelnezad, C. Li, “Efficient instant fuzzy

search with proximity ranking,” in WebDB, 2014, p.p.

1-12.

