
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 7 Issue 6 June 2018, Page No. 23990-23996

Index Copernicus Value (2015): 58.10, 76.25 (2016) DOI: 10.18535/ijecs/v7i6.05

K.Sangeeta, IJECS Volume 7 Issue 6 June 2018 Page No. 23990-23996 Page 23990

Semantic Access of Relational Databases by mapping Ontology to

Relational tables

K.Sangeeta

Assistant Professor, Department of CSE, Aditya Institute of Technology and Management,Tekkali.

Abstract:

Ontologies are used as the mediator for different data sources to participate in semantic web. Legacy

databases such as the relational and XML based data sources are mapped to Ontologies and are accessed

through the SPARQL queries. The proposed method includes the extraction of Ontology from ER/EER

diagrams. The conversion of ER/EER diagrams to semantically equivalent Ontologies preserves most of the

domain semantics. But in order to make them participate in the semantic web, an efficient method to access

these data sources through SPARQL queries should be provided. The proposed method allows to access the

underlying data sources (relational tables) by executing SPARQL queries on the Ontology extracted from

ER/EER schema.

Keywords: SPARQL,SQL,RDF.

1. Introduction

Most of the existing data based web applications use

either relational data sources or XML data sources.

For these data sources to participate in semantic web

and enable semantic based data access and

integration, their associated database schema must

be mapped to Ontology. In order to preserve most of

the domain semantics of relational database systems,

mapping rules are proposed to transform conceptual

data models(ER/EER diagrams) into semantically

equivalent Ontologies[1]. Assuming that the

underlying relational database schema is derived

from the conceptual model ER/EER schema, the

framework proposed in the project enables the

translation of SPARQL queries into corresponding

SQL queries thereby accessing the underlying

relational data sources. It Maps the Ontology to the

relational tables efficiently. It converts almost all

basic SPARQL queries on the Ontology created

from ER diagrams to SQL queries.

Figure 1:Mapping relational databases to semantic

web

2. 2. Background and Related Works

2.1 R2O

A R2O mapping create instances in the Ontology

from the data stored in the DB. It automatically

populate an Ontology with information extracted

from the content in the DB[2] .It does not allow

Ontology instances to be converted to Database.

Direct Mapping. A DB table directly maps a concept

in the Ontology. Every record of the table will

correspond to an instance of an ontology concept.

Join/Union. A set of DB tables map a concept in the

ontology when they are joined. Every join record of

the joined tables correspond to an instance of an

ontology concept. Projection. It appears when a

subset of the columns of a DB table are needed to

map a concept in the ontology.

Selection. A subset of the rows of a DB table map a

concept in the ontology. Any combination of them

are also possible.

2.2 Relational.OWL

An OWL-based representation format for relational

data and schema components[3].The schema and

data items originally stored in relational database

http://www.ijecs.in/

K.Sangeeta, IJECS Volume 7 Issue 6 June 2018 Page No. 23990-23996 Page 23991

systems are described using OWL ontology. It

defines a OWL Full ontology to describe the schema

and data of a RDB.

2.3 Virtuoso DBMS

Virtuoso is a multi-protocol server providing

ODBC/JDBC access to relational data stored either

within Virtuoso itself or any combination of external

relational databases[4]. Virtuoso’s data storage

consists of a single table of four columns holds one

quad, i.e. triple plus graph per row. The columns are

G for graph, P for predicate,S for subject and O for

object. P, G and S are IRI IDs. Virtuoso offers

SPARQL inside SQL.Thus SPARQL inherits all the

aggregation and grouping functions of SQL, as well

as any built-in or user defined functions. SPARQL is

converted into SQL at the time of parsing the query.

If all triples are in one table, the translation is, union

becoming a SQL union and optional becoming a left

outer join. The toplevel of the data mapping

metadata are quad storages. A quad storage is a

named list of RDF views. A SPARQL query will be

executed using only quad patterns of views of the

specified quad storage.

2.4 D2RQ

D2RQ is a declarative language to describe

mappings between application-specific relational

database schema and RDF-S/OWL

Ontologies[5],[6]. D2RQ allows RDF applications

to treat non-RDF relational databases as virtual RDF

graphs, which can be queried using RDQL. The

central concept in D2RQ is the ClassMap. A

ClassMap represents a class or a group of similar

classes from the ontology. It specifies whether

instances are identified by using URI column values

from the database, by using an URI pattern

together with the primary key values or by using

blank nodes. Each ClassMap has a set of property

bridges, which specify how instance properties are

created and how given URIs or literals are reversed

into database values. There are two types of property

bridges: DatatypePropertyBridges for literals and

ObjectPropertyBridges for URIs and for referring to

instances created by other class maps. Property

values can be created directly from database values

or by using patterns and translation tables.

3. Architecture of the System

The overall system architecture consists of two

parts. OntoExtractor [1] which automatically

converts ER/EER model into Ontology and Ont2R

Data Mapper that provides the Ontology based

access of relational database.The OntoExtractor[1]

extracts the Ontology from ER/EER diagram which

is input to Ont2R Data Mapper.

XML FILE
VALIDATION

ER2OWL
CONVERSION

ONTOLOGY
REPOSITORY

SCHEMA
MAPPING

OWL FILE

OntoExtractor Ont2R Data Mapper

SPARQL QUERY
VALIDATION

SPARQL2SQL
CONVERSION

RESULT
IN TRIPLES

X
M

L

F
ile S

P
A

R
Q

L
Q

ue
ry

USERERD + DTD

O
n
to

lo
g

y

Ont2R The Ont2R Mapper maps the ontology with

the underlying relational database and allows to

execute SPARQL queries on the ontology created.

The SPARQL query gets converted into SQL queries

and gets executed on the relational database and the

results are returned as RDF triples. The entire work

of the Ont2R can be divided into 3 modules

A) Mapping ontology to relational schema
B) Converting SPARQL to SQL & Execution of SQL

C)Converting Results back into RDF

3.1 Mapping Ontology To Relational Schema
The standard rules for conversion of ER model to

Relational model is based on [7]. The conversion of

SPARQL to SQL is mainly based on how

OntoExtractor[1] converts ER diagrams to

Ontology. Some of the OntoExtractor[1] mappings

that are relevant while converting SPARQL to SQL

are given below :

Table 1: OntoExtractor[1] Mapping Rules

ER Component OWL-DL Component

Strong Entity,Weak

Entity

Class

Identifying Relation functional object

property with range as

owner entity

and domain as the weak

entity. Another inverse

non-functional object

property with domain

as owner entity and

range as weak entity.

simple and

multivalued attributes

datatype property

Composite Class with components

attributes as datatype

properties. Functional

object property with

K.Sangeeta, IJECS Volume 7 Issue 6 June 2018 Page No. 23990-23996 Page 23992

domain as parent entity

class and range as the

new composite class.

key key attributes as data

type properties to key

class. Functional and

inverse functional

Object property .

domain as Strong entity

class and range as key

class.

Binary Relation

a. Without attributes Pair of inverse object

properties.

b. Binary Relation

With attributes

many-many Class with name of

relation.

Datatype property

corresponding to

attribute is added to the

above class. Two pairs

of object property

between above class

and two

participating entities.

Superclass and

subclass

Superclass and

subclass.

Ternary relation Class with name of

ternary relation. Three

pairs of inverse object

property between the

above class and three

entities.

Consider the following ER diagram for Company

Schema as shown in figure 2

Figure 2 : ER diagram of Company Schema[7]

The Relational database of this Company schema

according to the standard rules for conversion[7]

consists of the following tables :

Fi

gure 4: Relational schema generated from the

SPARQL SQL

SELECT ?subject

?object

WHERE{ ?subject

rdfs:property

?object

}

rdfs:property-

datatype

property(if the

domain is

an object)

SELECT <attribute >

FROM < table >

Select from the table

with name as the

domain of the property

select column with

object name

subject - variable Refers to one tuple

Object - variable Refers to the value of

the property

Object - constant Value of column taking

assertions from where

FILTER WHERE

Property-object

property(Range is

an entity in ER

Diagram)

Do join of the two

tables with names as

that of object

Property object

property(Range not

in ERD)(key or

composite attribute)

From domain table

select the attribute

OPTIONAL NULL values are

covered in the result

K.Sangeeta, IJECS Volume 7 Issue 6 June 2018 Page No. 23990-23996 Page 23993

company

 ER diagram

The Ontology created by the OntoExtractor [1]

consists of Classes, DatatypeProperties, Object

Properties as shown in figure 5.

Figure 5a:Classes Figure 5b:DatatypeProperties

Figure 5c:Object Properties

3.2 RULES FOR CONVERTING SPARQL TO SQL

The following rules are used for conversion of

SPARQL Query to SQL query as shown in given

table 2 conversion rules

 Table 2:Conversion Rules

Algorithm 1: SPARQL to SQL Algorithm

Input: SPARQL query

Output: SQL Query

1: repeat

2: if i ← containsdatatypeproperty then

3: datatype(i)

4: else if i ← containsobjecttypeproperty then

5: objecttype(i)

6: else if i ← contains filter then

7: filter(i)

8: end if

 9: until end of the query

Algorithm 2: datatype(i)

X = property name without ”has”;

 if X ← multivaluedattribute then

 FROM+= (X,Domain)

 WHERE+= ”X.key(Domain)=Domain.key”

 end if

 if Domain ← Entity then

 if Domain ← subclass then

 FROM+= (subclass, superclass)

 WHERE+=” subclass.key=superclass.key)”

 else

 FROM+= Domain

 end if

 if object ← variable then

 if object is in the select _temp then

 SELECT+ =X

 else

 temp _var= X

 end if

 else

 WHERE+= ”Domain.X = object ”

 end if

 else

 if Domain contains ”Key” then

 Domain = remove Key from Domain

 if object ← variable then

 if object is in the select_temp then

 SELECT+ =X

 else

 temp var= X

 end if

 else

 WHERE+= ”Domain.X = object ”

 end if

 else

 object_property_name = has +Domain

 if object ← variable then

 if object is in the select_ temp then

 SELECT+ = X

 FROM+ = domain of object property

name

 end if

 else

 WHERE+= ”domain of object property name.X

= object”

 end if

 end if

end if

Algorithm 3 :objecttype(i)

 X = property name;

 if X ← relationship then

K.Sangeeta, IJECS Volume 7 Issue 6 June 2018 Page No. 23990-23996 Page 23994

 if Domain/Range ← weakentity then

 FROM +=(domain, range)

 WHERE

+=weakentity.key(owner)=owner .key

 else

 if Xis1 : NorN : 1 then

 FROM +=(Nside, 1side)

 WHERE += Nside.key (1 side)=1side.key

else if Xis1 : 1 then

 FROM+=(Entitywithtotalparticipation(E1),

otherEntity(E2)

 WHERE +=E1.key(E2)=E2.key

 else

 FROM +=(Domain, Range, X)

 WHERE+=Domain.key1(domain)=X.key1and

Range.key2(range)=X.key2

 end if

 end if

 if object is in the select_temp then

 FROM+ = Domain

 SELECT = Domain.key

 end if

 else if X contains substring is_ Identified_ by_ then

 if object is in the select temp then

 FROM+ = Domain

 SELECT = Domain.key

 end if

else if X is an attribute of Domain then

 if object is in the select_temp then

 FROM+ = Domain

 SELECT = components of Domain

 end if

end if

if Range ← relationship then

 FROM =(Domain, range)

 end if

Algorithm 4: filter(i)

WHERE+ =”Domain.property”+filter condition+

filtervalue.

An example of procedure of converting a SPARQL

query to SQL is given below.

The SPARQL Query is:

prefix abc:<http://www.owl

ontologies.com/Ontology1328199218.owl#>\\

SELECT ?bdate

WHERE {?a abc:isDEPENDENTS OF ?z.

 ?z abc:hasName ?ename.

?ename abc:hasFname ”cs”.

?a abc:hasBdate ?bdate.

}

The procedure of conversion is given in detail for

the above query

step1: select temp=bdate

isDEPENDENTS_OF is object property and

X=DEPENDENTS_OF .X is relation name and its

domain is weak entity.

step2: FROM=DEPENDENT,EMPLOYEE

step3:

WHERE=DEPENDENT.Ssn=EMPLOYEE.Ssn

step4: hasName is object property.

 X=Name. X is not a relation name and

doesn’t contain is_identified_by. Name is

composite attribute of domain EMPLOYEE.

step5: hasFname is a datatype property.

 X=Fname.Its domain Name is class

corresponding to composite attribute. object

property= hasName.The domain of this object

property is EMPLOYEE.

WHERE={DEPENDENT.Ssn=EMPLOYEE.Ssn

and EMPLOYEE .Fname=cs}

step6: hasBdate is a datatype property. Its domain

is EMPLOYEE.

SELECT=Bdate

From all these steps the final SQL query obtained is

SELECT DEPENDENT.Bdate

 FROM DEPENDENT,EMPLOYEE

WHERE DEPENDENT.Ssn=EMPLOYEE.Ssn

and EMPLOYEE .Fname=cs

3.3 Results in triples

Based on the mappings to the relational database, the

result of the SQL query is converted to RDF triples

and displayed.

4. Experimental Results

K.Sangeeta, IJECS Volume 7 Issue 6 June 2018 Page No. 23990-23996 Page 23995

The queries are executed on the ontology given

below.

 Query1 : Bdate of dependents who depend on

employee with Fname=cs

SPARQL:

prefix abc:<http://localhost/defaultBase# >

SELECT ?bdate

WHERE {?a abc:isDEPENDENTS OF ?z.

?z abc:hasName ?ename.

?ename abc:hasFname ”cs”.

?a abc:hasBdate ?bdate.

}

SQL: SELECT DEPENDENT.Bdate

FROM DEPENDENT,EMPLOYEE

WHERE DEPENDENT.Ssn=EMPLOYEE.Ssnand

EMPLOYEE .Fname=cs

Query2: Get the ssn,salary of all employees who

works for department no=21

SPARQL:

prefix abc:<http://localhost/defaultBase# >

SELECT ?ssn ?salary

WHERE { ?x abc:hasSalary ?salary.

?x abc:isWORKS FOR ?y.

?y abc:DEPARTMENTis Identified by key ?s.

?s abc:hasDnumber ?z.

filter(?z=21).

?x abc:EMPLOYEEis Identified by key ?t.

?t abc:hasSsn ?ssn }

SQL: SELECT Salary,Ssn

FROM EMPLOYEE ,DEPARTMENT

WHERE

EMPLOYEE.Dnumber=DEPARTMENT.Dnumber

and DEPARTMENT.Dnumber=21

 Query3: Select department locations for all

departments which controls project number =30

SPARQL:

prefix abc:<http://localhost/defaultBase# >

SELECT ?dlocation

WHERE { ?x abc:isCONTROLS ?y.

?y abc:hasDlocation ?dloc

?y abc: PROJECTis identified by key ?s

?s abc:hasPnumber ?z

filter(?z=30) }

SQL: SELECT Location

FROM DLOCATION,DEPARTMENT,PROJECT

WHERE

DEPARTMENT.Number=DLOCATION.Dnumber

AND

PROJECT.Number=DEPARTMENT.PNUMBER

AND PROJECT.Number=30

Query4: Select the salary of employees whose

salary is greater than 1000

SPARQL:

prefix abc:<http://localhost/defaultBase# >

SELECT ?salary

WHERE { ?x abc:hassalary ?y.

filter(?y> 1000)

}

SQL: SELECT Salary FROM EMPLOYEE

WHERE salary>1000

5. Conclusion

The proposed method converts almost all basic

SPARQL queries into SQL. The data from

Relational database is accessed without any loss.

Currently it maps only basic queries. As a future

work it can be extended to work for complex

queries such as nested queries and superclass,

subclasses.

K.Sangeeta, IJECS Volume 7 Issue 6 June 2018 Page No. 23990-23996 Page 23996

References

[1] Barrasa Rodríguez, Jesús and Corcho,

Oscar and Gómez-Pérez, A. (2004). R2O, an

extensible and semantically based database-

to-ontology mapping language. In:

"Proceedings of the Second Workshop on

Semantic Web and Databases, SWDB 2004".

Springer-Verlag, Berlín, Alemania, pp. 1069-

1070. ISBN 978-3-540-24576-6.

[2] PÃ©rez de Laborda, Cristian & Conrad, Stefan.

(2005). Relational.OWL - A data and schema

representation format based on OWL.

Conferences in Research and Practice in

Information Technology Series. 43. 89-96.

[3] [Erling, Orri & Mikhailov, Ivan. (2007). RDF

support in the virtuoso DBMS. Studies in

Computational Intelligence. 221. 59-68.

10.1007/978-3-642-02184-8_2.

[4] Andy Seaborne Christian Bizer. D2rq treating

non-rdf databases as virtual rdf graphs.

Poster at ISWC2004.

[5] Hert, Matthias & Reif, Gerald & C. Gall,

Harald. (2011). A comparison of RDB-to-

RDF mapping languages. 25-32.

10.1145/2063518.2063522.

[6] Shamkant B Navathe Ramez Elmasri. Relational

Database Design by ER- Mapping, chapter 7.

Pearson, 2007.

