
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume – 5 Issue -02 February, 2016 Page No. 15744-15748

Mr.Prashant S. Chavan, IJECS Volume 05 Issue 2 February 2016 Page No.15744-15748 Page 15744

Adaptive Query Interface for Database Search

Mr.Prashant S. Chavan, Prof. Dr.B.D.Phulpagar
Postgraduate Research Scholar

PESMCOE, Pune, India

Department of Computer engineering

PESMCOE, Pune, India

Abstract- Modern knowledge bases contain huge data with complex relations between the attributes. From these sort of databases

obtaining satisfactory results is troublesome task. Use of traditional predefined query interfaces during this sort of databases

doesn't provide satisfactory results. projected system generates query interface forms with user participation. User will provide

feedback by click through therefore capturing user’s preference. Query form is adaptive since it dynamically refined until user

gets satisfactory results.

Index Terms- information schema, query form, foreign key

1. INTRODUCTION

Information is merely as helpful as its query interface permits

it to be. If a user is unable to convey to the information what

he or she desires from it, even the richest knowledge store

provides very little or no worth. Static query forms or

predefined query forms area unit utilized by the DBA to

retrieve the knowledge from the information. however current

used databases contain variety of attributes and relations. So,

retrieving info with static query forms is troublesome.

Conjointly it's impractical to style static query kind with too

several attributes to handle. Several direction tools give

mechanisms to style predefined query forms. The method is

advanced as a result of user should manually edit to style

predefined query forms. If a user is unaware of the information

schema then handling attributes within the method of coming

up with predefined query forms becomes too advanced to

handle.

Adaptive query Interface is a approach that generates program

dynamically. In static query forms obtaining desired result's

one step method however if the information is big, user find

obtaining too several instances of results and therefore desired

info is inadequate. Projected approach uses several rounds of

actions as inputted by the user to get adaptive query forms

dynamically. Since filtration of results is predicated on user

actions. Methods are often extended until satisfactory result or

satisfactory varieties of filtered results are often found.

Projected approach is additionally helpful to the non skilled

user. It starts with a basic query type that contains only a few

primary attributes of the information. The essential query type

is then enriched iteratively via the interactions between the

user and our system till the user is satisfied with the query

results. In this paper, we have a tendency to chiefly study the

ranking of query type elements and also the dynamic

generation of query forms. Query forms generated once more

are often refined in line with user feedback and dynamically

be modified therefore name given as Adaptative Query

Interface. Figure one shows the flow diagram of the method

Fig.1. User Participation

2. LITERATURE SURVEY

Current challenge in retrieving info from large fashionable

information is to let non skilled user create use of relative

databases. therefore during this space, chiefly work is

concentrated on a way to generate query forms so while not

knowing the fields of information schema non skilled user

conjointly can able to fetch info. Presently, query forms area

unit accustomed meet this want up to some extent. To

spotlight a 1 query by Example is one sort of information

querying interface. Existing information purchasers like

Microsoft access can also be accustomed give interface to

developers to form customise query forms. However to use

this tool one have to be compelled to understand the

information schema therefore it's helpful to developer and to

not user. Paper [3] proposes a system that is automatic

http://www.ijecs.in/

DOI: 10.18535/ijecs/v5i2.15

Mr.Prashant S. Chavan, IJECS Volume 05 Issue 2 February 2016 Page No.15744-15748 Page 15745

approach to get query forms. Here user participation isn't

necessary, system initial finds knowledge attributes in schema

and consequently generates query forms. though this method

having advantage of automatic generation. it's not appropriate

for the information schemas having thousands of attributes. If

variety of attributes area unit quite kinds that area unit

generated area unit too several in numbers and therefore it's

confusing for user that form is to be used. Therefore, during

this approach end product isn't satisfactory. Paper [5] can also

be taken on similar lines as explained.

To overcome downside of said approach paper [1] proposes a

system which might be aforementioned as extension of labor

[3] and [5]. during this paper they enclosed feature of keyword

looking within the generated kinds therefore user currently

will realize that form are often used for looking. Therefore

system generates ton of query forms beforehand and user then

searches the forms with keywords. This method although takes

downside from the higher than system its best fitted for

information schemas that involves concrete keywords for

attributes. However during this system it should be noted that

this comes with the disadvantage of knowing the schema

beforehand. It means that user should understand the

information schema to look desired forms.

3. IMPLEMENTATION DETAILS

3.1 Design

Definition 1: A query form F is defined as a tuple (AF , RF , σF,

▹◃ (RF)), which represents a database query template as

follows:

F = (SELECT A1,A2, ..., Ak From ▹◃ (RF) WHERE σF),

where AF = {A1,A2, ..., Ak} are k attributes for projection and

k > 0.

RF = {R1,R2, ...,Rn} is the set of n relations (or entities)

involved in this query, n > 0.

Each attribute in AF belongs to one relation in RF .σF is a

conjunction of expressions for selections (or conditions) on

relations in RF. ▹◃ (RF) is a join function to generate a

conjunction of expressions for joining relations of RF. In the

user interface of a query form F, AF is the set of columns of

the result table. σF is the set of input components for users to

fill. Query forms allow users to fill parameters to generate

different queries. RF and ▹◃ (RF) are not visible in the user

interface, which are usually generated by the system according

to the database schema.

For a query form F, ▹◃(RF) is automatically constructed

according to the foreign keys among relations in RF .

Meanwhile, RF is determined by AF and σF . RF is the union set

of relations which contains at least one attribute of AF or σF .

Hence, the components of query form F are actually

determined by AF and σF. As we mentioned, only AF and σF

are visible to the user in the user interface. In this paper, we

focus on the projection and selection components of a query

form. Ad-hoc join is not handled by our dynamic query form

because join is not a part of the query form and is invisible for

users. As for “Aggregation” and “Order by” in SQL, there are

limited options for users. For example, “Aggregation” can

only be MAX, MIN, AVG, and so on; and “Order by” can

only be “increasing order”.

To decide whether generated query interface is desired or

not, it is difficult to decide by checking every instance of the

result. This give rise to many answer problem. To address this,

only compressed results can be shown with higher level view.

Furthermore to get accuracy, user can participate and get

results from required category. In first pass of the results since

we are targeting to view results in sets, where set means

results having same type of results. These results can be

clustered by using clustering algorithm [4]. These clustered

results can be explored according to the user click through.

Figure 2 shows the flowchart of the process.

Fig. 2. Flowchart of Adaptive Query Interface

Another important usage of the compressed view is to

collect the user feedback. Using the collected feedback, we

can estimate the goodness of a query form so that we could

recommend appropriate query form components. In real world,

end-users are reluctant to provide explicit feedback [15]. The

click-through on the compressed view table is an implicit

feedback to tell our system which cluster (or subset) of data

instances is desired by the user. It can help our system

generate recommended form components that help users

discover more desired data instances. In some

recommendation systems and search engines, the end-users are

User fills

query form

Enrich query

form

User: Selects

Interested

Query Form

Components

System:

Execute query

Display

Query

Result

User:

Is

Satisf

Basic query

form

End

Yes

No

Store

Ranking

DOI: 10.18535/ijecs/v5i2.15

Mr.Prashant S. Chavan, IJECS Volume 05 Issue 2 February 2016 Page No.15744-15748 Page 15746

also allowed to provide the negative feedback. The negative

feedback is a collection of the data instances that are not

desired by the users. In the query form results, we assume

most of the queried data instances are not desired by the users

because if they are already desired, then the query form

generation is almost done. Therefore, the positive feedback is

more informative than the negative feedback in the query form

generation. Our proposed model can be easily extended for

incorporating the negative feedback.

4. RANKING METRIC

Query forms are designed to return the user’s desired result.

There are two traditional measures to evaluate the quality of

the query results: precision and recall. Query forms are able to

produce different queries by different inputs, and different

queries can output different query results and achieve different

precisions and recalls, so we use expected precision and

expected recall to evaluate the expected performance of the

query form. Intuitively, expected precision is the expected

proportion of the query results which are interested by the

current user. Expected recall is the expected proportion of user

interested data instances which are returned by the current

query form. The user interest is estimated based on the user’s

click through on query results displayed by the query form.

For example, if some data instances are clicked by the user,

these data instances must have high user interests. Then, the

query form components which can capture these data instances

should be ranked higher than other components. Next we

introduce some notations and then define expected precision

and recall.

Let F be a query form with selection condition σF and

projection attribute set AF. Let D be the collection of instances

in ▹◃ (RF). N is the number of data instances in D. Let d be an

instance in D with a set of attributes A = {A1,A2, ...,An}, where

n = |A|.

F query form

RF set of relations involved in F

A set of all attributes in ▹◃ (RF)

AF set of projection attributes of query form F

Ar(F) set of relevant attributes of query form F

σF set of selection expressions of query form F

OP set of relational operators in selection

d data instance in ▹◃ (RF)

D the collection of data instances in ▹◃ (RF)

N number of data instances in D

dA1 data instance d projected on attribute set A1

DA1 set of unique values D projected on attribute set

 A1

Q database query

DQ results of Q

Duf user feedback as clicked instances in DQ

α fraction of instances desired by users

Table 1: Symbols and notations

We use dAF to denote the projection of instance d on attribute

set AF and we call it a projected instance. P(d) is the

occurrence probability of d in D. P(σ |d) P(σF |d) = 1 if d is

returned by F and P(σF |d) = 0 otherwise. Since query form F

projects instances to attribute AF, we have DAF as a projected

database and P(dAF) as the probability of projected instance

dAF n the projected database. Since there are often dupliated

projected instances, P(dAF) may be greater than N. Let Pu(d)

be the probability of d being desired y the user and Pu(dAF) be

the probability of the user being interested in a projected

instance. We give an example below to illustrate those

notations.

ID C1 C2 C3 C4 C5

I1 a1 b1 c1 20 1

I2 a1 b2 c2 20 100

I3 a1 b2 c3 30 99

I4 a1 b1 c4 20 1

I5 a1 b3 c4 10 2

Table 2: Data Table

Example 1: Consider a query form Fi with one relational data

table shown in Table 3. There are 5 data instances in this table,

D = {I1, I2, ..., I5}, with 5 data attributes A = {C1,C2,C3,C4,C5},

N = 5. Query form Fi executes a query Q as “SELECT C2, C5

FROM D WHERE C2 = b1 OR C2 = b2”. The query result is

DQ = {I1, I2, I3, I4} with projected on C2 and C5. Thus P(σFi

|d) is 1 for I1 to I4 and is zero for I5. Instance I1 and I4 have the

same projected values so we can use I1 to represent both of

them and P(I) = 2/5.

We now describe the two measures expected precision

and expected recall for query forms.

Definition 2: Given a set of projection attributes A and a

universe of selection expressions σ, the expected precision and

expected recall of a query form F=(AF , RF , σF , ◃▹ (RF)) are

PrecisionE(F) and RecallE(F) respectively,

PrecisionE(F) = ∑d∈DAFPu(dAF)P(dAF)P(σF |d)N

 ∑d∈D P(dAF)P(σF |d)N

 Eq.(1)

RecallE(F) = ∑d∈DAFPu(dAF)P(dAF)P(σF |d)N

 ∑d∈D P(dAF)P(σF |d)N

 Eq.(2)

where AF ⊆ A, σF ∈ σ, and α is the fraction of instances

desired by the user, i.e., α = ∑d∈D Pu(d)P(d). The numerators of

both equations represent the expected number of data

instances in the query result that are desired by the user. In the

query result, each data instance is projected to attributes in AF.

So Pu(dAF) represents the user interest on instance d in the

query result. P(dAF)N is the expected number of rows in D

that the projected instance dAF represents. Further, given a data

instance d ∈ D, d being desired by the user and d satisfying σF

are independent. Therefore, the product of Pu(dAF) and P(σF

|d) can be interpreted as the probability of d being desired by

the user and meanwhile d being returned in the query result.

Summing up over all data instances gives the expected number

of data instance in the query result being desired by the user.

Considering both expected precision and expected recall,

we derive the overall performance measure, expected F-

Measure as shown in above equation. Note that β is a constant

DOI: 10.18535/ijecs/v5i2.15

Mr.Prashant S. Chavan, IJECS Volume 05 Issue 2 February 2016 Page No.15744-15748 Page 15747

parameter to control the preference on expected precision or

expected recall.

The system implementation we have decided to use

Oracle SQL as back end and ASP.net or JSP as front end.

Since it can be deployed as web interface, the system is

platform independent.

5. DATASET

Implemented system uses student database as input to the

system. We have taken all the information related to

academics for the students. It contains personal as well as

academic information. Whole information is organised in 10

tables comprising 116 attributes. According to the search,

instances are projected by combining all the selected

attributes.

6. ALGORITHMIC APPROACH

For projection of query attributes are selected form various

tables. This attributes are refined according to the selection of

the attributes by the user. The said approach is taken care of by

the query construction

Query Construction:

Data: Qf ← A1 ∪ A2∪ A3 ∪.... ∪ Ai

Result: Qf is the final query

Begin:

σ (one) ← Ø

for Q ∈ Q do

 σ(one) ← σ(one) ∪ σQf

 A (one) ← AF ∪ ArF

 Q (one) ← GenerateQuery(A(one),σ(one))

 F ← Project (A(one),σ(one))

 Where, Qf is query form

A1-Ai: Attributes

Q (one): Representative query

Thus, as above algorithm suggests query selection can be

repetitively refined till we get satisfactory results.

7. DESIGN AND IMPLEMENTATION

In system, two login types are maintained. First one is admin

login where we can add and delete users who are expected

users. Second one is for normal users for database searching.

As shown in the following form left side pane maintains the

list of attributes and the result instances are projected

according to the selection. As user selects attributes, in each

iteration attributes are ranked according to the user preference.

Fig. 3 Query Interface of Searching

After getting result we can getcollective information of single

instance by clicking on it. As shown in figure below it

includes all the information of single student.

Fig. 4 Detailed information of single instance

8. RESULTS

Result shows adaptive query interface is more effective than

that of static query interface. As we can see, as we iterate the

searching, accuracy and efficiency of the searching increases.

Fig. 5 Incremental improvement in accuracy

9. CONCLUSION AND FUTURE SCOPE

In this paper, idea of adaptive query interface is proposed.

This system generates query forms dynamically. To capture

user feedback run time click through process is used which

helps in filtering of the results. From the related concepts

studied we can conclude that success rate in this approach will

be higher as compared to static approach.

DOI: 10.18535/ijecs/v5i2.15

Mr.Prashant S. Chavan, IJECS Volume 05 Issue 2 February 2016 Page No.15744-15748 Page 15748

For future scope, as we have used student information as

input various algorithm can be applied to find patterns in

student performance. Likewise, we may also predict future

dropout and failures in student academics.

10. REFERENCES

[1] Eirinaki M., Abraham S., Polyzotis N., Shaikh N.

QueRIE: Collaborative Database Exploration in IEEE

Transactions on Knowledge and Data

Engineering, (Volume:PP , Issue: 99), May 2013.

[2] E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton.

Combining keyword search and forms for ad hoc

querying of databases. In Proceedings of ACM SIGMOD

Conference, pages 349–360, Providence, Rhode Island,

USA, June 2009.

[3] M. Jayapandian and H. V. Jagadish. Automated creation

of a forms-based database query interface. In

Proceedings of the VLDB Endowment, pages 695–709,

August 2008.

[4] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In

Proceedings of VLDB, pages 81–92, Berlin, Germany,

September 2003.

[5] M. Jayapandian and H. V. Jagadish. Automating the

design and construction of query forms. IEEE TKDE,

21(10):1389–1402, 2009.

[6] Liang Tang, Tao Li, Yexi Jiang, and Zhiyuan Chen.

Dynamic Query Forms for Database Queries,IEEE

transaction on knowledge and data engineering,

March’2013.

[7] E.Chu, A. Baid, X. Chai, A. Doan, and J. F.

Naughton.Combining keyword search and forms for ad

hoc querying of databases. In Proceedings of ACM

SIGMOD Conference, pages 349–360, Providence,

Rhode Island, USA, June 2009.

[8] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.

Probabilistic information retrieval approach for ranking

of database query results. ACM Trans. Database Syst.

(TODS), 31(3):1134–1168, 2006.

[9] XMark: An XML Benchmark Project: http://www.xml-

 benchmark.org/.

[10] Magesh Jayapandian, Adriane Chapman, et al. Michigan

Molecular Interactions (MiMI): Putting the Jigsaw

Puzzle Together. Nucleic Acids Research (Database

Issue), 35, 2007.

[11] Daniele Braga, Alessandro Campi, and Stefano Ceri.

XQBE (XQuery By Example): A Visual Interface to the

Standard XML Query Language. ACM TODS, 30(2),

2005.

[12] Shishir Gundavaram. CGI Programming on the World

Wide Web. O’Reilly, 1996.

[13] D. J. Helm and B. W. Thompson. An Approach for

Totally Dynamic Forms Processing in Web-Based

Applications. In ICEIS (2), 2001.

[14] Sergey Melnik. Generic Model Management: Concepts

and Algorithms. Chapter 7. PhD thesis, University of

Leipzig, 2004.

[15] Anders Tornqvist, Chris Nelson, and Mats Johnsson.

XML and Objects-The Future for E-Forms on the Web.

In WETICE. IEEE Computer Society, 1999.

[16] T. Joachims and F. Radlinski. Search engines that learn

from implicit feedback. IEEE Computer (COMPUTER),

40(8):34–40, 2007.

[17] S. Cohen-Boulakia, O. Biton, S. Davidson, and C.

Froidevaux.Bioguidesrs: querying multiple sources with

a user-centric perspective. Bioinformatics, 23(10):1301–

1303, 2007.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Eirinaki,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Abraham,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Polyzotis,%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shaikh,%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4358933

