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Abstract: The decomposition of larger numbers into smaller ones termed as residues is the main operation behind the concept of Residue 

Number System (RNS); it possesses inherent features such as parallelism and independent digit arithmetic computations. These features of the 

RNS has made it desirable for applications that require intensive computations such as Digital Signal Processing (DSP), Digital Filtering and 

Convolutions. Overflow detection is one of the major challenges that confront the efficient implementation of RNS in general purpose computer 

processors. Overflow occurs in RNS when an illegitimate value is represented within legitimate range – Dynamic Range (DR) as if it is 

legitimate value. This misrepresentation of results, which usually arises during addition operations ultimately affects systems built on this 

Number System. It is therefore imperative that steps are taken not to only detect but correct the occurrence of overflow whenever it occurs. In 

this paper, an additive overflow detection and correction scheme for the moduli set *                 + is presented. The scheme uses a 

redundant modulus to extend the DR of the moduli set. The proposed scheme is demonstrated theoretically to be an efficient scheme by 

comparing it to previous similar works. 
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1. Introduction 

A riddle by Sun Tzu, a Chinese scholar in a book authored in 

the first century was the first documented manifestation of 

Residue Number System (RNS) representation [1] and [2]. 

Summarily, the riddle sought to find out a number that will 

yield the remainders 2, 3, and 2 when divided by 3, 5, and 7, 

respectively; thus in modern terminology, 2, 3, and 2 are the 

residues, and 3, 5, and 7, are the moduli that make the RNS. 

This number system was later rediscovered by computer 

scientists who found it necessary in the implementation of fast 

arithmetic and fault-tolerant computing [1]. Three properties of 

RNS make it well suited for these: the first is absence of carry-

propagation in addition and multiplication, carry-propagation 

being the most significant speed-limiting factor in these 

operations. The second is that because the residue 

representations carry no weight-information, an error in any 

digit-position in a given representation does not affect other 

digit-positions. The third is that there is no significance-

ordering of digits in an RNS representation, which means that 

faulty digit-positions may be discarded with no effect other 

than a reduction in dynamic range. This renewed interest is 

even more prominent now because a great deal of computing 

now takes place in embedded processors, such as those found 

in mobile devices, and for these, high speed and low-power 

consumption are critical; the absence of carry-propagation 

facilitates the realization of high-speed, low-power arithmetic. 

Also, computer chips are now getting to be so dense that full 

testing will no longer be possible and therefore, makes fault-

tolerance and the general area of computational integrity 

essential. Lastly, there has been progress in the implementation 

of some difficult arithmetic operations such as division, 

number/data conversion, scaling, overflow and magnitude 

detections [3],[4]. 

 

An RNS number  , is represented as            ,  where 

   *        +, a set of pairwise relatively prime 

integers such that    (     )        ,          . The 

residue set    ,          - is uniquely represented 

provided   lies within the legitimate range ,     - where 

  ∏   
 
    is the Dynamic Range (DR) for the chosen 

moduli set. Let   and   be two different integers within the 

DR, if      , (  are the arithmetic operations    ,   ), [5], 

results in a value that is outside the legitimate range, then 

overflow is said to have occurred. 

 

Overflow is an error in computing as a result of 

misrepresentation of illegitimate values in a given memory 

space [6], [4]; this relates to the DR in RNS which situation 

usually arises during addition and multiplication operations. 

Thus, detecting overflow is one of the fundamental issues in 

the design of efficient RNS microprocessors [7]. 

The conversion of an RNS number into its decimal/binary 

equivalent number  has long been mainly based on the Chinese 

Remainder Theorem (CRT) and the Mixed Radix Conversion 

(MRC) techniques with few modifications being their variants 

in recent times. Whiles the former deals with the modulo-  

operation, the later does not but computes sequentially which 

tends to reduce the complexity of the architecture.  

The MRC, as used in this paper is famously computed as 

follows: 

                                  (1) 

where              are the Mixed Radix Digits (MRDs) 

and computed as follows: 

           

       |(     )|  
  |  |  

  

       |.(     )|  
  |     / |  

  |  |
  

  

        

       |. .(     )|  
  |     / |  

  |   

                         / |    
  |  |  

               (2) 

The MRDs     are within the range              , and a 

positive number,  , in the interval  ,   - can be uniquely 

represented.  

http://www.ijecs.in/


Agbedemnab P. A., IJECS Volume 7 Issue 2 February 2018 Page No. 23578-23584 Page 23579 

Recently, some techniques have been developed to detect 

overflow without necessarily completing the reverse 

conversion process; [8] proposed an algorithm to detect 

overflow in the moduli set (                      ) 
using a parity checking technique but used ROMs for 

implementation. In  [9], a method for detecting overflow in the 

moduli set (            ) based on group of numbers is 

presented where numbers within ,     - are distributed 

among several groups. Then, by using the groupings, the 

scheme is able to diagnose in the process of addition of two 

numbers, whether overflow has occurred or not. The scheme in 

[5] evaluated the sign of the sum of two numbers   and   and 

used it to detect overflow but adopted a residue-to-binary 

converter proposed by [10]. The scheme in [11] presented a 

scheme by an Operands Examination Method for overflow 

detection for the moduli set (            ) during RNS 

addition. All these schemes either relied on complete reverse 

conversion process as in the case of [5], or other costly and 

time consuming procedures such as base extension, group 

number and sign detection as in [9] and [11]. In this paper, an 

additive overflow detection and correction scheme for the 

moduli set *                 +, which has odd 

dynamic range is presented. The scheme uses a redundant 

modulus –    by extending the dynamic range of the moduli 

set. This redundant modulus is then used to detect overflow 

during addition whenever it occurs by XORing the sum of the 

residues corresponding to the redundant modulus and the LSB 

of the result of summing the residues corresponding to two 

numbers in the original moduli set. 

2. Proposed Method 

Given the moduli set *                 +, [12], [13], 

let     
      ,     

    and     
   . Let 

     be a redundant modulus by extending the original 

moduli set. In order to detect overflow in the given moduli set, 

a redundant modulus   is added so that the new set becomes 

*                   +; but the dynamic range   
(       )(    )(    ). 
Theorem 1: Given the moduli set *                 +, 
where     

      ,             
    and     

   , 

we have; 

|  
  |                (3) 

|  
  |                (4) 

|  
  |    

              (5) 

Proof: If it can be shown that |   |    , then | |   

|   |   is the multiplicative inverse of  . Thus, for (3) 

|(       )   |     |( ( 
 )(  )   )|     

 |( (  )(  )   )|     

 | |       

Hence   is the multiplicative inverse of    with respect to   . 

Similarly, for (4) 

|(       )   |     |( ( 
 )(  )   )|     

 | |       

Hence   is the multiplicative inverse of    with respect to   . 

Also, for (5) 

|(    )      |     |( )   
   |     

 |  |     

 | |       

Hence      is the multiplicative inverse of    with respect to 

  . 

 

Given the RNS numbers   (           ) and   
(           ).  
Let the sum   (           )  (     ),          . 

Then two scenerios arise;  

(i) If both addends have the same parity then   
(        ) is even and      

(ii) If the addends have different parity then   
(        ) is odd and      

Therefore, overflow occurs whenever   (        ) is odd 

and      or   (        ) is even and     . Thus, the 

proposed method detects overflow as follows; 

                    {
                 ( )   

                                  

     (6) 

Where    ( ) is the least significant bit of the sum Z. 

 

Next, a partial residue-binary conversion of the addends is 

done by computing their respective MRDs. The MRDs of one 

addend (say  ) is done by substituting (3) – (5) into equation 

(2) to simplify as follows; 

             

   |(     ) |      

      |     |      

   |((     )    ) 
   |     

                    |    (     )   
     |                  (7) 

 

Therefore,   is obtained by adding the individual MRDs of the 

two addends. In case of an occurrence of overflow, the 

dynamic range should be shifted one bit to the left thus 

including the modulus 2 in order to legitimize the value of  . 

The value of   computed this way is the correct result whether 

overflow occurs or not.  

 

3. Hardware Implementation 

From equation (7), the MRDs can be represented in binary as; 

 

                        ⏟              
    

      (8) 

                      ⏟            
   

         (9) 

                        ⏟              
 

     (10) 

 

Equations (8) – (10) can further be simplified as follows; 

                           ⏟              
    

        (11) 

   |    |     

  |                   ⏟            
   

            ⏟          
   

|

    

 

                     ⏟            
   

           (12) 

where, 

  | (                     )⏟              
    

|

    

  

 |     ̅    ⏟      
 

  ̅        ̅   ⏟        
 

  ̅       ̅   ⏟        
 

|

    

   (13) 

Let         ̅    ⏟      
 

     ̅       ̅        ̅   ⏟            
 

  and  

    ̅       ̅        ̅   ⏟            
 

              (14) 

Also, 

   | 
   (     )   

     |     

 |         ⏟      
 

          ⏟        
 

          ⏟        
 

|

    

 

                      ⏟              
 

             (15) 
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where, 

      |       |     

        |     (                     )⏟              
    

|

    

 

 |     (         )⏟        
 

      (            )⏟          
 

      (           )⏟        
 

|

    

 

 | ̅        ⏟      
 

  ̅    ̅        ̅     ⏟            
 

  ̅    ̅       ̅   ⏟          
 

|

    

(16) 

Let       

                  ⏟          
 

,     ̅        ⏟      
 

,     ̅     ̅     ⏟        
 

 

and     ̅    ̅       ̅   ⏟          
 

              (17) 

Finally, 

  |       |     

     |     (                   )⏟              
   

|

    

 

            |     (      
                 )⏟          

 

|

    

   (18) 

Since,    is a number that is smaller than     , two cases can 

be considered. First, when    is smaller than   , and second, 

when    is equal to    [13].  

If        , we have 

   |  
   (                     )⏟              

 

|

    

 

   ̅    ̅       ̅    ̅   ⏟            
 

         (19) 

Else if       , the following binary vector can be obtained as 

   |  
      (    ⏟  

   

    )|

    

      ⏟  
   

   (20) 

Therefore,    is calculated as 

  {
                    

                    
          (21) 

 

Let   and   represent the MRDs of the two integers   and   

respectively. Then from equations (11), (12) and (15), we have 

                   (22) 

which implies 

         

                    ⏟            
    

                    ⏞              
    

    

                                       (23) 

 

                  

                                ⏟            
   

                    ⏞              
   

       

                                         (24) 

finally, 

         

                        ⏟              
 

                      ⏞              
 

       

                                (25) 

 

and so, Z is implemented as;  

                   

    

          ⏟      
    

    ⏞  
   

            ⏟        
    

    ⏞  
    

               ⏟          
 

    ⏞  
  

         ⏟      
   

    ⏞  
    

         ⏟      
  ⏟                                    

    

(26) 

where, 

    
                   

                           ⏟              
 

    ⏞    
    

               ⏟        
    

     

                               (27) 

and, 

       
          

                       ⏟          
 

    ⏞    
    

               ⏟          
    

     

                                     (28) 

 

    
       

                         ⏟              
   

    ⏞    
    

 

                                 (29) 

 

       

       ̅      ̅       ̅    ̅   ⏟              
 

 

                                  (30) 

 

       

     ̅    ̅       ̅    ̅   ⏟              
 

 

                                (31) 

finally, 

     
    

  ̅      ̅       ̅    ̅   ⏟              
 

    ⏞    
 

  

                                   (32) 

3.1 Hardware Realisation 

The hardware architecture of the proposed scheme is first 

realised by computing the MRDs of the two addends   and   

according to (12) and (15) which parameters are defined in 

(13), (14), (16), (17) and (21). These MRDs are    and   , and 

   in (4) which is equivalent to   . Figure 1 shows the unit for 

computing the MRDs of one addend   and repeated for the 

other addend  . Figure 1 consists of a two level Carry Save 

Adder (CSA) tree for computing    and another three level 

CSA tree for computing    whose sum and carry are added 

using two separate CPAs each. This unit is called here Partial 

Reverse Converter (PRC) as a component of the proposed 

scheme. The PRC starts with an Operands Preparation Unit 

(OPU 1), which prepares the operands in (14) and (17) by 

simply manipulating the routing of the bits of the residues. The 

operands in (14) are added with CSA 1 at a first level and at a 

second level includes    in CSA 3 which sum and carry are 

added using CPA 1 to get   . A multiplexer is used to 

determine (21) by either choosing (19) or (20) depending on 

the MSB of   . The value from (21) and the operands in (17) 

are then added using the three level CSA tree in CSA 2, CSA 4 

and CSA 5 and finally propagated with CPA 2 in order to get 

  . These MRDs are useful in computing the sum of the 
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addends   by the Reverse Converter (RC) in Figure 2. The 

respective MRDs of the addends are summed according to (23) 

– (25) and computed according to CPA 3, CPA 4 and CPA 5. 

These and other four adders make up the architecture in the 

reverse converter for the sum Z in Figure 2. After an operand 

preparation (26) is computed by a three level carry save tree in 

CSA 2, CSA 3 and CSA 4 in a cascading manner whose sum 

and carry are then added using CPA 6 in order to get Z which 

is the correct result of the addition operation whether overflow 

occurs or not. Finally, overflow is detected by XORing the 

LSB(Z) with | |     according to (6) and shown in Figure 3. 

 

The hardware complexities and delay (time required for 

processing) of the proposed scheme are estimated as follows; 

The area ( ) and delay ( ) of the PRC are:  

                                          
      

           (   )         (   )              
           

         (    )     

                                          

                                     

          (    )     

The area requirement and delay imposed by the RC are: 

                                         
        

         (    )    (   )    (   )    

                 (    )    (    )      

         (     )     

                                    

           (    )         (    )    

           (     )     

The ODU is a two input XOR gate and requires a unit of gate 

each for the area and delay. Equations (27) and (28) are 

realised by merely joining (concatenating) bits since the sum of 

  and     is computed as   concatenation   if   is an  -bit 

number [14], hence does not require any hardware or impose a 

delay. Also, the area for two addends will be double in the case 

of the PRC but the same delay. 

Therefore, the total area requirements and delay of the 

proposed scheme are: 

                      

              (     )    (     )         

 (      )     

                     

              (    )    (     )          

              (      )      

 

 

The schematic diagrams of the proposed scheme are shown in 

Figures 1, 2 and 3. 
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Figure 1: Partial Reverse Converter (PRC) 

Figure 2: Overflow Detection Unit (ODU) 
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3.2 Numerical Illustrations 

This section presents numerical illustrations of the proposed 

scheme. 

Checking overflow in the sum of 225 and 275 using RNS 

moduli set *        +.  
Legitimate range (DR) = 465. Let; 

      (       )   (  | | | )  

(              )   (  | | | )  

      (        )   (  | | | )  

(              )   (  | | | )  

  ((              )  (              ))
   (  | | | )

  

    (              )   (  | | | )  

RNS to decimal conversion of (            )   (  | | ) 

results in decimal number 35. Meanwhile the sum of 225 and 

275 is 500, a clear case of overflow occurrence. 

 

Checking for RNS overflow using the proposed method 

  (              )   (  | | | ) implies      and 

  (            )   (  | | )               which 

implies    ( )      

Therefore,    ( )                 . Thus overflow 

has occurred according to the proposed method since both 

numbers have the same parity. 

 

 

 

 

Correction part 

The correct value of   is RNS to decimal conversion of 

(              )   (  | | | ) which results in decimal 

number 500. 

 

Checking overflow in the sum of 225 and 322 using RNS 

moduli set *        +.  
Legitimate range (DR) = 465. Let;  

      (       )   (  | | | )  

(              )   (  | | | )  

      (        )   (  | | | )  

(              )   (  | | | )  

  ((              )  (              ))
   (  | | | )

  

    (              )   (  | | | )  

RNS to decimal conversion of (            )   (  | | ) 

results in decimal number 82. Meanwhile the sum of 225 and 

322 is 547, a clear case of overflow occurrence. 

 

Checking for RNS overflow using the proposed method 

  (              )   (  | | | ) implies      and 

  (            )   (  | | )                which 

implies    ( )      

Therefore,    ( )                 . Thus overflow 

has occurred according to the proposed method since both 

numbers have different parity. 

 

Correction part 

The correct value of   is RNS to decimal conversion of 

(              )   (  | | | ) which results in decimal 

number 547. 

 

Checking overflow in the sum of 225 and 35 using RNS moduli 

set *        +.  
Legitimate range (DR) = 465. Let; 

      (       )   (  | | | )  

(              )   (  | | | )  

     (       )   (  | | | )  

(              )   (  | | | )  

  ((              )  (              ))
   (  | | | )

  

    (               )   (  | | | )  

RNS to decimal conversion of (             )   (  | | ) 

results in decimal number 260 which is the correct result of 

summing 225 and 35. In this case overflow has not occurred. 

Checking for RNS overflow using the proposed method 

  (               )   (  | | | ) implies      and 

  (             )   (  | | )                  which 

implies    ( )      

Therefore,    ( )                 . Thus overflow 

has not occurred according to the proposed method. 

Since overflow has not occurred, there will not be any need for 

the correction unit. 

 

4. Performance Evaluation 

The performance of the proposed scheme is compared to 

similar schemes of equal dynamic range reverse converter as 

well as the scheme by [8] that have odd dynamic range. The 

complexities that are considered here for the analysis are a Full 

Adder (FA), a Half Adder (converted to FA) and a two input 

XOR gate. It is also worth noting that the complexities (area) 

CPA3 
(2n+1) bit 

𝛾  𝜔  

CPA4 

(n+1) bit 

𝛾  𝜔  

CPA5 

(n 1) bit 

𝛾  𝜔  

Concatenation  

Concatenation  

Operands Preparation   

CSA2- (4n+1) bit 

CSA3- (4n+1) bit 

CSA4- (4n+1) bit 

CPA6- (4n+1) bit 

𝑍 

𝑡  

𝜓  𝜓  𝜓  

  𝑛   

𝑡  

  𝑛   

𝑡  𝑡  𝑡  𝑡  𝑡  

𝑐 𝑠 

𝑠 𝑐 

𝑠 𝑐 

Figure 3: Reverse Converter (RC) 
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as presented in [15] are for a single number (say  ) and so 

would have to be doubled in order to take care of two numbers 

(say   and  ) for the reverse conversion process. Table 1 

presents the complexities and delay by the various schemes for 

the purpose of comparison. 

Table 1: Area and Delay analysis of proposed scheme with 

similar schemes of equal DR 

Scheme AREA DELAY 

 [15] (    (     )    )    (      )    

[8] (      )    (      )    

Proposed 

Scheme 

(      )    (      )    

 

From Table 1, it is obvious that the proposed scheme is better 

than [8] in terms of the area complexities even though the 

delay is almost the same, but the proposed scheme has a 

correction component. Also, the proposed scheme performs 

better than the scheme by [15] for higher values of  , in both 

area and delay. A detailed analysis is presented in Table 2 

taking some values of  . 

Table 2: Area, Delay analysis for various values of n for 

scheme 

Table 2 shows detailed analysis of the area and delay 

comparison of scheme3 for various values of   with similar-

state of the art schemes. The results from Table 2 are used to 

plot the graphs in Figure 4 and Figure 5; Figure 4 is a graph of 

area comparison of the various schemes. It shows that the 

proposed scheme requires the lesser area than the other 

schemes. Figure 5 also presents the graph of the delay 

comparison of the compared schemes which shows however 

that the proposed scheme and the scheme by [8] have almost 

the same speed but performs better than the scheme by [15].  

Figure 4: Graph of area analysis of proposed scheme3 with 

other schemes 

 

Figure 5: Graph of delay analysis of proposed scheme3 with 

other schemes 

 
5. Conclusion 

In this paper, an additive overflow detection and correction 

scheme for the moduli set *                 + was 

presented. The scheme used a redundant modulus   to extend 

the dynamic range of the moduli set. Overflow was then 

detected during addition whenever it occurred by XORing the 

residue corresponding to the redundant modulus and the LSB 

of the result by summing the residues corresponding to two 

numbers in the original moduli set. The proposed scheme was 

demonstrated theoretically to be an efficient scheme by 

comparing it to previous similar works. Practical   

implementation of the proposed scheme using Field 

Programmable Gate Arrays (FPGAs) will actualise the real 

gains as desired by the researchers since this was a limitation 

on the work due to the unavailability of such practical tools. 

Therefore, any future works would be focused on the practical 

implementation of the proposed scheme. 
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