International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 6 June 2015, Page No. 12877-12883

# Query Recommendation Approach For Searching Database Using Search Engine

Priyanka Rani, Mrs. Annu Mor

1. Priyanka Rani, M.Tech Scholar, Computer Science Engineering Department SGT Institute of Engineering & Technology, Gurgaon
Parigtm27@gmail.com

Annu Mor, Associate Professor, Computer Science Engineering Department SGT Institute of Engineering & Technology, Gurgaon
Annu.mor14@gmail.com

#### **ABSTRACT**

Search Engines generally provide long lists of ranked pages, finding the desired information content from which is typical on the user end and therefore, Search Result Optimization techniques come into play. The proposed system based on learning from query logs predicts user information needs and reduces the seek time of the user within the search result list.

To achieve this, the method first mines the logs using a similarity function to perform query clustering and then discovers the sequential order of clicked URLs in each cluster. Finally, search result list is optimized by re-ranking the pages. The proposed system proves to be efficient as the user desired relevant pages occupy their places earlier in the result list and thus reducing the search space. This thesis also presents a query recommendation scheme towards better information retrieval.

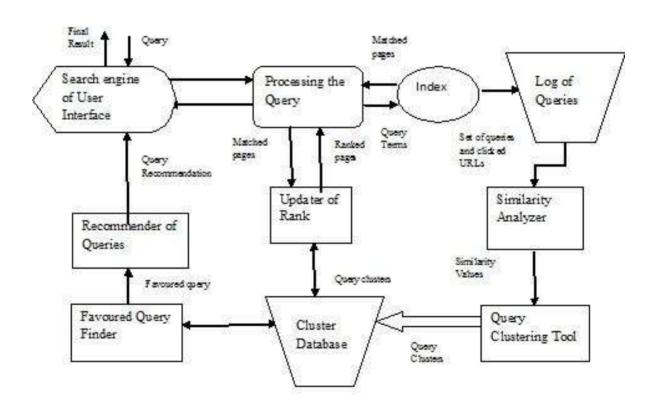
Keywords: World Wide Web (WWW), Information Retrieval, Search Engine, Query processing

#### INTRODUCTION / LITERATURE SURVEY

The Query Recommendation provide an excellent opportunity for gaining insight into how a search engine is used and what the users' interests are. Query Logs prove to be important information repositories to keep track of user activities through the search results, knowledge about which can improve the performance of a search engine. In spite of the recent advances in the Web search engine technologies; there are still many situations, in which user is presented with undesired and non-relevant pages in the top most results of the ranked list. One of the major reasons for this problem is the lack of user knowledge in framing queries. Moreover, search engines often have difficulties in forming a concise and precise representation of the response pages corresponding to a user query. Nowadays, providing a set of web pages based on user query words is not a big problem in search engines. Instead, the problem arises at the user end as he has to sift through the long result list, to find his desired content. This problem is referred to as the Information

Overkill problem. Search engines must have a mechanism to find the users' interests with respect to their queries and then optimize the results correspondingly. To achieve this, query log files maintained by the search engines play an important role. The logs provide an excellent opportunity for gaining insight into how a search engine is used and what the users' interests are.

The goal of this approach describes the various terms & approaches that are used in optimization of web search and provide an overview of framework used in the field of web mining


#### TERMS USED IN WEB MINING

Various terms that are commonly used in web mining are: QUERY LOG

The log keeps users' queries and their clicks, as well as their browsing activities. In the context of search engines, servers record an entry in the log for every single access they get corresponding to a query. The typical logs search engines include the following entries:

- 1. User (session) IDs,
- 2. Query q issued by the user
- **3.** URL u accessed/clicked by the user
- **4.** Time t at which the query has been submitted
- 5. Rank r of the URL u clicked for the query q and

### 2. Proposed Model



## Fig.1 Proposed model

When user submits a query on the search engine interface, the query processor component matches the query terms with the index repository of the search engine and returns a list of matched documents in response. User browsing behavior including the submitted queries and clicked URLs get stored in the logs and are analyzed continuously by the Similarity Analyzer module, the output of which is forwarded to the Query Clustering Tool to generate groups of queries based on their similarities.

Favored Query Finder extracts most popular queries from each cluster and stores them for future reference. The Rank Updater component works online and takes as input the matched documents retrieved by query processor. The Query Recommender guides the user with similar queries with the most famous query.

The proposed system works in the following steps:-

| _ |
|---|

# 3. EXPERIMENTAL RESULTS

To show the validity of the proposed architecture, a fragssment of sample query log is considered (given in Table 1). Because the actual number of queries is too large to conduct detailed evaluation, only 7 query sessions are chosen in present illustration. The following functions are tested on the 7 query sessions:

- 1. Keyword similarity (Simkeyword),
- 2. Similarity using documents clicks (Simclick),
- 3. Similarity using both keyword and document clicks (Simcombined)
- 4. Query clustering
- 5. Updater of Rank

Table 1. Simple Query Log

| s.no | Id | User_id | Query             | Clicked_id   |
|------|----|---------|-------------------|--------------|
| 1    | 2  | admin   | Data mining       | http://www.A |
| 2    | 3  | admin   | Data ware housing | http://www.B |
| 3    | 4  | admin   | Data mining       | http://www.B |
| 4    | 5  | admin   | Data warehousing  | http://www.A |
| 5    | 6  | admin   | Search engine     | http://www.B |
| 6    | 14 | admin   | Database          | http://www.B |
| 7    | 15 | admin   | Data base         | http://www.A |

#### 3.1 SIMILARITY AND CLUSTERING CALCULATIONS

#### **Query Similarity Analyzer**

The approach taken by this module is based on two principles:

- 1) Similarity based on the queries themselves and
- 2) Based on cross-references.

#### 3.1.1 Similarity based on query keywords

If two user queries contain the same or similar terms, they denote the same or similar information needs. The following formula is used to measure the content similarity between two queries.

$$Sim(p,q) = \frac{|KW(p,q)|}{|kw(p) \cup kw(q)|}$$

Where kw (p) and kw (q) are the sets of keywords in the queries p and q respectively, KW (p, q) is the set of common keywords in two queries estimated that longer the is query, the more reliable it is. However, as most of the queries are short, this principle alone is not sufficient. Therefore, the second criterion is used in combination as a complement.

# 3.1.2 Similarity Based On Clicked URLs

A query vertex is joined with a document vertex if document has been accessed by a user corresponding to the said query. The numerical integer on each edge dictates the number of accesses to the document by distinct users for a particular query. For example a value 10 between Q1 and D1 says that 10 users have clicked on D1 corresponding to Q1. In the figure above: D1, D2, D4 are accessed with respect to Q1, thus are relevant to Q1 and D2, D3, D4 are relevant to Q2 and so on. As Q1 and Q2 share two documents D2 and D4, they can be considered similar but similarity is decided on the basis of number of document clicks.

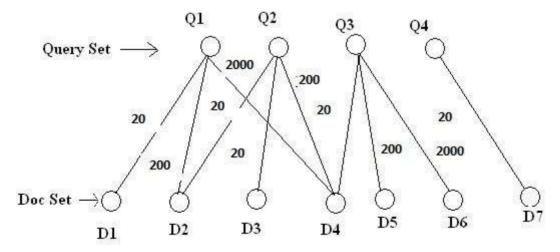



Fig. 2 Similarity Based on Clicked URLs

#### 3.1.5 CLUSTERING ALGORITHM

Initially, all queries are considered to be unassigned to any cluster. Each query is examined against all other queries (whether classified or unclassified) by using (4). If the similarity value turns out to be above the pre-specified threshold value (), then the queries are grouped into the same cluster. The same process is repeated until all queries get classified to any one of the clusters. The algorithm returns overlapped clusters i.e. a single query may span multiple clusters. Each returned cluster is stored in the Query Cluster Database along with the associated queries, query keywords and the clicked URLs.

```
Algorithm: Query Clustering(Q,\alpha,\beta,\tau)
Given: A set of n queries and corresponding clicked url's stored in an array Q[q1,URL1.....URL m]
1 <= i <= n
\alpha = \beta = 0.5
Similarity Threshold τ
Output: A set C={C1,C2....Ck} of k query clusters //Start Algorithm
K=1; // k is the number of clusters
For (each query p in Q)
Set Cluster Id(p) - Null;
                                   //Initially No Cluster is clustered
For (each p € Q)
{
Cluster_Id(p) = Ck;
Ck - \{p\};
For each q \in Q such that p \neq q
Sim(p,q) = \frac{|KW(p,q)|}{|kw(p) \cup kw(q)|}
Sim_{clickURL^{(p,q)}} = \frac{\sum LC(p,di) + LC(q,di)}{\sum LC(p,xi) + LC(q,xi)}
Sim_{combines}(p,q) = \alpha.Sim_{Keyword}(p,q) + \beta.Sim_{clickURL}(p,q)
If(Sim_{combines}(p,q) > \tau)
Set Cluster_Id(q) = Ck;
Ck = Ck U \{k\};
Else
Continue:
} // End For K=K+1;
} //End Outer For
```

#### 4. CONCLUSION & FUTURE SCOPE

This approach based on query log analysis is proposed for implementing effective web search. The most important feature is that the result optimization method is based on users' feedback, which determines the relevance between Web pages and user query words. Since result improvement is based on the analysis of query logs, the recommendations and the returned pages are mapped to the user feedbacks and dictate higher relevance than the pages, which exist in the result list but are never accessed by the user. By this way, the time user spends for seeking out the required information from search result list can be reduced and the more relevant Web pages can be presented. The results obtained from practical evaluation are quite promising in respect to improving the effectiveness of interactive web search engine. Its

result in more advanced mining mechanism which can provide more comprehensive information about relevancy of the query terms and allow identifying user's information need more effectively.

At the same time the proposed approach demonstrates fairly efficient results. In additional investigation on mining log data deserves need more attention. More study may result in

Further advanced mining mechanism which can give more comprehensive information about the relevancy of the query terms and allow identifying user's information require more Effectively. Future Work includes applying a technique to overcome this problem

#### REFERENCES

- 1. K. Sharma, Neelam Duhan, Neha Aggarwal, Rajang Gupta. Web Search Result Optimization by Mining the Search Engine logs. Proceedings of International Conference on Methods and Models in Computer Science (ICM2CS-2010), JNU, Delhi, India, Dec. 13-14, 2010.
- 2. Spirant R., and Agawam R. "Mining Sequential Patterns: Generalizations and performance improvements", Proc. of 5th International Conference Extending Database Technology (EDBT), France, March 1996.
- 3. A. Birchers, J. Her locker, J. Konstantin, and J. Riel, "Ganging up on information overload," Computer, Vol. 31, No. 4, pp. 106-108, 1998.
- 4. B. Amen to, L. Tureen, and W. Hill, "Does Authority Mean Quality? Predicting Exper
- 5. Quality Ratings of Web Documents", In Proceedings of 23th International ACM SIGIR, pp. 296-303, 2000
- 6. Beeferman and Berger A., 2000. Agglomerative clustering of a search engine query log. In Proceedings of the 6th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, (August). Acme Press, New York, NY, 407–416.
- 7. D. Zhang and Y. Dong, "An Efficient Algorithm to Rank Web Resources," In Proceedings of 9th International World Wide Web Conference, pp. 449-455, 2000.
- 8. J. Went, J. Mie, and H. Zhang. Clustering user queries of a search engine. In Proc.at 10th International World Wide Web Conference. W3C, 2001.
- 9. Bernard J. Jansen and Undo Pooch. A review of web searching studies and a framework for future research. J. Am. Soc. Inf. Sci. Technol., 52(3):235–246, 2001.
- 10. A. Aras, J. Cho, H. Garcia-Molina, A. Peace, and S. Raghavan, "Searching the Web," ACM

- Transactions on Internet Technology, Vol. 1, No. 1, pp. 97-101, 200
- 11. M.R. Her zinger, "Hyperlink Analysis for the Web," IEEE Internet Computing, Vol. 5, No.1, pp. 45-50, 2001.
- 12. K. Bharat and G.A. Michaela, "When Experts Agree: Using Non- Affiliated Experts to Rank Popular Topics," ACM Transactions on Information Systems, Vol. 20, No.