e,
Lo
ijecs

open acces ywww,ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 6 June 2015, Page No. 12774-12780

Review of model based approach for automating the test case

generation for Object Oriented Systems.

Rajvir Singh?, Preeti?

Assistant Professor, CSE Department,
Deenbandhu Chhotu Ram University, Murthal.
Rajvirsingh.cse@dcrustm.org

2Student, M.Tech(CSE),
Deenbandhu Chhotu Ram University, Murthal.
Preeti.lohchab32@gmail.com

ABSTRACT: Testing plays an important part in software development process to ensure the quality and reliability of
the developed product. For Object-oriented systems, model based testing has recently become very popular. This
approach uses models representing system behavior to generate the test cases. In this paper, we would focus on the
work done by various researchers in the field of model based testing approach. We would review the recent trends and
different model-based approaches that have been proposed by different researchers. Finally, we would describe what
are the present challenges and what work needs to be done in near future in this area.

KEYWORDS: Object-oriented Software, Model Based Testing, Testing, Design based approach

1. INTRODUCTION

Software testing plays central role in ensuring the quality
of delivered software product. But as the size and
complexity of software increases it becomes increasingly
difficult to test the product thoroughly. For Object oriented
systems this task becomes more complex because it has to
deal with new problems introduced by the Object-Oriented
features such as encapsulation, inheritance,
polymorphism, and dynamic binding. Interactions between
objects may give rise to certain errors that could be hard to
detect. Object-oriented environment for design and
implementation of software brings about new issues in
software testing. This is because the above important

features of an object oriented program create several
testing problems and bug hazards [1].

This paper presents a systematic literature review to
analyze and report the findings in automated test case
generation for object-oriented systems. Literature reviews
provide a comprehensive view of the present research and
allows one to find out the possible gaps in the present
research.

The recent research trend in the field of automated test
case generation for object-oriented systems is shown by
the graph below.

Publications Trends

M # Publications

9

8

7

6

5

4

3

2_

1_

O_
A O 4 &N O < n O N~
O O O O O O O o o
O O O O O O O O O
— AN AN N N &N N N

2008
2009
2010
2011
2012
2013
2014

Rajvir Singh* IJECS Volume 4 Issue 6 June, 2015 Page No.

12774-12780 Page 12774

http://www.ijecs.in/
mailto:Rajvirsingh.cse@dcrustm.org
mailto:Preeti.lohchab32@gmail.com

As is clear from the graph, research in this field has
attracted a lot of researchers recently. This number has
grown over the years.

Rest of this paper is organized as follows: section 2 gives a
background of the object-oriented test case generation
process. Section 3 describes the review method that has
been adopted for this paper; section 4 discusses the search
result. Section 5 deals with the literature survey; section 6
covers the future work and section 7 includes the
conclusion.

2. BACKGROUND:

According to IEEE testing is,
“The process of exercising or evaluating system or
system components by manual or automated means to
verify that it satisfies specified requirements”.

In other words, “Testing is the process of executing a

program with the intent of finding errors”.

Software Testing involves three processes: Test Case
Generation, Test Case Execution and Test Case
Evaluation. Manual testing is time-consuming, labor-
intensive and error-prone. Therefore, it is required to
automate the testing effort. Automation, which automates
a part of testing process, reduces the human effort in
finding bugs and errors.

There are mainly three types of testing approaches:

Model based testing:

Models are the intermediate artifacts between requirement
specification and final code. Models preserve the essential
information from the requirement, and are the basis for
implementation.

A model of software is a depiction of its behavior where
behavior can be described in terms of the input sequences
accepted by the system, the set of actions, conditions, the
flow of data through the application’s modules and
routines. For example, control flow, data flow, and
program dependency graphs. Model based testing uses
these models as bases for generating test cases for the
system under test. It combines both black and white box
testing features and is also called gray box approach.

Specification based testing:

In this approach test cases are derived directly from the
specification or from some other kind of model of what
the system should do. It is essentially a black box
approach.

Code based testing:

It ensures that each and every statement in the program is
executed at least once during the test. It is a white box
approach.

Table 1

Rajvir Singh* IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780

Code based testing is not an entirely satisfactory approach
to ensure thorough testing of modern software products.
Code based testing has two important disadvantages.
First, certain aspects of behavior of a system are difficult
to extract from code but are easily obtained from design
models. e.g., all different sequences in which messages
may be interchanged among classes during the use of
software are very difficult to extract from the code.
Another prominent disadvantage of code based testing is,
it is very difficult to automate and code based testing
overwhelmingly depends on manual test case design, [2].

Now-a-days model based testing methodology has gained
popularity for testing the object oriented system and has
become an obvious choice in software industries. It has
following advantages over other two testing approaches:

1) Traditional software testing techniques consider only
static view of code which is not sufficient for testing
dynamic behavior of object-oriented systems, [3].

2) Use of code to test an object-oriented system is
complex and tedious task. In contrast, models help
software testers to understand systems in a better way
and find test information only after simple processing
of models compared to code, [4].

3) Model-based test case generation can be planned at
an early stage of the software development life cycle,
allowing carrying out coding and testing in parallel

[4].

Because of these advantages most of the researchers have
focused on the model based test case generation approach.
Therefore, this paper focuses on the work done in the field
of model based test case generation for object-oriented
systems.

3. Review Method:

This paper is based on systematic literature review which
addresses the following research questions:

1. How much work has been done in the field of
automated test case generation for object-oriented
systems?

2. How much of the work identified in first question
focuses on design based test case generation
approach?

3. What are the limitations of current research?

3.1 Search Process

The research process was a manual search of different
journal papers, surveys and conferences related to
automated test case generation since 1999. The
selected journals and conferences are shown in table
1. Each of these journals deals with the issue of
automating the test case generation process.

Page 12775

Source Acronym
Institute of electrical and electronics engineers |IEEE
Journal of object technology JOT
International journal of software engineering IJSE
Indian journal of computer science and engineering IJCSE
International Journal of Advanced Computer Science and Applications |IJACSA
International Journal of Software Engineering & Applications IJSEA
International Journal of Inventive Engineering and Sciences IJIES

. L 4. Search Result:

3.2 Inclusion and Exclusion criteria

After applying the search criteria described in the
previous section, 32 articles have been identified as
relevant to our topic of research. Out of these 32 articles
20 focus on the model based approach, 4 on specification
based approach, 1 on code based testing and remaining 7
articles use some other approaches for test case
generation. These 32 articles along with brief information
about them have been listed in the table 2.

Articles published from 1999 to 2014 were included
for the research. As a first step, irrelevant papers
were excluded manually based on titles. Papers
dealing with software testing and test case generation
in general were also excluded. All the journals
dealing with automated test case generation for
object-oriented system were included. Only studies
written in English were considered. Papers with

revised versions were included and their initial
versions were discarded. Table 2
Medrics used
for
wain Journad' Main Baxic Approach Type of elfectiveness
SN Tk Journal Comferenco Authurs Yeour Pages Toolis) Alg used Testing measure Remsarks
rmphass o conglemerzary to
wteraction bermem odfver fanctioral and
The Sexte-tased Tostng of C.D. Turoer, fewvaes od slpect's strucearal apgroaches
| Olgess-Oxiereed Programs IEEE DJ Robuoy 1993 303-310 s o vaiidaneo
Autonanc Test Case
Generanon from
Kequrements
Specifications foc Real 5.3 Cowirg. v iy
2 time Eobedded Systems IEEL IW Receshlt 1998 189
Y.l Km
HS Heog
SM Che, specificatin hased
Text Case Generanca from DH Bae hased om comrol e chass level approach, chiss bevel
3 UML $crte Diagrams IEEE 5D Cha 1998 17 na w=d dona fo= Sesting tesung
A Test Class Framewock MlAD uses cancept of test
for Generatng Test Cases Huaikon, LIU developed 3 classes and teet clasy 1o cases we derned
4 from Z Specifications IEEE Licg 2000 164171 TCGS 10l na Sumewck fom 2 speaficabons
Vincenzo
Techrscal Martera Adess
Testerchass Towing of Repect GIT- - anére Oma, based ou data flow mnerchan tackdes the prebiom of
§ Olyert Onimted Software cCco-3 Mars Pezpe XNO! b azalwm witng stane-drpendert (ks
Wing
Liechang
11th Asis Yiuan Sesong
Pacifie Yo Xiasfers,
Geneyanog Tes Cases Seftware Hu Jon, 14 Seveloped a
froos UL Aoy Enprecrng Xuasdoog, frototype
Diagram based eo Gray Couference Zheng teal uses UML acawty
£ Box Methed (EEE (APSECM) Goolang 2004 § UMLTFG dagrans fay box 1esung
26th
Automated Geperation of Imermatomal Wee Kheng
Test Progranes From Coafersnce on Leow, Stau bazed oo the
Clsed Speafications of Software Cheng Kheo, groeration of 2 1en wpeafication based
7 Chsses and Test Cases IEEE Enpoeermg YiSm 2004 10 program testng
Rajvir Singh* IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12776

Rajvir Singh* IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12777

Zarreth

Kumar Swam,
Tex Case Generation Duxga Prasad nses 3 combsmation of
Based m Use case and Mohagatra, use e and moegraton md Gl predicae
21 Sequemce Diagram USE Ragh Mall 2010 21-82 cotom g aequence dngram ayvimn teiing coverape model baved testng
IEEE 3éh
GenRed A Toal for Al
Generatng and Reducing Cungnrees Hogm Jmypul, cunsom et fased oo the
Olgect-Oniesaed Tex Seftwaen and KaShin Lu, GenlRed is enlancement of
22 Cases EEE Apphcatorn CalK Chang 2010 127-138 wed custien dge RANDOOR toul
nes the UML class
ANV X Shandy dagram and concept
Avernated Test cases L eviduionaey of dats minig ©
Fensrance for Object DR G Mahask genetic sdge, penerale optional test
23 Onested Sofrware UCSE s 2011 543.5¢8 DFs Lases foade] baied testing
EvoSuke: Amomatc Test Gordor custem sed based on the ksestion cede coverage
Suite Gegeration for Object Fraser, EveSute & of assersons & the aad branch
24 cciemed Sefiware Andrea Arcunt - 2011 1 developed code ueder 2est oaverage vede based tesug
it . i
oML
Swagatka medek Sequence
Test Case Generanion For Abtena dagram) fer
Concurrent Object- Acharya, generating test cazer
Oviented Systems Usrg - TIACS Dwrga Prasad for comomyent
25 Combuational Urrd Models A Motapara 2011 -1 sysienn medel Based testing
Rampta
Kusmaen Swan, Mate caverape,
Generation snd Prafdls Uses siate chart Botion coverage,
Optenization af Test caves Kiseer daagran Hanition puthy
for Olgect-Orienied Behera, Durga generatien and caverags md
Softwase Usng State Prasad HEeS Cmiloes Opthmiration of eqt cendinon
26 Chart Diagran Mohapawa 2012 407424 ags cases caverage made] based tesing
Fasta
Ko Swass State coverage,
Prafuls uses saate chart actien covesaie,
Myumal TesCase Ramar dlagrams for ranatien pad
Generation for Obyect- Bedera Daga gensyation and coverage wd
Oriened Software with Prasad uSes Cistom - optnaration of st condiss
27 Swne Chans USEA Mdsdagatca 2002 39-52 alaes Caits coverags made] based testing
puscentie
coverage,
uses combananion of wananen
Behavier based Autoenated class Sasram coverage, roend
Test Case Gegaranin for Robie Verma, custoen 1ol sequence Sagrae and wp path
13 Object Oviemead Systams USEA RaedBlats 20i2 4560 is developed stane chan dagram coverage model Bazed tesing
Fifth
lotesaanenal WLy ates il
Cosference en EVOSUIT feefack uzo the
Sens Avtonmane Search- Softwars Yary Pavlov, Ewnds fenens alie appked o i clasa
29 bused Test Generanion IEEE Testieg Geedent Fraser 2052 T77-784 msed geneaae fesl cases festing)
Juava
Tesz Case Generation foe Chalareenat wes Gemmmatical
Classes in Obgeces. Peraphon Evclaticn techmqee
Onenied Programming Sophatsatist. for user specified
Using Geammuatical Cladchanck Frammax to geseate v class
10 Evokstian Luosneg 2002 281257 test cases tesg) branch coverage
based on Be
Olgect Orierped Test Case V' Mary applcation of grmesc
Generation Techmiqoe Sumalyiba, algo en sequence
A1 uring Genetic Algoritbens USEA GEVPRau 2005 2020 g miodel based towing
=es multi choecthve
Revew of Autornane Tes gesesc sy fox tem
Case Oeneration fam Reandeep Case generation fratn
UML Drsgram using Kaur, Vieay LML sequence
12 Evebainary Alsortiten IES Cheera 014 17120 Sasran moded based 1esng

UML has emerged as an industrial standard for modeling
software systems [6]. UML is a visual modeling language
that can be used to specify, visualize, construct, and

5. Literature Survey:
y document the artifacts of a software system [6].

As is clear from the above list most of the work in the

field of automated test case generation for object-oriented A number of researchers have used Models for testing the
systems focus on the model based approach (mainly UML object oriented systems. This approach has increasingly
diagram). So, focus of this review paper has been on the become popular. C.D. Turner and D.J. Robson used the
model based approach for test case generation. concept of FSA (Finite State Automata) for generation of

test cases and validation of object-oriented programs. It
emphasizes on the validation of interaction between the
features of a class, [5].

Rajvir Singh' IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12778

Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li
Xuandong and Zheng Guoliang, in their paper [7], derive
test scenarios directly from the activity diagram modeling
an operation. Then, all the information for test case
generation, i.e. input/output sequence and parameters, the
constraint conditions and expected object method
sequence, is extracted from each test scenario. At last, the
possible values of all the input/output parameters could be
generated by applying category-partition method, and test
suite could be systematically generated to find the
inconsistency between the implementation and the design.

Ranjita Kumari Swain, Prafulla Kumar Behera and Durga
Prasad Mohapatra, in [8], proposed a test data generation
scheme using state chart diagram which optimizes test
coverage by minimizing time and cost.

Debasish Kundu and Debasis Samanta used UML
Activity Diagrams to generate test cases in [4]. They used
UML 2.0 syntax for generating test cases from activity
diagrams with use case scope. They considered a
coverage criterion called activity path coverage criterion
with the aim to cover faults like synchronization faults,
faults in a loop.

Santosh Kumar Swain, Durga Prasad Mohapatra and
Rajib Mall, in [9], proposed a novel technique by
combining state and activity models of the system to
construct an intermediate representation which they
named as state-activity diagram. This technique is very
effective in detecting integration faults.

Santosh Kumar Swain, Subhendu Kumar Pani, Durga
Prasad Mohapatra,in [11], focus on various model based
techniques for automatic object-oriented software testing.

A use case driven approach has been used by
Cle"mentine Nebut, Franck Fleurey, Yves Le Traon, Jean-
Marc Je'ze” quel for automated test case generation for
embedded systems in [12].

Philip Samuel, Rajib Mall and Sandeep Sahoo have used
UML sequence diagrams and dynamic slicing technique
in their paper published in 2005. It uses slice coverage as
the test coverage criteria, [13].

Monalisa Sarma,Rajib Mall in ‘Automatic Test Case
Generation from UML Models’ use the combination of
sequence diagrams and use case diagrams for test case
generation and uses sequence diagram message path
coverage and use case dependency coverage as metrics
for measuring the effectiveness of generated test cases,
[14].

Sequence diagrams, use case template and class diagrams
have been used by Monalisa Sarma and Rajib Mall for
system testing of the software, in [15]. This approach
ensures sequence diagram message path sequence
coverage.

Fanping Zeng, Zhide Chen, Qing Cao and Liangliang
Mao used UML state diagram model that represent state
transition to generate test cases, in [16]. A variation of
this approach has also been proposed which uses state

Rajvir Singh* IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780

chart diagrams for generation and optimization of test
cases, [21].

A requirement prioritization method approach has been

proposed by Nicha Kosindrdecha and

Jirapun Daengdej which is based on use case diagram
which ensures domain specific requirement coverage, in
[17].

A.V.K.Shanthi and DR.G.Mohankumar applied the
concept of data mining to generate optimal test cases from
UML class diagram, in [18].

Combinational UML models (sequence diagram and
Activity diagram,[19] and class diagram, sequence
diagram and state chart diagram, [20]) have also been
used by researchers for automating the test case
generation for object-oriented systems.

Some researchers have also applied genetic algorithm to
UML sequence diagrams for test case generation, [22],
[23]. A multi objective genetic algorithm has been used
by Kirandeep Kaur and Vinay Chopra for generating test
cases from UML sequence diagram, [23].

5.1 Limitations of Design based approach

Work of these researchers and various other researches
done in this field show that model based testing provides
better test coverage especially for behavioral aspects
which are difficult to identify in the code. Another
advantage of this approach is that whenever a code
change occurs to fix a coding error, the test cases are not
affected as the changed code still confirms to the model.
But this approach requires the testers to be familiar with
the models and its underlying mathematics and theories.
They need to be aware of the tools and programming
languages necessary for performing various tasks.
Moreover, can never displace code based testing, since
models constructed during the development process lack
several details of implementation that are required to
generate test cases[4] .

6. Future Work:

The real work that remains for the near future is fitting
specific models (finite state machines, grammars or
language-based models) to specific application domains
[2]. We must form an understanding of how we are testing
and be able to sufficiently communicate that
understanding so that testing insight can be encapsulated
as a model for any and all to benefit from. Modifications
can be done in existing models or new models can also be
designed which are more generic and can host a wide
variety of applications and provide an optimal test suite
for testing.

7. Conclusion:

Model Based Testing approach provides the test cases
early in the development of software development life
cycle. It increases productivity and it doesn’t require
changes in the test cases whenever changes are made to

Page 12779

the code to correct the coding error. But it lacks certain
implementation level details that are available for code
based testing. At present there are not any guidelines or
measures that can be used to weigh one model against the
other. So, careful analysis of test requirement should be
done before selecting a relevant model. A number of
researchers have proposed different model based
approaches for test case generation. But still a lot of work
needs to be done to find the optimal test suite for
applications under test.

References:

[1] J. Philipps, A. Pretschner, O. Slotosch,E. Aiglstorfer, S.
Kriebel, K. Scholl, Model based test case generation for smart
cards, in:Proc. 8th Intl. Workshop on Formal Meth. For
Industrial Critical Syst., 2003, pp. 168-192.

[2] Santosh Kumar Swain, Subhendu Kumar Pani, Durga
Prasad Mohapatra, Model based Object Oriented Software
Testing, JATIT.

[3] R. V. Binder. Testing Object-Oriented Systems Models,
Patterns, and Tools. Addison Wesley, Reading, Massachusetts,
October 1999.

[4] Debasish Kundu, Debasis Samanta. A Novel Approach to
Generate Test Cases from UML Activity Diagrams. Chair of
Software Engineering, 2008.

[5] C.D. Turner, DJ. Robson. The State-based Testing of
Object-Oriented Programs

[6] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language Reference Manual. Addison-Wesley,
Reading, Massachusetts, 1999.

[7] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li
Xuandong and Zheng Guoliang. Generating Test Cases from
UML Activity Diagram based on Gray-Box Method

[8] Ranjita Kumari Swain, Prafulla Kumar Behera, Durga
Prasad Mohapatra. Generation and Optimization of Test cases
for Object-Oriented Software Using State Chart Diagram.

[9] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib
Mall. Test case generation based on state and activity models.
[10] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib
Mall. Test case generation based on Use case and sequence
diagram.

[11] Santosh Kumar Swain, Subhendu Kumar Pani, Durga
Prasad Mohapatra. Model Based Object-oriented Software
Testing, 2005.

[12] Cle"mentine Nebut, Franck Fleurey, Yves Le Traon, Jean-
Marc Je'ze” quell. Automatic Test Generation: A Use Case
Driven Approach, 2005.

[13] Philip Samuel, Rajib Mall and Sandeep Sahoo. UML
Sequence Diagram Based Testing Using Slicing, 2005.

[14] Monalisa Sarma,Rajib Mall. Automatic Test Case
Generation from UML Models, 2007.

[15] Monalisa Sarma,Rajib Mall. Automatic Test Case
Generation from UML Sequence

diagrams, 2007.

Note: There is no conflict of interest between authors.

[16] Fanping Zeng, Zhide Chen, Qing Cao, Liangliang Mao.
Research on Method of Object-Oriented Test Cases Generation
Based on UML and LTS, 2009.

[17] Nicha Kosindrdecha, Jirapun Daengdej. A Test Case
Generation Technique and Process, 2010.

[18] A.V.K.Shanthi, DR.G.Mohankumar. Automated Test
cases generation for Object Oriented Software,2011.

[19] Swagatika Dalai,Arup Abhinna Acharya, Durga Prasad
Mohapatra. Test Case Generation for Concurrent Object-
Oriented Systems Using Combinational Uml Models, 2011.
[20] Rohin Verma, Rajesh Bhatia. Behavior based Automated
Test Case Generation for Object Oriented Systems, 2012.

[21] Ranjita Kumari Swain, Prafulla Kumar Behera, Durga
Prasad Mohapatra. Minimal TestCase Generation for Object-
Oriented Software with State Charts, 2012.

[22] V.Mary Sumalatha, G.S.V.P.Raju. Object Oriented Test
Case Generation Technique using Genetic Algorithms, 2013.
[23] Kirandeep Kaur, Vinay Chopra. Review of Automatic
Test Case Generation from UML Diagram using Evolutionary
Algorithm, 2014.

[24] S.J. Cunning, J.W. Rozenblit. Automatic Test Case
Generation from Requirements Specifications for Real-time
Embedded Systems, 1999.

[25] Y.J. Kim, H.S. Hong, S.M. Cho, D.H. Bae, S.D. Cha. Test
Case Generation from UML State Diagrams, 1999.

[26] MIAO Huaikou, LIU Ling, A Test Class Framework for
Generating Test Cases from Z Specifications, 2000.

[27] Wee Kheng Leow, Siau Cheng Khoo, Yi Sun. Automated
Generation of Test Programs From Closed Specifications of

Classes and Test Cases, 2004.

[28] M.Prasanna, S.N. Sivanandam, R.Venkatesan,
R.Sundarrajan. A Survey on Automatic Test Case Generation,
2005.

[29] Zhe (Jessie) Li, Tom Maibaum. An Approach to
Integration Testing of Object-Oriented Programs, 2007.

[30] Bertrand Meyer, llinca Ciupa, Andreas Leitner, Lisa
(Ling) Liu. Automatic testing of object-oriented software,2007.
[31] Xianghua Deng, Robby, John Hatcliff. Kiasan/KUnit:
Automatic Test Case Generation and Analysis Feedback for
Open Object-oriented Systems, 2007.

[32] Hojun Jaygarl, Kai-Shin Lu, Carl K. Chang. GenRed: A
Tool for Generating and Reducing Object-Oriented Test Cases,
2010.

[33] Gordon Fraser, Andrea Arcuri. EvoSuite: Automatic Test
Suite Generation for Object-oriented Software, 2011.

[34] Yury Pavlov, Gordon Fraser. Semi-Automatic Search-
based Test Generation, 2012.

[35] Jirawat Chaiareerat, Peraphon Sophatsathit, Chidchanok
Lursinsap. Test Case Generation for Classes in Objects-
Oriented Programming Using Grammatical Evolution, 2012.
[36] Rajvir Singh. Test Case Generation for Object-Oriented
Systems: A Review, 2014,

Rajvir Singh* IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780

Page 12780

