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ABSTRACT: Testing plays an important part in software development process to ensure the quality and reliability of
the developed product. For Object-oriented systems, model based testing has recently become very popular. This
approach uses models representing system behavior to generate the test cases. In this paper, we would focus on the
work done by various researchers in the field of model based testing approach. We would review the recent trends and
different model-based approaches that have been proposed by different researchers. Finally, we would describe what
are the present challenges and what work needs to be done in near future in this area.
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1. INTRODUCTION

Software testing plays central role in ensuring the quality
of delivered software product. But as the size and
complexity of software increases it becomes increasingly
difficult to test the product thoroughly. For Object oriented
systems this task becomes more complex because it has to
deal with new problems introduced by the Object-Oriented
features  such  as  encapsulation, inheritance,
polymorphism, and dynamic binding. Interactions between
objects may give rise to certain errors that could be hard to
detect. Object-oriented environment for design and
implementation of software brings about new issues in
software testing. This is because the above important

features of an object oriented program create several
testing problems and bug hazards [1].

This paper presents a systematic literature review to
analyze and report the findings in automated test case
generation for object-oriented systems. Literature reviews
provide a comprehensive view of the present research and
allows one to find out the possible gaps in the present
research.

The recent research trend in the field of automated test
case generation for object-oriented systems is shown by
the graph below.
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As is clear from the graph, research in this field has
attracted a lot of researchers recently. This number has
grown over the years.

Rest of this paper is organized as follows: section 2 gives a
background of the object-oriented test case generation
process. Section 3 describes the review method that has
been adopted for this paper; section 4 discusses the search
result. Section 5 deals with the literature survey; section 6
covers the future work and section 7 includes the
conclusion.

2. BACKGROUND:

According to IEEE testing is,
“The process of exercising or evaluating system or
system components by manual or automated means to
verify that it satisfies specified requirements”.

In other words, “Testing is the process of executing a

program with the intent of finding errors”.

Software Testing involves three processes: Test Case
Generation, Test Case Execution and Test Case
Evaluation. Manual testing is time-consuming, labor-
intensive and error-prone. Therefore, it is required to
automate the testing effort. Automation, which automates
a part of testing process, reduces the human effort in
finding bugs and errors.

There are mainly three types of testing approaches:

Model based testing:

Models are the intermediate artifacts between requirement
specification and final code. Models preserve the essential
information from the requirement, and are the basis for
implementation.

A model of software is a depiction of its behavior where
behavior can be described in terms of the input sequences
accepted by the system, the set of actions, conditions, the
flow of data through the application’s modules and
routines. For example, control flow, data flow, and
program dependency graphs. Model based testing uses
these models as bases for generating test cases for the
system under test. It combines both black and white box
testing features and is also called gray box approach.

Specification based testing:

In this approach test cases are derived directly from the
specification or from some other kind of model of what
the system should do. It is essentially a black box
approach.

Code based testing:

It ensures that each and every statement in the program is
executed at least once during the test. It is a white box
approach.

Table 1
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Code based testing is not an entirely satisfactory approach
to ensure thorough testing of modern software products.
Code based testing has two important disadvantages.
First, certain aspects of behavior of a system are difficult
to extract from code but are easily obtained from design
models. e.g., all different sequences in which messages
may be interchanged among classes during the use of
software are very difficult to extract from the code.
Another prominent disadvantage of code based testing is,
it is very difficult to automate and code based testing
overwhelmingly depends on manual test case design, [2].

Now-a-days model based testing methodology has gained
popularity for testing the object oriented system and has
become an obvious choice in software industries. It has
following advantages over other two testing approaches:

1) Traditional software testing techniques consider only
static view of code which is not sufficient for testing
dynamic behavior of object-oriented systems, [3].

2) Use of code to test an object-oriented system is
complex and tedious task. In contrast, models help
software testers to understand systems in a better way
and find test information only after simple processing
of models compared to code, [4].

3) Model-based test case generation can be planned at
an early stage of the software development life cycle,
allowing carrying out coding and testing in parallel

[4].

Because of these advantages most of the researchers have
focused on the model based test case generation approach.
Therefore, this paper focuses on the work done in the field
of model based test case generation for object-oriented
systems.

3. Review Method:

This paper is based on systematic literature review which
addresses the following research questions:

1. How much work has been done in the field of
automated test case generation for object-oriented
systems?

2. How much of the work identified in first question
focuses on design based test case generation
approach?

3. What are the limitations of current research?

3.1 Search Process

The research process was a manual search of different
journal papers, surveys and conferences related to
automated test case generation since 1999. The
selected journals and conferences are shown in table
1. Each of these journals deals with the issue of
automating the test case generation process.
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Source Acronym
Institute of electrical and electronics engineers |IEEE
Journal of object technology JOT
International journal of software engineering IJSE
Indian journal of computer science and engineering IJCSE
International Journal of Advanced Computer Science and Applications  |IJACSA
International Journal of Software Engineering & Applications IJSEA
International Journal of Inventive Engineering and Sciences IJIES

. L 4. Search Result:

3.2 Inclusion and Exclusion criteria

After applying the search criteria described in the
previous section, 32 articles have been identified as
relevant to our topic of research. Out of these 32 articles
20 focus on the model based approach, 4 on specification
based approach, 1 on code based testing and remaining 7
articles use some other approaches for test case
generation. These 32 articles along with brief information
about them have been listed in the table 2.

Articles published from 1999 to 2014 were included
for the research. As a first step, irrelevant papers
were excluded manually based on titles. Papers
dealing with software testing and test case generation
in general were also excluded. All the journals
dealing with automated test case generation for
object-oriented system were included. Only studies
written in English were considered. Papers with

revised versions were included and their initial
versions were discarded. Table 2
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UML has emerged as an industrial standard for modeling
software systems [6]. UML is a visual modeling language
that can be used to specify, visualize, construct, and

5. Literature Survey:
y document the artifacts of a software system [6].

As is clear from the above list most of the work in the

field of automated test case generation for object-oriented A number of researchers have used Models for testing the
systems focus on the model based approach (mainly UML object oriented systems. This approach has increasingly
diagram). So, focus of this review paper has been on the become popular. C.D. Turner and D.J. Robson used the
model based approach for test case generation. concept of FSA (Finite State Automata) for generation of

test cases and validation of object-oriented programs. It
emphasizes on the validation of interaction between the
features of a class, [5].
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Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li
Xuandong and Zheng Guoliang, in their paper [7], derive
test scenarios directly from the activity diagram modeling
an operation. Then, all the information for test case
generation, i.e. input/output sequence and parameters, the
constraint conditions and expected object method
sequence, is extracted from each test scenario. At last, the
possible values of all the input/output parameters could be
generated by applying category-partition method, and test
suite could be systematically generated to find the
inconsistency between the implementation and the design.

Ranjita Kumari Swain, Prafulla Kumar Behera and Durga
Prasad Mohapatra, in [8], proposed a test data generation
scheme using state chart diagram which optimizes test
coverage by minimizing time and cost.

Debasish Kundu and Debasis Samanta used UML
Activity Diagrams to generate test cases in [4]. They used
UML 2.0 syntax for generating test cases from activity
diagrams with use case scope. They considered a
coverage criterion called activity path coverage criterion
with the aim to cover faults like synchronization faults,
faults in a loop.

Santosh Kumar Swain, Durga Prasad Mohapatra and
Rajib Mall, in [9], proposed a novel technique by
combining state and activity models of the system to
construct an intermediate representation which they
named as state-activity diagram. This technique is very
effective in detecting integration faults.

Santosh Kumar Swain, Subhendu Kumar Pani, Durga
Prasad Mohapatra,in [11], focus on various model based
techniques for automatic object-oriented software testing.

A use case driven approach has been used by
Cle"mentine Nebut, Franck Fleurey, Yves Le Traon, Jean-
Marc Je'ze” quel for automated test case generation for
embedded systems in [12].

Philip Samuel, Rajib Mall and Sandeep Sahoo have used
UML sequence diagrams and dynamic slicing technique
in their paper published in 2005. It uses slice coverage as
the test coverage criteria, [13].

Monalisa Sarma,Rajib Mall in ‘Automatic Test Case
Generation from UML Models’ use the combination of
sequence diagrams and use case diagrams for test case
generation and uses sequence diagram message path
coverage and use case dependency coverage as metrics
for measuring the effectiveness of generated test cases,
[14].

Sequence diagrams, use case template and class diagrams
have been used by Monalisa Sarma and Rajib Mall for
system testing of the software, in [15]. This approach
ensures sequence diagram message path sequence
coverage.

Fanping Zeng, Zhide Chen, Qing Cao and Liangliang
Mao used UML state diagram model that represent state
transition to generate test cases, in [16]. A variation of
this approach has also been proposed which uses state
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chart diagrams for generation and optimization of test
cases, [21].

A requirement prioritization method approach has been

proposed by Nicha Kosindrdecha and

Jirapun Daengdej which is based on use case diagram
which ensures domain specific requirement coverage, in
[17].

A.V.K.Shanthi and DR.G.Mohankumar applied the
concept of data mining to generate optimal test cases from
UML class diagram, in [18].

Combinational UML models (sequence diagram and
Activity diagram,[19] and class diagram, sequence
diagram and state chart diagram, [20] ) have also been
used by researchers for automating the test case
generation for object-oriented systems.

Some researchers have also applied genetic algorithm to
UML sequence diagrams for test case generation, [22],
[23]. A multi objective genetic algorithm has been used
by Kirandeep Kaur and Vinay Chopra for generating test
cases from UML sequence diagram, [23].

5.1 Limitations of Design based approach

Work of these researchers and various other researches
done in this field show that model based testing provides
better test coverage especially for behavioral aspects
which are difficult to identify in the code. Another
advantage of this approach is that whenever a code
change occurs to fix a coding error, the test cases are not
affected as the changed code still confirms to the model.
But this approach requires the testers to be familiar with
the models and its underlying mathematics and theories.
They need to be aware of the tools and programming
languages necessary for performing various tasks.
Moreover, can never displace code based testing, since
models constructed during the development process lack
several details of implementation that are required to
generate test cases[4] .

6. Future Work:

The real work that remains for the near future is fitting
specific models (finite state machines, grammars or
language-based models) to specific application domains
[2]. We must form an understanding of how we are testing
and be able to sufficiently communicate that
understanding so that testing insight can be encapsulated
as a model for any and all to benefit from. Modifications
can be done in existing models or new models can also be
designed which are more generic and can host a wide
variety of applications and provide an optimal test suite
for testing.

7. Conclusion:

Model Based Testing approach provides the test cases
early in the development of software development life
cycle. It increases productivity and it doesn’t require
changes in the test cases whenever changes are made to
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the code to correct the coding error. But it lacks certain
implementation level details that are available for code
based testing. At present there are not any guidelines or
measures that can be used to weigh one model against the
other. So, careful analysis of test requirement should be
done before selecting a relevant model. A number of
researchers have proposed different model based
approaches for test case generation. But still a lot of work
needs to be done to find the optimal test suite for
applications under test.
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