
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 6 June 2015, Page No. 12774-12780

Rajvir Singh1 IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12774

Review of model based approach for automating the test case

generation for Object Oriented Systems.

Rajvir Singh1, Preeti2

1Assistant Professor, CSE Department,

Deenbandhu Chhotu Ram University, Murthal.

Rajvirsingh.cse@dcrustm.org

2Student, M.Tech(CSE),

Deenbandhu Chhotu Ram University, Murthal.

Preeti.lohchab32@gmail.com

ABSTRACT: Testing plays an important part in software development process to ensure the quality and reliability of

the developed product. For Object-oriented systems, model based testing has recently become very popular. This

approach uses models representing system behavior to generate the test cases. In this paper, we would focus on the

work done by various researchers in the field of model based testing approach. We would review the recent trends and

different model-based approaches that have been proposed by different researchers. Finally, we would describe what

are the present challenges and what work needs to be done in near future in this area.

KEYWORDS: Object-oriented Software, Model Based Testing, Testing, Design based approach

1. INTRODUCTION

Software testing plays central role in ensuring the quality

of delivered software product. But as the size and

complexity of software increases it becomes increasingly

difficult to test the product thoroughly. For Object oriented

systems this task becomes more complex because it has to

deal with new problems introduced by the Object-Oriented

features such as encapsulation, inheritance,

polymorphism, and dynamic binding. Interactions between

objects may give rise to certain errors that could be hard to

detect. Object-oriented environment for design and

implementation of software brings about new issues in

software testing. This is because the above important

features of an object oriented program create several

testing problems and bug hazards [1].

This paper presents a systematic literature review to

analyze and report the findings in automated test case

generation for object-oriented systems. Literature reviews

provide a comprehensive view of the present research and

allows one to find out the possible gaps in the present

research.

The recent research trend in the field of automated test

case generation for object-oriented systems is shown by

the graph below.

0

1

2

3

4

5

6

7

8

9

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

Publications Trends

Publications

http://www.ijecs.in/
mailto:Rajvirsingh.cse@dcrustm.org
mailto:Preeti.lohchab32@gmail.com

Rajvir Singh1 IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12775

As is clear from the graph, research in this field has

attracted a lot of researchers recently. This number has

grown over the years.

Rest of this paper is organized as follows: section 2 gives a

background of the object-oriented test case generation

process. Section 3 describes the review method that has

been adopted for this paper; section 4 discusses the search

result. Section 5 deals with the literature survey; section 6

covers the future work and section 7 includes the

conclusion.

2. BACKGROUND:

According to IEEE testing is,

“The process of exercising or evaluating system or

system components by manual or automated means to

verify that it satisfies specified requirements”.

In other words, “Testing is the process of executing a

program with the intent of finding errors”.

 Software Testing involves three processes: Test Case

Generation, Test Case Execution and Test Case

Evaluation. Manual testing is time-consuming, labor-

intensive and error-prone. Therefore, it is required to

automate the testing effort. Automation, which automates

a part of testing process, reduces the human effort in

finding bugs and errors.

There are mainly three types of testing approaches:

Model based testing:

Models are the intermediate artifacts between requirement

specification and final code. Models preserve the essential

information from the requirement, and are the basis for

implementation.

A model of software is a depiction of its behavior where

behavior can be described in terms of the input sequences

accepted by the system, the set of actions, conditions, the

flow of data through the application’s modules and

routines. For example, control flow, data flow, and

program dependency graphs. Model based testing uses

these models as bases for generating test cases for the

system under test. It combines both black and white box

testing features and is also called gray box approach.

Specification based testing:

 In this approach test cases are derived directly from the

specification or from some other kind of model of what

the system should do. It is essentially a black box

approach.

Code based testing:
It ensures that each and every statement in the program is

executed at least once during the test. It is a white box

approach.

Code based testing is not an entirely satisfactory approach

to ensure thorough testing of modern software products.

Code based testing has two important disadvantages.

First, certain aspects of behavior of a system are difficult

to extract from code but are easily obtained from design

models. e.g., all different sequences in which messages

may be interchanged among classes during the use of

software are very difficult to extract from the code.

Another prominent disadvantage of code based testing is,

it is very difficult to automate and code based testing

overwhelmingly depends on manual test case design, [2].

Now-a-days model based testing methodology has gained

popularity for testing the object oriented system and has

become an obvious choice in software industries. It has

following advantages over other two testing approaches:

1) Traditional software testing techniques consider only

static view of code which is not sufficient for testing

dynamic behavior of object-oriented systems, [3].

2) Use of code to test an object-oriented system is

complex and tedious task. In contrast, models help

software testers to understand systems in a better way

and find test information only after simple processing

of models compared to code, [4].

3) Model-based test case generation can be planned at

an early stage of the software development life cycle,

allowing carrying out coding and testing in parallel

[4].

Because of these advantages most of the researchers have

focused on the model based test case generation approach.

Therefore, this paper focuses on the work done in the field

of model based test case generation for object-oriented

systems.

3. Review Method:

This paper is based on systematic literature review which

addresses the following research questions:

1. How much work has been done in the field of

automated test case generation for object-oriented

systems?

2. How much of the work identified in first question

focuses on design based test case generation

approach?

3. What are the limitations of current research?

3.1 Search Process

The research process was a manual search of different

journal papers, surveys and conferences related to

automated test case generation since 1999. The

selected journals and conferences are shown in table

1. Each of these journals deals with the issue of

automating the test case generation process.

Table 1

Rajvir Singh1 IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12776

3.2 Inclusion and Exclusion criteria

Articles published from 1999 to 2014 were included

for the research. As a first step, irrelevant papers

were excluded manually based on titles. Papers

dealing with software testing and test case generation

in general were also excluded. All the journals

dealing with automated test case generation for

object-oriented system were included. Only studies

written in English were considered. Papers with

revised versions were included and their initial

versions were discarded.

4. Search Result:

After applying the search criteria described in the

previous section, 32 articles have been identified as

relevant to our topic of research. Out of these 32 articles

20 focus on the model based approach, 4 on specification

based approach, 1 on code based testing and remaining 7

articles use some other approaches for test case

generation. These 32 articles along with brief information

about them have been listed in the table 2.

Table 2

Source Acronym

Institute of electrical and electronics engineers IEEE

Journal of object technology JOT

International journal of software engineering IJSE

Indian journal of computer science and engineering IJCSE

International Journal of Advanced Computer Science and Applications IJACSA

International Journal of Software Engineering & Applications IJSEA

International Journal of Inventive Engineering and Sciences IJIES

Rajvir Singh1 IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12777

Rajvir Singh1 IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12778

5. Literature Survey:

As is clear from the above list most of the work in the

field of automated test case generation for object-oriented

systems focus on the model based approach (mainly UML

diagram). So, focus of this review paper has been on the

model based approach for test case generation.

UML has emerged as an industrial standard for modeling

software systems [6]. UML is a visual modeling language

that can be used to specify, visualize, construct, and

document the artifacts of a software system [6].

A number of researchers have used Models for testing the

object oriented systems. This approach has increasingly

become popular. C.D. Turner and D.J. Robson used the

concept of FSA (Finite State Automata) for generation of

test cases and validation of object-oriented programs. It

emphasizes on the validation of interaction between the

features of a class, [5].

Rajvir Singh1 IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12779

Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li

Xuandong and Zheng Guoliang, in their paper [7], derive

test scenarios directly from the activity diagram modeling

an operation. Then, all the information for test case

generation, i.e. input/output sequence and parameters, the

constraint conditions and expected object method

sequence, is extracted from each test scenario. At last, the

possible values of all the input/output parameters could be

generated by applying category-partition method, and test

suite could be systematically generated to find the

inconsistency between the implementation and the design.

Ranjita Kumari Swain, Prafulla Kumar Behera and Durga

Prasad Mohapatra, in [8], proposed a test data generation

scheme using state chart diagram which optimizes test

coverage by minimizing time and cost.

Debasish Kundu and Debasis Samanta used UML

Activity Diagrams to generate test cases in [4]. They used

UML 2.0 syntax for generating test cases from activity

diagrams with use case scope. They considered a

coverage criterion called activity path coverage criterion

with the aim to cover faults like synchronization faults,

faults in a loop.

Santosh Kumar Swain, Durga Prasad Mohapatra and

Rajib Mall, in [9], proposed a novel technique by

combining state and activity models of the system to

construct an intermediate representation which they

named as state-activity diagram. This technique is very

effective in detecting integration faults.

Santosh Kumar Swain, Subhendu Kumar Pani, Durga

Prasad Mohapatra,in [11], focus on various model based

techniques for automatic object-oriented software testing.

 A use case driven approach has been used by

Cle´mentine Nebut, Franck Fleurey, Yves Le Traon, Jean-

Marc Je´ze´ quel for automated test case generation for

embedded systems in [12].

Philip Samuel, Rajib Mall and Sandeep Sahoo have used

UML sequence diagrams and dynamic slicing technique

in their paper published in 2005. It uses slice coverage as

the test coverage criteria, [13].

Monalisa Sarma,Rajib Mall in ‘Automatic Test Case

Generation from UML Models’ use the combination of

sequence diagrams and use case diagrams for test case

generation and uses sequence diagram message path

coverage and use case dependency coverage as metrics

for measuring the effectiveness of generated test cases,

[14].

Sequence diagrams, use case template and class diagrams

have been used by Monalisa Sarma and Rajib Mall for

system testing of the software, in [15]. This approach

ensures sequence diagram message path sequence

coverage.

Fanping Zeng, Zhide Chen, Qing Cao and Liangliang

Mao used UML state diagram model that represent state

transition to generate test cases, in [16]. A variation of

this approach has also been proposed which uses state

chart diagrams for generation and optimization of test

cases, [21].

 A requirement prioritization method approach has been

proposed by Nicha Kosindrdecha and

Jirapun Daengdej which is based on use case diagram

which ensures domain specific requirement coverage, in

[17].

 A.V.K.Shanthi and DR.G.Mohankumar applied the

concept of data mining to generate optimal test cases from

UML class diagram, in [18].

Combinational UML models (sequence diagram and

Activity diagram,[19] and class diagram, sequence

diagram and state chart diagram, [20]) have also been

used by researchers for automating the test case

generation for object-oriented systems.

Some researchers have also applied genetic algorithm to

UML sequence diagrams for test case generation, [22],

[23]. A multi objective genetic algorithm has been used

by Kirandeep Kaur and Vinay Chopra for generating test

cases from UML sequence diagram, [23].

5.1 Limitations of Design based approach

Work of these researchers and various other researches

done in this field show that model based testing provides

better test coverage especially for behavioral aspects

which are difficult to identify in the code. Another

advantage of this approach is that whenever a code

change occurs to fix a coding error, the test cases are not

affected as the changed code still confirms to the model.

But this approach requires the testers to be familiar with

the models and its underlying mathematics and theories.

They need to be aware of the tools and programming

languages necessary for performing various tasks.

Moreover, can never displace code based testing, since

models constructed during the development process lack

several details of implementation that are required to

generate test cases[4] .

6. Future Work:

The real work that remains for the near future is fitting

specific models (finite state machines, grammars or

language-based models) to specific application domains

[2]. We must form an understanding of how we are testing

and be able to sufficiently communicate that

understanding so that testing insight can be encapsulated

as a model for any and all to benefit from. Modifications

can be done in existing models or new models can also be

designed which are more generic and can host a wide

variety of applications and provide an optimal test suite

for testing.

7. Conclusion:

Model Based Testing approach provides the test cases

early in the development of software development life

cycle. It increases productivity and it doesn’t require

changes in the test cases whenever changes are made to

Rajvir Singh1 IJECS Volume 4 Issue 6 June, 2015 Page No.12774-12780 Page 12780

the code to correct the coding error. But it lacks certain

implementation level details that are available for code

based testing. At present there are not any guidelines or

measures that can be used to weigh one model against the

other. So, careful analysis of test requirement should be

done before selecting a relevant model. A number of

researchers have proposed different model based

approaches for test case generation. But still a lot of work

needs to be done to find the optimal test suite for

applications under test.

References:

[1] J. Philipps, A. Pretschner, O. Slotosch,E. Aiglstorfer, S.

Kriebel, K. Scholl, Model based test case generation for smart

cards, in:Proc. 8th Intl. Workshop on Formal Meth. For

Industrial Critical Syst., 2003, pp. 168–192.

[2] Santosh Kumar Swain, Subhendu Kumar Pani, Durga

Prasad Mohapatra, Model based Object Oriented Software

Testing, JATIT.

[3] R. V. Binder. Testing Object-Oriented Systems Models,

Patterns, and Tools. Addison Wesley, Reading, Massachusetts,

October 1999.

[4] Debasish Kundu, Debasis Samanta. A Novel Approach to

Generate Test Cases from UML Activity Diagrams. Chair of

Software Engineering, 2008.

[5] C.D. Turner, DJ. Robson. The State-based Testing of

Object-Oriented Programs

[6] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified

Modeling Language Reference Manual. Addison-Wesley,

Reading, Massachusetts, 1999.

[7] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li

Xuandong and Zheng Guoliang. Generating Test Cases from

UML Activity Diagram based on Gray-Box Method

[8] Ranjita Kumari Swain, Prafulla Kumar Behera, Durga

Prasad Mohapatra. Generation and Optimization of Test cases

for Object-Oriented Software Using State Chart Diagram.

[9] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib

Mall. Test case generation based on state and activity models.

[10] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib

Mall. Test case generation based on Use case and sequence

diagram.

[11] Santosh Kumar Swain, Subhendu Kumar Pani, Durga

Prasad Mohapatra. Model Based Object-oriented Software

Testing, 2005.

[12] Cle´mentine Nebut, Franck Fleurey, Yves Le Traon, Jean-

Marc Je´ze´ quell. Automatic Test Generation: A Use Case

Driven Approach, 2005.

[13] Philip Samuel, Rajib Mall and Sandeep Sahoo. UML

Sequence Diagram Based Testing Using Slicing, 2005.

[14] Monalisa Sarma,Rajib Mall. Automatic Test Case

Generation from UML Models, 2007.

[15] Monalisa Sarma,Rajib Mall. Automatic Test Case

Generation from UML Sequence

diagrams, 2007.

[16] Fanping Zeng, Zhide Chen, Qing Cao, Liangliang Mao.

Research on Method of Object-Oriented Test Cases Generation

Based on UML and LTS, 2009.

[17] Nicha Kosindrdecha, Jirapun Daengdej. A Test Case

Generation Technique and Process, 2010.

[18] A.V.K.Shanthi, DR.G.Mohankumar. Automated Test

cases generation for Object Oriented Software,2011.

[19] Swagatika Dalai,Arup Abhinna Acharya, Durga Prasad

Mohapatra. Test Case Generation for Concurrent Object-

Oriented Systems Using Combinational Uml Models, 2011.

[20] Rohin Verma, Rajesh Bhatia. Behavior based Automated

Test Case Generation for Object Oriented Systems, 2012.

[21] Ranjita Kumari Swain, Prafulla Kumar Behera, Durga

Prasad Mohapatra. Minimal TestCase Generation for Object-

Oriented Software with State Charts, 2012.

[22] V.Mary Sumalatha, G.S.V.P.Raju. Object Oriented Test

Case Generation Technique using Genetic Algorithms, 2013.

[23] Kirandeep Kaur, Vinay Chopra. Review of Automatic

Test Case Generation from UML Diagram using Evolutionary

Algorithm, 2014.

[24] S.J. Cunning, J.W. Rozenblit. Automatic Test Case

Generation from Requirements Specifications for Real-time

Embedded Systems, 1999.

[25] Y.J. Kim, H.S. Hong, S.M. Cho, D.H. Bae, S.D. Cha. Test

Case Generation from UML State Diagrams, 1999.

[26] MIA0 Huaikou, LIU Ling, A Test Class Framework for

Generating Test Cases from Z Specifications, 2000.

[27] Wee Kheng Leow, Siau Cheng Khoo, Yi Sun. Automated

Generation of Test Programs From Closed Specifications of

Classes and Test Cases, 2004.

[28] M.Prasanna, S.N. Sivanandam, R.Venkatesan,

R.Sundarrajan. A Survey on Automatic Test Case Generation,

2005.

[29] Zhe (Jessie) Li, Tom Maibaum. An Approach to

Integration Testing of Object-Oriented Programs, 2007.

[30] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Lisa

(Ling) Liu. Automatic testing of object-oriented software,2007.

[31] Xianghua Deng, Robby, John Hatcliff. Kiasan/KUnit:

Automatic Test Case Generation and Analysis Feedback for

Open Object-oriented Systems, 2007.

[32] Hojun Jaygarl, Kai-Shin Lu, Carl K. Chang. GenRed: A

Tool for Generating and Reducing Object-Oriented Test Cases,

2010.

[33] Gordon Fraser, Andrea Arcuri. EvoSuite: Automatic Test

Suite Generation for Object-oriented Software, 2011.

[34] Yury Pavlov, Gordon Fraser. Semi-Automatic Search-

based Test Generation, 2012.

[35] Jirawat Chaiareerat, Peraphon Sophatsathit, Chidchanok

Lursinsap. Test Case Generation for Classes in Objects-

Oriented Programming Using Grammatical Evolution, 2012.

[36] Rajvir Singh. Test Case Generation for Object-Oriented

Systems: A Review, 2014.

Note: There is no conflict of interest between authors.

