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In this article we introduce a novel variational model for two-phase segmentation tasks, which is related to the popular Chan-

Vese(CV) segmentation model[4]. In particular, the proposed model is based on a discriminant analysis of the given data.  Level 

set methods are used to realize this approach is  numerically.  We start by applying CV model on medical ultrasound  data 

perturbed by multiplicative speckle noise. The respective observations are noted i.e. Section1. Subsequently, discriminant analysis 

based segmentation model is applied i.e. in Section2.Finally, we validate the methods on real patient data from echocardiographic 

examinations in Section3. 

1 Objective 

Standard segmentation formulations such as the popular CV 

approach, tend to produce  L2  data fidelity term in the 

Inapplicability of the ICC for US imaging. By incorporating 

physical noise models like additive Gaussian, Loupas  and 

the Rayleigh in segmentation algorithms the robustness and 

segmentation accuracy can be increased significantly. This 

adaption leads in general to increased computational effort, 

due to sophisticated modeling and relatively complex 

numerical solving schemes Numerical Realization ( 

minimization problem) with additional parameters to be 

optimized. The aim is to increase the robustness of medical 

US data by introducing a simple variational segmentation 

formulation which accounts for the impact of multiplicative 

speckle noise. Simultaneously, we aim to obtain closed 

segmentation contours which delineate the endocardial 

border of the left ventricle, as this is not possible with the 

proposed variational segmentation framework due to the 

global convex segmentation approach in Numerical 

Realization (minimization problem). 

 

To give a motivation for the proposed approach, we observe 

the impact of two different noise models on an intensity 

histogram, i.e., additive Gaussian noise (1) and 

multiplicative speckle noise as modeled(3) in  

 

The perturbation with white noise during the image 

formation process is modeled as, 

 

 f = u + η (1) 

 

for which η is a normal distribution random variable with 

mean 0 and variance σ2  , i.e., the probability density 

function of η is given by , 

p(η) =  
1

√2πσ
e

−
η2

σ2 . 

 

from (1), it is clear that this form of noise is signal-

independent  and has a globally identical distribution of 

noise.  

 

The Loupas noise model originates form an experimentally 

derived model for multiplicative speckle noise by Tur, Chin 

and Goodman in [15]. The image formation process is given 

by , 

 

 f = u + u
γ
2η (2) 

 

This special case is known as Loupas noise model and 

image formation process[26 §1]. 

 

               f = u + √𝑢𝜂 (3) 

 

 

The effect of additive Gaussian noise is illustrated in Figure 

1a. Obviously, for a fixed variance σ2 > 0  there is a 

globally identical impact on the signal distribution. This is 

natural, since additive Gaussian noise is signal-independent 

[2]. 

 

 
For multiplicative speckle noise one can observe different 

characteristics in Figure 1b. In regions with high intensity 
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values the grayscale distribution gets spread out much wider 

than in regions with low intensity values. This effect is 

amplified for increasing noise variance σ2. Thus, it is more 

difficult to separate the two signal distributions compared 

with additive Gaussian noise, especially in the overlapping 

areas of the histogram. It is our goal to incorporate this 

observation on the signal distribution in US images 

efficiently for a robust segmentation of US images. 

 

CV method Restrictions 

 

In the following we discuss the characteristics of the Chan-

Vese formulation [4] for the situation of images perturbed 

by multiplicative speckle noise as illustrated in Figure 1b. 

 

In order to overcome the enormous numerical effort of using 

an explicit parameterization of Γ, Chan and Vese propose in 

[4] to express Ecv  in with the help of level set functions. 

Until today a huge variety of applications for level set 

methods have been proposed, e.g., classical segmentation 

tasks [4,12,13,14], simulation and modeling [17], and 

rendering [18]. They use a signed distance function  Φ
∶ Ω → R   as introduced in [4] such that the segmentation 

contour Γ   and the two respective regions are given 

implicitly as level sets of Φ.  

 

Using the notation above, the energy functional in CV 

segmentation model [4] can be rewritten in the context of 

level set methods as, 

 

 𝐹𝑐𝑣(𝑐1, 𝑐2, 𝛷) = 𝜆1∫
𝛺

(𝑐1 − 𝑓(𝑥⃗))
2

 𝐻(𝛷) 𝑑𝑥⃗  

+  𝜆2∫
𝛺2

(𝑐2 − 𝑓(𝑥⃗))
2

(1 − 𝐻(𝛷(𝑥⃗)))𝑑𝑥⃗ 

+ 𝛽∫
𝛺

𝛿0(𝛷(𝑥⃗))|𝛥𝛷(𝑥⃗)|𝑑𝑥⃗  + 

𝛾∫
𝛺

 𝐻(𝛷(𝑥⃗)) 𝑑𝑥⃗                  

(4) 

 

and the associated minimization problem reads as, 

 

  

𝑖𝑛𝑓{𝐹𝑐𝑣(𝑐1, 𝑐2, 𝛷)| 𝑐𝑖 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,   𝛷 ∊ 𝑤1,1(𝛺)}.                  
(5) 

 

In general, a proof for existence of minimizers for (5) is 

hard to obtain, due to the non-convexity of (4). However, 

using the results from convex relaxation discussed in [16] , 

the authors Brown, Chan and Bresson prove the existence of 

global optima for the relaxed problem in [3]. 

 

In most segmentation tasks it is not reasonable to penalize 

the size of the segmentation area and hence the respective 

regularization term is disregarded [4], i.e., formally 𝛾 = 0 in 

(4). We follow this approach and discuss a reduced variant 

of the original Chan- Vese formulation in the following. 

 

To compute a local minimum for (5), an alternating 

minimization scheme is used as indicated in [4]. Thus, the 

minimization problem (5) is transformed into two decoupled 

minimization problems, i.e., 

 

 𝑖𝑛𝑓{𝐹𝑐𝑣(𝑐1, 𝑐2, 𝛷𝑛)| 𝑐𝑖 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 }, (6a) 

 𝑖𝑛𝑓{𝐹𝑐𝑣(𝑐1
𝑛+1, 𝑐2

𝑛+1, 𝛷) 𝛷 ∊ 𝑤1,1(𝛺)}.  (6b) 

   

To solve (6a), the optimal constants 𝑐1  and 𝑐2   can be 

computed for a fixed 𝛷 analogously to [19] as mean values 

of the respective sub regions   𝛺1,  𝛺2  ⊂ 𝛺 using  [1]. 

 

For the minimization of the subsequent minimal partition 

problem (6b) the authors in[4] propose to use regularized 

versions of the Heavyside function H and the one 

dimensional 𝛿 − Dirac measure 𝛿0 , i.e., for a small ∊ > 0 

they use the following functions, 

 

 
𝐻∊(𝑥)  =  

1

2
(1 +

2

𝛱
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑥

∊
)),   𝛿∊(𝑥)  

=  𝐻∊
′ (𝑥)  =  

1

𝛱 (
𝑥2

∊
 + ∊)

    
(7) 

 

Denoting with 𝑓(𝑥, 𝑢, 𝜉) = 𝑓(𝑥, 𝛷, ∇𝛷)  the integrand of 𝐹𝑐𝑣 

and using the regularized functions in  (7), the strong 

formulation of the Euler-Lagrange equation  for 

minimization of (6b) with respect to 𝛷 can be deduced as, 

 

 
0    =     ∑

𝜕

𝜕𝑥𝑖

[𝑓𝜉𝑖
(𝑥, 𝑢, 𝜉)]

𝑛

𝑖=1

− 𝑓𝑢(𝑥, 𝑢, 𝜉)                    

(8) 

 

 
=  𝛿∊(𝛷(𝑥⃗)) (𝛽𝑑𝑖𝑣 (

∇𝛷(𝑥⃗)

|∇𝛷(𝑥⃗)|
)  

−  𝜆1(𝑓(𝑥⃗) − 𝑐1)2

+  𝜆2(𝑓(𝑥⃗) − 𝑐2)2),  

 

 

with the Cauchy boundary condition [4],  

 

 δϵ(𝛷(𝑥))

|∇𝛷(𝑥)|

𝜕𝛷

𝜕𝑛⃗⃗
(𝑥⃗) = 0 for all 𝑥⃗ ∈ 𝜕𝛺, 

 
 

which has to be fulfilled by any minimizer  𝛷̂ of (6b) a.e. on 

the domain 𝛺. Introducing an artificial temporal variable t ∈ 

𝑅≥0  and applying a gradient descent approach, one is 

interested in a stationary solution of the resulting PDE, i.e., 
𝜕𝛷

𝜕𝑡
= 0 for (8). A forward Euler time discretization can be 

applied as discussed in numerical realization [16]. and 

hence one gets the following iterative update. We exchange 

the regularized δ- Dirac measure δϵ by |∇Φn| to expand the 

evolution of Φ to all level sets (cf. Level Set Methods [16]), 

i.e., globally on Ω. Then the iterative update reads as, 

 

𝛷𝑛+1(𝑥⃗)  
=  𝛷𝑛(𝑥⃗)

+  ∆𝑡|∇𝛷𝑛(𝑥⃗)| (𝛽 𝑑𝑖𝑣 (
∇𝛷𝑛(𝑥⃗)

|∇𝛷𝑛(𝑥⃗)|
)

− 𝜆1(𝑓(𝑥⃗) − 𝑐1)2 +  𝜆2(𝑓(𝑥⃗) − 𝑐2)2 ), 
(9) 

  

This can be interpreted as motion in normal direction 

controlled by both internal (mean curvature) and external 

forces (data fidelity) as discussed in Choice of velocity field 

V [16]. The curvature term in (9) can be approximated using 

spacial discretization of parabolic terms[16] as introduced in 

Numerical Realization[16].  

 

For this case the stability of the iterative update 𝛷𝑛 →
𝛷𝑛+1 is guaranteed for the associated convection-diffusion 

PDE [20, §6.4] by the Courant-Friedrich-Lewy condition 
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using Theorems Convergence for normal velocity 

[20,Theorem 6.3.1] and Convergence for mean curvature 

velocity [20, Theorem 6.3.1], 

 

 
∆𝑡𝑚𝑎𝑥

𝑍∈𝛺
{∑

|𝐷(𝑐1, 𝑐2, 𝑓)(𝑥⃗)𝛷𝑥𝑖(𝑥⃗)|

|∇𝛷(𝑥⃗)∆𝑥𝑖|

𝑛

𝑖=1

 +  
2𝛽

(∆𝑥𝑖)
2

}  

<  1,                          

(10) 

 

for which 𝐷(𝑐1, 𝑐2, 𝑓)(𝑥⃗) = 𝜆2(𝑓(𝑥⃗) − 𝑐2)2 - 𝜆1(𝑓(𝑥⃗) −

𝑐1)2  denotes the data fidelity. 

 

The alternating minimization scheme for the level set 

formulation of the Chan-Vese functional is summarized in 

CV Segmentation Algorithm[25]. Note that we introduced a 

second index M for the maximal number of inner iterations 

until the (optional) reinitialization of 𝛷 to a signed distance 

function as described in Numerical Realization[16]. 

 

Keeping the optimal constants 𝑐1, 𝑐2 fixed and disregarding 

the smoothness term for 𝛷, i.e., formally 𝛽 = 0, we observe 

that the data fidelity term in (4) gets minimal, if all intensity 

values with respect to the mean values of 𝛺1 𝑎𝑛𝑑 𝛺2 . 

Hence, a pixel gets assigned to𝛺2, if the difference of its 

intensity value to the respective mean value is smaller than 

to the mean value of the background region (and vice versa). 

 

Obviously, this induces a classification threshold 

  

𝑡𝑐𝑣 =
𝑐1+𝑐2

2
. 

 

 

Note that this threshold only depends on the mean values of 

the two signal distributions and does not consider the 

respective variances. As discussed in [16] L2 data fidelity 

term and hence the induced threshold tcv represent an 

optimal choice for segmentation tasks on images perturbed 

by additive Gaussian noise. This can also be seen in Figure 

1a, where the noise perturbation is global and an optimal 

threshold only depends on the mean values of the respective 

signal distributions. 

 

However, this model is rather inapplicable for images 

perturbed by multiplicative noise. This fact is illustrated in 

Figure 2. The two solid black lines resemble the intensity 

values of an unbiased signal u in an image intensity 

histogram. By adding multiplicative speckle noise according 

to (3) with  

γ=1and noise variance parameter 𝜎2
 = 2.7 we generated a 

perturbed image f. As can be seen at the image intensity 

histogram of f (dashed line), the intensity values get spread 

out according to a local normal distribution induced by the 

normal distributed random variable 𝜂  in (3). Due to the 

multiplicative nature of this noise from the noise variance is 

significantly higher in the part with higher intensity values 

of the image histogram. Thus, it is more challenging to 

separate the two signals, especially in the overlapping part 

of the histogram. 

 

The red line in Figure 2 illustrates the threshold 𝑡𝑐𝑣 induced 

by the mean values of the two signals (black solid lines). 

Apparently, the data cannot be partitioned reasonably by 𝑡𝑐𝑣 
and a shift to the left side of the histogram would be 

appropriate. In Section 2 we introduce a method to estimate 

a threshold by the means of discriminant analysis that  also 

considers the variance of the two signal distributions and 

hence leads to a better partitioning of the signal intensities 

(indicated by the blue dashed line).This observation of the 

induced threshold 𝑡𝑐𝑣  gets even more apparent, if one 

recalls the Euler-Lagrange equations (8) of the minimal 

partition problem (6b). By setting 𝜆1 = 𝜆2  (standard 

parameter choice in [4]) the associated Euler-Lagrange 

equations with respect to the level set function 𝛷 are given 

by, 

 

 0 = 𝛿𝜖(𝛷(𝑥)) (𝜇 𝑑𝑖𝑣 (
∇Φ(𝑥)

|∇Φ(𝑥)|
) − (𝑓(𝑥) − 𝑐1)2 +

(𝑓(𝑥) − 𝑐2)2) 

= 𝛿𝜖(𝛷(𝑥)) (𝜇 𝑑𝑖𝑣 (
∇Φ(𝑥)

|∇Φ(𝑥)|
) − 2(𝑐2 −

𝑐1) (𝑓(𝑥) −
𝑐1+𝑐2

2⏟
=𝑡𝑐𝑣

)). 

 

 

Here, μ is the rescaled parameter 𝛽in (8). Disregarding the 

regularization term for 𝛷, i.e., 𝜇 = 0, it gets clear that the 

Euler-Lagrange equation only holds in one case. 

 
 

The equilibrium status of the evolution of Φ is obtained, if 

the segmentation contour is situated at points  x⃗⃗  ∈ Ω  for 

which f(x⃗⃗) = tcv  holds true (see also [16, §12.2]). For the 

case λ1  ≠ λ2,   the two L2   terms are not weighted equally 

and hence the induced threshold is shifted towards the mean 

value with higher regularization parameter. Note that it is in 

general difficult to choose the two parameters λ1, λ2 

appropriately for a given data set (see discussion below). 

Hence, in most cases the two parameters are chosen equally 

for the sake of simplicity [4]. 

  

As we show in Section 3 the data fidelity term of the Chan-

Vese model (4) and the induced threshold 𝑡𝑐𝑣   are not 

appropriate for medical ultrasound images and lead to 

erroneous segmentation results. 

 

The main drawback of the classical Chan-Vese formulation 

(4) is the non-convexity of the associated energy functionals 

and consequently the existence of local minima, which lead 

to unsatisfactory segmentation results. This is due to two 

different facts. First, the original Chan-Vese formulation in 

[4] has four different parameters to be chosen for a given 

data set. Disregarding the regularization term for the 

segmentation area, i.e., γ = 0,, three parameters have to be 
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estimated for a given data set. Since these parameters 

influence each other, this leads to many local minima in the 

parameter space. Obviously, the optimization of these 

parameters for a huge set of images to be segmented is very 

time consuming, and hence a more simple model with less 

parameters would be advantageous in such a situation. 

 

The second reason for the existence of local minima is based 

on the fact that a solution of the minimization problem (5) 

can only be achieved by an alternating minimization scheme 

of the two corresponding sub problems (6a) and (6b), as 

realized in CV Segmentation Algorithm[25]. Obviously, 

there is a strong dependence between 𝛷  and the optimal 

constants C1  and C2 ,since the estimation of optimal 

constants C1 and C2 depends on the current state of Φ and 

vice versa. This alternating minimization frequently 

converges to a local minimum, depending on the specified 

parameter set. For fixed parameters λ1, λ2  and β this local 

minimum depends on the specific initialization of Φ  and 

thus of the segmentation contour Γ, since CV Segmentation 

Algorithm[25] is totally deterministic. 

 

As can be seen in two slightly different situations in Figure 

3, the success of the Chan-Vese segmentation crucially 

depends on the chosen initialization of the segmentation 

contour Γ. The red rectangle in Figure 3a shows the first 

initialization within the dark region of the left ventricle in an 

US B-mode image of the human heart in an apical four-

chamber view. Since only few pixels inside the rectangle do 

not belong to the background region, the Chan-Vese method 

converges to an acceptable segmentation of the LV as 

shown in Figure 3b. 

 

However, if the initialization is slightly changed, one 

obtains totally different segmentation results as illustrated in 

Figure 3d, in which a part of the septal wall is segmented. 

For this result, a shift of the previous initialization one pixel 

to the left has been performed. The reason for this 

unsatisfying segmentation result is that some bright pixels in 

the initialization in Figure 3c lead to the estimation of a high 

mean value within this region. Although most pixels within 

the segmentation contour belong the background, the 

iterative optimization process converges to this local 

minimum. 

 
 

These observations motivate us to propose a novel 

segmentation formulation in Section2 that overcomes the 

problems discussed above, e.g., the strong dependence of 

the obtained segmentation results on the chosen 

initialization of the segmentation contour 

as discussed above. 

2 Segmentation Prototype established by suggested 

Discriminant Analysis 

In order to overcome the drawbacks of the popular Chan-

Vese segmentation model discussed in Section 1 we propose 

a novel variational segmentation formulation based on level 

set methods. This section represents an extended version of 

the work proposed in [11]. The data fidelity term of the 

Chan-Vese formulation is exchanged by a simple term, 

which partitions the data according to an optimal threshold 

by means of discriminant analysis. We demonstrate its 

advantages in terms of robustness and efficiency and discuss 

a numerical realization to segment medical ultrasound 

images. Finally, we show its superiority over the Chan-Vese 

method on real patient data from echocardiographic 

examinations. 

 

Discriminant Analysis for calculating Optimal Threshold 

 

To challenge the problem of misclassification of pixels due 

to multiplicative noise (cf. Section 1), we propose to use an 

established statistical approach to find an optimal threshold 

𝑡0. In this context, optimal refers to determining a threshold 

that minimizes the within-class variance and maximizes the 

between-class variance between two classes of pixels 

simultaneously. The idea is to apply discriminant analysis 

from  statistics on an image histogram and subsequently 

determine the optimal threshold. This approach corresponds 

to the popular Otsu thresholding method in [9] for grayscale 

images. 

 

Let us denote the number of pixels of a given grayscale 

image f with N and let 

 𝐻: 𝑁256  → [0,1]  

be the normalized histogram of this image. Then, the 

intraclass variances of C0 and C1 are given by, 

 

 𝜎0
2(𝑡) = ∑ 𝑝𝑖(𝑖 − 𝑚0(𝑡))

2𝑡
𝑖=0 ,  𝜎1

2(𝑡) = 

∑ 𝑝𝑖(𝑖 − 𝑚1(𝑡))
2255

𝑖=𝑡+1 . 
(11) 

 

 
 

Based on the intraclass variances in (11), one can define the 

global within-class variance σW  and the between-class 

variance σBby, 

 

 σW(t)  =  P0σ0
2(t)  +  P1σ1

2(t), (12a) 

   

 σB(t)  =  P0 (m0(t) −  m)2  
+  P1  (m1(t) −  m)2,  

(12b) 
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where P0 = ∑ pi
t
i=0  and P1 = ∑ pi

255
i=t+1   represent the relative 

portions of the respective classes. Finally, the optimal Otsu 

threshold t0 can be computed by maximizing, 

 

 
𝑡0  =  

𝑎𝑟𝑔𝑚𝑎𝑥

0 ≤ 𝑡 < 255

𝜎𝐵(𝑡)

𝜎𝑊(𝑡)
  (13) 

   

Maximizing the fraction in (13) corresponds to finding a 

threshold t, which induces an optimal relation of small 

within-class variance and large between-class variance. In 

particular, Otsu shows in [9] that minimizing σw  and 

maximizing σB   can be achieved simultaneously (because 

σw +  σB equals to the overall variance of the image). 

 

Figure 4a shows the impact of multiplicative speckle noise 

on an image histogram according to the noise model in (3) 

with increasing noise variance σ2. In Figure 4b one can see 

how the Otsu threshold 𝑡0 is adapted with increasing noise 

variance. As already discussed in Section1, signals with 

high intensity values get spread much higher due to the 

multiplicative nature of speckle noise and hence the 

threshold t0 shifts to the left side of the histogram in Figure 

4a, i.e., the value of t0 in Figure 4b decreases. In contrast to 

that, the threshold tcv induced by the Chan-Vese model (cf. 

Section 1) stays constant for increasing noise variance σ2, 

since it depends only on the mean values of the respective 

signal distributions. 

In addition, Figure 2 illustrates that the threshold σ2  (blue 

line) separates the two signal distributions significantly 

better than the Chan-Vese threshold  

σ2 (red line). This leads to less misclassification of intensity 

values for medical ultrasound images. Therefore, we 

incorporate the threshold 𝑡0  derived from discriminant 

analysis into a novel variational segmentation formulation in 

the following. 

 

Proposed variational segmentation model  

 

Motivated by the observations in Section 1 and using the 

optimal threshold 𝑡0 derived from the discriminant analysis 

discussed above, we introduce a novel variational 

segmentation formulation for medical ultrasound images in 

the following. Using the notation from Section 1 the 

proposed segmentation model reads as, 

 𝐸(𝛷)  

=
1

2
∫

𝛺
𝑠𝑔𝑛(𝛷(𝑥⃗))(𝑓(𝑥⃗) − 𝑡0)𝑑𝑥⃗  

+  𝛽∫
𝛺

𝛿0(𝛷(𝑥⃗))|∇𝛷(𝑥⃗)|𝑑𝑥⃗⃗⃗⃗ ⃗ .   

(14) 

 

The idea of the model in (14) is to partition the given data 

according to the optimal threshold 𝑡0   introduced above 

using a linear distance measure. Analogously to the Chan-

Vese model, we enforce smoothness of the level set function 

Φ by minimizing its total variation at the segmentation 

contour Γ . Since the threshold 𝑡0  is fixed throughout the 

segmentation process, one only has to minimize with respect 

to 𝛷, i.e., one has to solve a minimal partition problem, 

 

   inf {𝐸(𝛷)|𝛷 ∊  𝑊1,1(𝛺)}.   (15) 

 

Note that the proposed model in (14) is not restricted on 

ultrasound data since it does not explicitly model the noise 

perturbation as done, e.g., in Variational segmentation 

framework for region-based segmentation[1]. Furthermore, 

it can also be easily extended to multiphase segmentation 

problems (cf. [12,9]). 

 

 

 

3 Results 

In this section we validate the proposed method from 

Section 2 on eight different 2D US B-mode data sets from 

real examinations of the human heart imaged with a Philips 

iE33 ultrasound system in different views, i.e., two-

chamber, three-chamber, and apical four-chamber views. 

We use this data, to demonstrate that it is possible to use the 

proposed model for heterogeneous data from 

echocardiography. The segmentation task for these images 

is to delineate the endocardial border of the left ventricle as 

echocardiographic experts would perform it during their 

manual measurements. 

 

We compare the proposed model qualitatively and 

quantitatively with the traditional Chan-Vese model from 

Section1 with respect to robustness, efficiency, and accuracy 

of the respective segmentation algorithms . 

 

Qualitative comparison 

 

To compare the traditional Chan-Vese segmentation method 

(CV Segmentation Algorithm[25]) with the proposed 

segmentation method (Algorithm 3), we tested a huge range 

of parameters for the two implementations, i.e., 

 maximum number of inner iterations until 

reinitialization M ∈ [5, 5000] , 

 smoothness parameter 𝛽 ∈ [1, 2200] , 

 data fidelity weights for the Chan-Vese algorithm 

𝜆1, 𝜆2 ∈ [0.5, 1.5] . 

During our experiments we observed a significantly higher 

robustness in terms of parameter choice for the proposed 

model in Section 2. While the proposed method gave 

satisfying results for many parameter setups within the 

sampled range, the Chan-Vese method converged only for a 

few parameter settings to reasonable segmentation results. 

Furthermore, these feasible parameter setups could not be 

located in a close range, but were spread over the whole 

parameter space. In contrast to that we could observe a good 

correlation between the parameters β  and M for the 

proposed method, i.e., we found the best segmentation 

results when the maximum number of inner iterations until 

reinitialization of Φ  was chosen as M∈ [ 
β

2
 ,

3β

2
 ].  This 

observation is constituted by the choice of the temporal step 

width ∆t with respect to the CFL stability condition (16). 

 

∆𝑡𝑚𝑎𝑥
𝑥⃗⃗⃗∈𝛺

{∑
|𝐷(𝑡0,𝑓)(𝑥)𝛷𝑥𝑖

(𝑥)|

|𝛻𝛷(𝑥)|∆𝑥𝑖

𝑛
𝑖=1 +

2𝛽

(∆𝑥𝑖)2} < 1,    (16) 

for which D(t0, f)(x⃗⃗) = f(x⃗⃗) −  t0  denotes the data fidelity 

term. 

 

 Note that choosing the maximum number of inner iterations 

M too high leads to unwanted topological changes and an 

expansion of the segmentation contour over anatomical 

structures in regions of low contrast (e.g., apical part and 
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mitral valve of left ventricle in Figure 5). Thus, frequent 

reinitialization is recommended for level set segmentation of 

medical ultrasound data.  We could observe that the 

standard parameter choice λ1 = λ2 for the Chan-Vese 

method is suboptimal for medical ultrasound images. This is 

reasonable, due the impact of multiplicative speckle noise as 

discussed in Section1. However, if we selected these two 

parameters such that their ratio was λ1 = λ2  < 0.7, we could 

observe that the labels of the  sub regions Ω1 and Ω2 tend to 

switch during the evolution process of Γ. Thus, for these 

parameter settings we were not able to perform a 

segmentation of the cavum of the left ventricle, but only for 

the tissue of the myocardium.  

 

As already indicated in Section 1 the traditional Chan-Vese 

method is in general prone to convergence to unwanted local 

minima. Due to the interconnection of the two sub problems 

in (6a,6b), the result of the alternating minimization strongly 

depends on the initialization of Φ. 

 

 
 

As illustrated in Figure5  the proposed method is very robust 

in terms of initialization, due to the fact than one only has to 

solve a minimal partition problem and thus avoids unwanted 

local minima. In Figure 5a and 6b we show two different 

initializations of the segmentation contour Γ  at the septal 

wall and in the cavum of the left ventricle, respectively. 

Both initializations lead for the Chan-Vese method to a local 

segmentation of the septal wall tissue (bright region) as can 

be seen in Figure 5c. While this is reasonable for the first 

initialization, the result for the second initialization is 

unwanted, since most pixels in the inside region of 𝛤 belong 

to the dark background. The proposed method on the other 

hand leads in both cases to the same segmentation in Figure 

5d, which delineates the inner contour of the left ventricle as 

required. In order to segment the myocardial tissue similar 

to Figure 5c, one has to invert the sign of Φ  during its 

initialization as discussed in Section2. 

 

Data Fidelity of both models i.e. Chan-Vese formulation (4) 

and the proposed model (14) for real US B-mode images 

from a human left ventricle (LV) in an apical four-chamber 

view. We can infer this by going through figures 6(a) to 6(f). 

 

 
 

To observe this last fact even better, we show the 

thresholded data fidelity terms to indicate pixels with non-

negative value ( white pixels ) and negative value (black 

pixels ) of the Chan-Vese model and the proposed model in 

Figure 6d and 6f, respectively. As can be clearly seen, the 

speckle noise artifacts in the upper left and lower right part 

of the cavum have a less severe impact on the data fidelity 

of the proposed method compared to the Chan-Vese model. 

This leads to a more robust and accurate segmentation 

performance as we show in quantitative measurements 

[11§4.5]. 

 

 
 

Proposed model limitation 

 

Chan-Vese and proposed models cannot be used universally 

for segmenting of medical US images because they are low-

level segmentation methods, i.e., segmentation only based 

on image intensities, they lead to erroneous segmentation 

results in specific situations. Problems can occur when the 

data is heavily perturbed or can lead to missing anatomical 

structures during suboptimal condition. 

Hence, any low-level segmentation algorithm would also 

segment misleadingly connected regions.Figure7 gives two 

examples for the limit of the proposed segmentation model. 

Due to the perturbation, the segmentation contour expands 

out of the left ventricle and leads to an unsatisfying 

segmentation result[Figure 7a].  

 

US imaging in a suboptimal angle[Figure 7b] of an apical 

four-chamber view of the left ventricle. Here, no shadowing 

effects occur and all endocardial contours give a relatively 

high contrast for segmentation. However, due to a 

suboptimal imaging plane, the mitral valve (center bottom of 

image) is only imaged partly and thus does not appear to be 

closed. This leads eventually to a segmentation of the 

connected 
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left atrium by mistake. Note that this problem also arises 

even for high values of the smoothness parameter β in (13). 

 

In order to successfully segment medical ultrasound images 

that suffer from the two problems indicated above, one 

needs additional information about the data.  

4 Analysis 

We proposed a novel variational model for two-phase 

segmentation tasks in this section. Motivated by the 

problems arising for the traditional Chan-Vese model, when 

applied for medical ultrasound data, we deduced a 

segmentation formulation that accounts for the 

characteristics of multiplicative speckle noise, while 

simultaneously reducing the complexity of the problem 

formulation. On a direct comparison of both algorithms for 

real patient data from echocardiographic examinations we 

observed that the proposed method performs significantly 

better in terms of robustness and segmentation accuracy 

than the Chan-Vese method and achieved a higher average 

Dice index when compared with manual delineations from 

experienced physicians. 

 

The reason for this improvement is the incorporation of an 

optimal threshold by means of discriminant analysis, which 

also respects the signal-dependent noise variance of the 

image intensity distributions. Additionally, the use of a 

linear distance measure, in contrast to the common L2 data 

fidelity term of the Chan-Vese model, further increases the 

robustness under outlier pixels. For the globally optimized 

parameter settings the Chan-Vese method performed better 

in terms of computational effort. However, in general both 

methods show similar run-times since CV Segmentation 

Algorithm[25] and 3 have a analogous structure. Finally, we 

investigated typical cases for which both models are not 

feasible and lead to erroneous segmentation results. This 

motivates the incorporation of further a-priori knowledge of 

the data, e.g., shape information. 

 

Although we tested both segmentation algorithms from this 

section on real 3D US data of the human heart captured with 

a X11 transducer of a Philips iE33 imaging system, we 

could only observe a marginal improvement in the 

segmentation results using the proposed segmentation 

model. We suppose that this observation is due to the 

different imaging technique [21,22,23], which does not 

capture the three-dimensional data instantly, but fuses parts 

of the imaged volume over a period of several heart beats 

(~7 beats). Thus, the statistics are completely different for 

this kind of data. Furthermore, the contours in this data set 

appeared very much delineated and less effected by 

multiplicative speckle noise compared to US B-mode 

images captured with the same device. This leads us to the 

assumption, that also the internal preprocessing steps differ 

from the standard situation of two-dimensional data. 

 

A possible extension of the proposed model in Section2 

would consider an adapted version of the discriminant 

analysis described in this work. In particular, one could 

exchange the definition of the intraclass variances in (11) by 

weighted variants, i.e., 

 

𝜎0
2(𝑡)  =  ∑ 𝑝𝑖

𝑡

𝑖=0

(𝑖 − 𝑚0(𝑡))
2

𝑚0(𝑡)
 , 𝜎1

2(𝑡)  

=  ∑ 𝑝𝑖

255

𝑖=𝑡+1

(𝑖 − 𝑚1(𝑡))
2

𝑚1(𝑡)
 . 

(17) 

 

This adaption is motivated by the observation of different 

signal distribution variances depending on the unbiased 

signal intensity (cf. Loupas noise model [5, 6, 7, 8, 10]). 

First experiments showed an improvement for the estimation 

of an optimal threshold 𝑡𝑂 as discussed in Section2. 

 

However, the overall segmentation performance degraded 

by using this modified threshold in our segmentation 

formulation in (14). The reason for this is that the new 

threshold led in some cases to the fact, that speckle noise 

artifacts within the cavum of the left ventricle were wrongly 

classified as tissue region similar to the Chan-Vese method 

in Figure 6c. Thus, further investigations are needed to adapt 

the proposed method to medical ultrasound data more 

explicitly. 
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