
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 6 June 2015, Page No. 12692-12697

Mr.Vivek B. Patil, IJECS Volume 4 Issue 6 June, 2015 Page No.12692-12697 Page 12692

Implementing Actual Working Like Intuition Mechanism In

Artificial Neural Network
Mr.Vivek B. Patil

Research Student

Vivekpatil010@Gmail.Com

Abstract:

One fascinating thing about artificial neural networks is that, they are mainly inspired by the human brain. This

doesn't mean that Artificial Neural Networks are exact simulations of the biological neural networks inside our

brain - because the actual working of human brain is still a mystery. The concept of artificial neural networks

emerged in its present form our very limited understanding about our own brain ("I know that I know nothing").

Keywords: Neuron, input/output/Hidden Layer, unit, Network.

Introduction:
Before understanding how neurons and neural networks actually work, let us revisit the structure of a neural

network. As I mentioned earlier, a neural network consists of several layers, and each layer has a number of

neurons in it. Neuron is one layer is connected to multiple or all neurons in the next layer. Input is fed to the

neurons in input layer, and output is obtained from the neurons in the last layer.

Fig: A Fully Connected 4-4-2 neural network with 4 neurons in input layer, 4 neurons in hidden layer and

2 neurons in output layer.

For training a neural network, first provide a set of inputs and outputs. For example, if need a neural

network to detect fractures from an X-Ray of a born, first train the network with a number of samples. provide

an X-Ray, along with the information that whether that particular X-Ray has a fracture or not. After training the

network a number of times with a number of samples like this (probably thousands of samples), it is assumed

that the neural network can 'detect' whether a given X-Ray indicates a fracture in the born (This is just an

example)., in this article, discuss the theory behind network learning.

Artificial Neurons

Now, let us have a look at the model of an artificial neuron.

http://www.ijecs.in/
mailto:vivekpatil010@gmail.com

Mr.Vivek B. Patil, IJECS Volume 4 Issue 6 June, 2015 Page No.12692-12697 Page 12693

An artificial neuron consists of various inputs, much like the biological neuron. Instead of Soma and Axon, we

have a summation unit and a transfer function unit. The output of one neuron can be given as input to multiple

neurons.

Summation Unit

 When inputs are fed to the neuron, the summation unit will initially find the net-value. For finding the Net Value,

the product of each input value and corresponding connection weight is calculated.

 i.e., input value x (i) of each input to the neuron is multiplied with the associated connection weight w(i). In

simplest case, these products are summed and fed to the transfer function. See the pseudo code below, it is

simpler to understand.

 Also, a neuron has a bias value, which affects the net value. A bias of a neuron is set to a random value, when the

network is initialized. We will change the connection weights and bias of all neurons in the network (other than

neurons in the input layer), during training phase.

 I.e., if x is the input, and w is the associated weight, then pseudo code for net value calculation is as follows

netValue=0

for i=0 to neuron.inputs.count-1
 netValue=netValue + x(i) * w(i)
next

netValue=netValue + Bias

Transfer Function

Transfer function is a simple function, that uses the net value to generate an output. This output is then

propagated to the neurons in the next layer. We can use various types of transfer functions as shown below.
Hard Limit Transfer Function: For example, a simple hard limit function will output 1 if net value is greater than

0.5, and will output 0 if the net value is lesser than 0.5 - as shown.
Hide Copy Code

if (netValue<0.5)
 output = 0
else
 output = 1

Sigmoid Transfer Function: Another type of transfer function is a sigmoid transfer function. A sigmoid transfer

function will take a net value as input and produce an output between 0 and 1 as shown.

output = 1 / (1 + Exp(-netValue))

The implementation of summation unit and transfer function unit may vary in different networks.

This, a neural network is constructed from such basic models, called neurons, arranged together in layers, and

connected to each other as explained earlier. Now let us see how all these neurons work together, inside a neural

network.

Mr.Vivek B. Patil, IJECS Volume 4 Issue 6 June, 2015 Page No.12692-12697 Page 12694

1 A Neural Network Actually 'Works'

Working with a neural network includes

 Training the network - by providing inputs and corresponding outputs.

o In this phase, we train a neural network with samples to perform a particular task.

 Running the network - by providing the input to obtain the output.

o In this phase, we will provide an input to the network, and obtain the output. The output may not be accurate

always. Generally speaking, the accuracy of the output during running phase depends a lot on the samples we

provided during the training phase, and the number of times we trained the network.

1.1. Training Phase

This section explains how the training takes place, in a back ward propagation neural network. In a backward

propagation neural network, there are several layers, and each neuron in each layer is connected to all neurons in

the next layer. For each connection, a random weight is assigned when the network is initialized. Also, a random

bias value is assigned to each neuron during initialization.

Training is the process of adjusting the connection weights and bias of all neurons in the network (other than

neurons in the input layer), to enable the network to produce expected output for all input sets.

Now, let us see how the training actually happens. Consider a small 2-2-1 network. Now, we are going to train

this network with AND truth table. As know, AND truth table is

AND TRUTH

TABLE

A B Output

0 0 0

0 1 0

1 0 0

1 1 1

Fig: A 2-2-1 Neural Network and Truth Table Of AND

In the above network, N1 and N2 are neurons in input layer, N3 and N4 are neurons in hidden layer, and N5 is

the neuron in output layer. The inputs are fed to N1 and N2. Each neuron in each layer is connected to all

neurons in next layer. We call the above network a 2-2-1 network, based on the number of neurons in each layer.

The above diagram will be used to illustrate the process of training.

First, let us see how we train our 2-2-1 network, the first condition in the truth table, i.e, when A=0, B=0 then

output=0.

Step 1 - Feeding the Inputs

Initially, we will feed the inputs to the neural network. This is done by simply setting the output of neurons in

Layer 1, as the input values we need to feed. I.e., as per the above example, our inputs are 0, 0 and output is 0.

We will set the output of Neuron N1 as 0, and the output of N2 is set to 0. Have a look at this pseudo code, and

it will make things clear. An input is the input array. The number of elements in Input array should match the

number of neurons in input layer.

i = 0
For Each neuron In InputLayer
 someNeuron.OutputValue = Inputs(i)
 i = i + 1
Next

Step 2 - Finding the output of the network

Mr.Vivek B. Patil, IJECS Volume 4 Issue 6 June, 2015 Page No.12692-12697 Page 12695

We have already seen how we calculate the output of a single neuron. As per our above example, the output of

neurons N1 and N2 will act as the inputs of N3 and N4.

Finding the output of neural network involves, calculating the outputs of all hidden layers and output layer. As

we discussed earlier, a neural network can have a number of hidden layers.

'Find output of all neurons in all hidden layers
 For each layer in HiddenLayers
 For Each neuron In layer.Neurons
 neuron.UpdateOutput()
 Next
 Next

 'Find output of all neurons in output layer
 For Each neuron In OutputLayer.Neurons
 neuron.UpdateOutput()
 Next

UpdateOutput() function of a single neuron works exactly as we discussed earlier. First, net value is calculated by

the summation unit, and then it is provided to a transfer function to obtain the output of the neuron. Pseudo

code is again shown below.

Summation Unit works like this:

Dim netValue As Single = bias

For Each InputNeuron connected to ThisNeuron
 netValue = netValue + (Weight Associated With InputNeuron * _
 Output of InputNeuron)
Next

I.e, as per our above example, let us calculate the net value of neuron N3. We know that N1 and N2 are

connected to N3.

 Net Value Of N3 = N3.Bias + (N1.Output * Weight Of Connection From N1 to N3) + (N2.Output * Weight Of

Connection From N2 to N3)

Similarly, to calculate the net value of N4,

 Net Value Of N4 = N4.Bias + (N1.Output * Weight Of Connection From N1 to N4) + (N2.Output * Weight Of

Connection From N2 to N4)

Activation Unit Or Transfer Unit:

Now, let us see how we are generating the output, using Transfer unit. Here, we are using the sigmoid transfer

function. This is exactly as we discussed earlier.

Output of Neuron = 1 / (1 + Exp(- NetValue)

Now, the output of N3 and N4 will be passed to each neuron in the next layer as inputs. This process of

propagating the output of one layer as the input to the next layer is called forward propagation part in the

training phase.

Thus, after step 2, we just found the output of each neuron in each layer - starting from the first hidden layer to

the output layer. The output of the network is simply the output of all neurons in the output layer.

Step 3 - Calculating the Error or Delta

In this step, we will calculate the error of the network. Error or Delta can be stated as the difference between the

expected output and the obtained output. For example, when we find the output value of the network for the

first time, most probably the output will be wrong. We need to get 0 as the output for inputs A=0 and B=0. But

the output may be, some other value like 0.55, based on the random values assigned to the bias and connection

weights of each neuron.
Now let us see, how we can calculate the error. Let us see how to calculate the error or delta of each neuron in all

the layers.

 First we will calculate the error or delta of each neuron in the output layer.

 The delta value thus calculated will be used to calculate the error or delta of neurons in the previous layer (i.e,

the last hidden layer)

 The delta value of all neurons in the last hidden layer is used to calculate the error or delta of all neurons in the

previous layer (i.e, second last hidden layer)

 This process is continued, till we reach the first hidden layer (delta of input layer is not calculated).

Mr.Vivek B. Patil, IJECS Volume 4 Issue 6 June, 2015 Page No.12692-12697 Page 12696

Please note one interesting point. In Step 2, we are propagating values forward - starting from the first hidden

layer to the output layer, for finding the output. In Step 3, we are starting from the output layer, and propagating

the error values backward - and hence, this neural network is called as a Backward Propagation neural network.

Time to see how things actually work. The general equation for finding the delta of a neuron is

Neuron.Delta = Neuron.Output * (1 - Neuron.Output) * ErrorFactor

Now, let us see how the error factor is calculated for each neuron. The Error Factor of neurons in output layer can

be calculated directly (since we know the expected output of each neuron in output layer).

For a neuron in output layer,
Hide Copy Code

ErrorFactor Of An Output Layer Neuron = _
 ExpectedOutput - Neuron's Actual Output

i.e., with respect to our above example, if the output of N5 is 0.5 and the expected output is 0, then error factor =

0 - 0.5 = - 0.5

For a neuron in hidden layer, error factor calculation is somewhat different. To calculate the error factor of a

neuron in hidden layer,

 First the delta of each neuron to which this neuron is connected is multiplied with the weight of this connection

 These products are summed up together to obtain the error factor of a hidden layer neuron

Simply speaking, a neuron in a hidden layer is using the delta of all connected neurons in next layer, along with

the corresponding connection weights, to find the error factor. This is because, we don't have any direct

parameters for calculating the error of neurons in the hidden layer (as we did in the output layer neurons).

'Calculating the error factor of a neuron in a hidden layer

 For Each Neuron N to which ThisNeuron Is Connected
 'Sum up all the delta * weight
 errorFactor = errorFactor + (N.DeltaValue * _
 Weight Of Connection From ThisNeuron To N)
 Next

To illustrate this, consider a neuron x1 (ThisNeuron), which is a hidden layer neuron. X1 is connected to neurons

y1, y2, y3 and y4 - and these are neurons in next layer.

i.e., to make things simple,

 Error Factor of X1 = (Y1.Delta * Weight Of Connection From X1 To Y1) + (Y2.Delta * Weight Of Connection From

X1 To Y2) + (Y3.Delta * Weight Of Connection From X1 To Y3) + (Y4.Delta * Weight Of Connection From X4 To Y4)

Now, as we discussed earlier, the Delta of a X1 can be calculated as,

 X1.Delta = X1.Output * (1 - X1.Output) * ErrorFactor Of X1

Thus, after finishing step 3, we have the Delta of all neurons.

Step 4 - Adjusting the Weights and Bias

After calculating the delta of all neurons in all layers, we should correct the weights and bias with respect to the

error or delta, to produce a more accurate output next time. Connection Weights and Bias, together are called

free parameters. Remember that a neuron should update more than one number of weights - because, as we

already discussed, there is a weight associated with each connection to a neuron.

See the pseudo code for updating the free parameters of all neurons in all layers

Mr.Vivek B. Patil, IJECS Volume 4 Issue 6 June, 2015 Page No.12692-12697 Page 12697

'Update free parameters of all neurons in hidden layer
 For each layer in HiddenLayers
 For Each neuron In layer.Neurons
 neuron.UpdateFreeParams()
 Next
 Next

 'Update free parameters of all neurons in output layer
 For Each neuron In OutputLayer.Neurons
 neuron.UpdateFreeParams()
 Next

UpdateFreeParams() function simply does two things.

 Find the new bias of a neuron, based on the delta we calculated above

 Update the connection weights based on the delta we calculated above

Finding the new bias value of a neuron is pretty simple. See the pseudo code. If Learning Rate is a constant (for

e.g, Learning Rate=0.5)

New Bias Value = Old Bias Value + _
 LEARNING_RATE * 1 * Delta

Now let us see how to update the connection weights. The new weight associated with an input neuron can be

calculated as shown below.
Hide Copy Code

New Weight = Old Weight + LEARNING_RATE * 1 * Output Of InputNeuron * Delta

As a neuron can have more than one input, the above step should be performed for all input neurons connected

to this neuron.

I.e,

For Each InputNeuron N connected to ThisNeuron
 New Weight of N = Old Weight of N + _
 LEARNING_RATE * 1 * N.Output * ThisNeuron.Delta
Next

Now, after step 4, we have a better network. This process is repeated for all other entries in the AND truth table -

for probably more than thousand number of times, to train the network 'well'.

2.2. Running the Network
Running the network involves,

 Providing the inputs to the network exactly as described earlier in Step 1 above

 Calculating the outputs as explained in Step 2 above

However, it is important to note that the network should be trained with sufficient samples (and sufficient

number of times), to obtain desired results. Anyway, it is almost impossible to say that the output of a neural

network will be 100% accurate for any input.

