
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 6 June 2015, Page No. 12599-12603

Meenakshi, IJECS Volume 4 Issue 6 June, 2015 Page No.12599-12603 Page 12599

 Implementing Java Distributed Objects

Meenakshi#1, Sanjiv Kumar Singh#2

M.Tech, Assistant Professor,

Department of CSE,

Shri Balwant College of Engineering &Technology,

DCRUST University

Abstract— Organizations rely on information to make effective business decisions and corporate intranets are changing the way

organizations conduct business. As networking technologies continue to improve, with increasing bandwidth and reliability,

effective distributed computing is becoming a reality. Organizations are relying on internet technologies to be the conduit for

employees to access and manipulate corporate information. Having timely and accurate information is essential for effective

management practices and optimization of limited resources. Information can be stored effectively and efficiently in

Server object & Client object can access it through distributed computing. Two popular methods for distributed computing are

RMI and CORBA. RMI uses rmi protocol and CORBA uses IIOP protocol.

Keywords— RMI, CORBA, SOAP, IIOP

I. INTRODUCTION

Java, as a relatively simple, object-oriented, secure and

portable language, is also a flexible and powerful programming

system for distributed computing. Program development with

Java results in software that is portable across multiple machine

architectures and operating systems. Distributed programming

in Java is supported by remote method invocation (RMI),

object serialization, reflection, a Java security manager and

distributed garbage collection. Java RMI is designed to

simplify the communication between objects in different virtual

machines allowing transparent calls to methods in remote

virtual machines.

Organizations rely on information to make effective business

decisions and corporate intranets are changing the way

organizations conduct business. Information can be stored

effectively and efficiently in

Server object & Client object can access it through distributed

computing. Two popular methods for distributed computing are

Remote Method Invocation (RMI) and Common Object

Request Broker Architecture (CORBA). RMI uses rmi protocol

and CORBA uses Internet Inter-ORB Protocol (IIOP).

Java is destined to become a language for distributed

computing. Java Development Kit (JDK) comes with a broad

range of classes for network and distributed programming. In

this paper we focus on two different approaches: Remote

Method Invocation (RMI) and Common Object Request Broker

Architecture (CORBA) with their implementation.

II. LITERATURE REVIEW

The first version of JVMs had poor support for monitoring Java

programs. Initially there was a simple debugger, jde, attached

to the Java Development Kit (JDK). Then, there was an

instrumented Java virtual machine build for JDK version 1.16

to support the collection of profiling data generated when

executing a Java program. This approach was developed until

version 2 of the Java platform. All JVMs for the new Java

platform were equipped with interfaces for debugging

(JVMDI) [6] and profiling (JVMPI) [7]. A new release of Java

2 Platform version 1.5, called Tiger, contains a new native

profiling interface called JVMTI which is intended to replace

JVMPI and JVMDI. JVMTI aims to cover the full range of

native in-process tools access, which in addition to profiling,

includes monitoring, debugging and, potentially, a wide variety

of other code analysis tools.

Most of the tools for JVM versions from 1.2 to 1.4 are based on

the Java Virtual Machine Profiling Interface (JVMPI) [7].

Starting with JDK 1.2 SDK it also includes an example profiler

agent for efficiency examination called hprof [8], which can be

used to build professional profilers. A Heap Analysis Tool

(Hat) [9] enables one to read and analyze profile reports of the

heap generated by the hprof tool and may be used e.g. for

debugging “memory leaks”. Tracer [10] is a debugger which

provides traditional features, e.g. a variable watcher,

breakpoints and line-by-line execution. J-Sprint [11] provides

information about what parts of a program consume the most of

execution time and memory. JProfiler [12], targeted at JEE and

JSE applications, provides information on CPU and memory

usage, thread profiling and VM. Its visualization tool shows the

object references chain, execution control flow, thread

hierarchy and general information about JVM using special

displays.

All these tools have similar features: memory,

performance, code coverage analysis, program debugging,

thread deadlock detection and class instrumentation, but many

of them are designed to observe a single-process Java

application and do not support directly monitoring a distributed

environment based on RMI middleware, except for JaViz [17],

which is intended to supplement the existing performance

http://www.ijecs.in/

Meenakshi, IJECS Volume 4 Issue 6 June, 2015 Page No.12599-12603 Page 12600

analysis tools with tracing client/server activities to extend

Java’s profiling support for distributed environments.

III. DISTRIBUTED APPLICATIONS

The term distributed applications, is used for applications that

require two or more autonomous computers or processes to

cooperate in order to run them. Thus, the distributed system

considered in this thesis, involves three resources, processing,

data and user interface. Both processing and data can be

distributed over many computers. The user interface is usually

local to the user so that the graphical interface, which

consumes high bandwidth, does not have to be transmitted

from one location to another (figure 1).

Figure 1: A Typical Distributed Application Scenario

In distributed computing, the computer network is used to

support the execution of program units, called processes that

cooperate with one another to work towards a common goal.

This approach has become popular due to a number of

developments like:

▪ Increase in the number of personal computers

▪ Low cost of establishing computer networks with the

advancement of technology

▪ Computer manufacturers now offer networking software as a

part of the basic operating system

▪ Computer networks are now an established way of

disseminating information

The modern client/server model uses proxy objects for server

and client respectively. The client calls the proxy, making a

regular method call. The client proxy contacts the server.

Similarly, a second proxy object on the server communicates

with the client proxy, and it makes regular calls to the server

object.

Methods of proxies’ communications: There are three

different methods with which proxies communicate with each

other.

1. RMI, the Java Remote Method Invocation technology,

supports method calls between distributed Java objects.

2. CORBA, the Common Object Request Broker

Architecture, supports method calls between objects of any

programming language. CORBA uses the Internet Inter-

ORB Protocol or IIOP to communicate between objects.

3. SOAP, the Simple Object Access Protocol, is also

programming – language neutral. However, SOAP uses an

XML-based transmission format

IV. REMOTE METHOD INVOCATION WITH JDBC

RMI allows a Java object that executes on one machine to

invoke a method of the Java object that executes on another

machine. This is an important feature, because it allows

building distributed application. All the RMI classes are

available in jave.rmi package. To use different classes of this

package we must import the java.rmi package in the beginning

of the Java program.

One main application where RMI is used client/server. The

server receives requests from a client, processes it & returns the

result. For example, the client seeking product information can

query a Ware House object on the server. It calls a remote

method, find, which has one parameter: a Customer object. The

find method returns an object to the client: the Product object

(Figure 2).

Figure 2: RMI using Client & Server Object

In RMI terminology, the object whose method makes the

remote call is called the client object. The remote object is

called the server object.

Following steps are required for creating RMI object:

i. Creating the Remote Interface

The RMI process begins with an interface that defines the

methods accessible to the RMI client. As with all other abstract

classes, the interface serves only to define the remote object's

methods and parameters; they do not contain any actual

programming logic.

ii. Creating the Remote Object

After the creation of the remote interface, we continue by

building the actual remote object. The remote object

implements the interface and incorporates the program code

http://b62.tripod.com/java/rmi5.html

Meenakshi, IJECS Volume 4 Issue 6 June, 2015 Page No.12599-12603 Page 12601

that will be run when its methods are called. This object

performs the actual execution process, or invocation, of the

RMI.

iii. Creating a RMI Client

The remote object that we just created will be used within a

background process running on the Web server. It represents

the "server" side of the "distributed" computing model. The

"client" side can be constructed either as a Java application or

as an applet.

iv. Create a Registration Program (server)

We need to bind the remote object to the RMI registry.

Result of above implementation is shown in figure 3, 4 & 5

below:

Figure 3: Starting the RMI registry.

Figure 4: Output of Hello Server

Figure 5: Output from the Hello Client program

V. COMMON OBJECT REQUEST BROKER ARCHITECTURE WITH

JDBC

Though RMI is a powerful mechanism for distributing and

processing objects in a platform-independent manner, it has

one significant drawback. it only works with objects that have

been created using Java. Convenient though it might be if Java

were the only language used for creating software objects, this

simply is not the case in the real world.

A more generic approach to the development of distributed

systems is offered by CORBA (Common Object Request

Broker Architecture), which allows objects written in a variety

of programming languages to be accessed by client programs

which themselves may be written in a variety of programming

languages. Another fundamental difference between RMI and

CORBA is that, whereas RMI uses Java to define the interfaces

for its objects, CORBA uses a special language called

Interface Definition Language (IDL) to define those

interfaces. In order for any ORB to provide access to software

objects in a particular programming language, the ORB has to

provide a mapping from the IDL to the target language.

Mappings currently specified include ones for Java, C++, C,

Smalltalk, COBOL and Ada.

At the client end of a CORBA interaction, there is a code stub

for each method that is to be called remotely. This stub acts as

a proxy (a 'stand-in') for the remote method. At the server end,

there is skeleton code that also acts as a proxy for the required

method and is used to translate the incoming method call and

any parameters into their implementation-specific format,

which is then used to invoke the method implementation on the

associated object. Method invocation passes through the stub

on the client side, then through the ORB and finally through the

skeleton on the server side, where it is executed on the object.

For a client and server using the same ORB, Figure 6 shows the

process.

http://b62.tripod.com/java/rmi6.html

Meenakshi, IJECS Volume 4 Issue 6 June, 2015 Page No.12599-12603 Page 12602

Figure 6: Remote method invocation when client and server

are using the same ORB.

In order to illustrate a distributed computing model using

CORBA, as well as its ability to provide persistency in Internet

computing, we will build a simple application using the JDBC.

CORBA allows an applet to communicate with one instance of

a particular remote object that was previously registered with

the CORBA Naming Service.

i. Creating the Remote Interface

All CORBA applications begin with an interface that defines

the methods accessible to the CORBA client. This interface is

written in the Interface Definition Language and converted to a

native language. In our case, the language is Java.

ii. Creating a CORBA Server Object

After the creation of the IDL interface and the associated Java

interface classes, we continue by building the remote object's

implementation. The remote object extends the base skeleton

object, _JIImplBase that was created by the idltojava tool. It

also incorporates the program logic that will be run when its

methods are called by a CORBA client. The server object is

also referred to as a servant.

iii. Creating a CORBA Client

The servant object that we just created will be executed as a

background process running on the Web server. It represents

the "server" side of the "distributed" computing model. The

"client" side can be constructed either as a Java application or

as an applet.

iv. Create a Servant Bootstrap Program

The final step in setting up our CORBA server object is to

create a bootstrap program for the servant. This is done through

a small program that initializes the object to the CORBA server

and binds it with the Naming Service.

Result of above implementation is shown in figure 3, 7, 8 & 9

below:

Figure 7: Starting the CORBA naming service

Figure 8: The result of Server program JIStart

Figure 9: The result of Client program

VI. SIMPLE OBJECT ACCESS PROTOCOL

IBM, Lotus Development Corporation, Microsoft, Develop

Mentor and User land Software developed and drafted SOAP,

which is an HTTP-XML-based protocol that enables

applications to communicate over the Internet, by using XML

documents called SOAP messages.

SOAP is compatible with any object model, because it includes

only functions and capabilities that are absolutely necessary for

defining a communication framework. Thus, SOAP is both

platform and software independent, and any programming

language can implement it. SOAP supports transport using

almost any conceivable protocol. SOAP binds to HTTP and

follows the HTTP request–response model.

SOAP also supports any method of encoding data, which

enables SOAP-based applications to send virtually any type

information (e.g., images, objects, documents, etc.) in SOAP

messages. A SOAP message contains an envelope, which

describes the content, intended recipient and processing

requirements of a message. The optional header element of a

SOAP message provides processing instructions for

applications that receive the message.

VII. CONCLUSION

During the first two decades of their existence, computer

systems were highly centralized. A computer was usually

placed within a large room and the information to be processed

http://b62.tripod.com/java/idl5.html
http://b62.tripod.com/java/idl.htm#idl8
http://b62.tripod.com/java/idl.htm#idl8
http://b62.tripod.com/java/idl.htm#idl9
http://b62.tripod.com/java/idl.htm#idl9

Meenakshi, IJECS Volume 4 Issue 6 June, 2015 Page No.12599-12603 Page 12603

had to be taken to it. This had two major flaws, a) the concept

of a single large computer doing all the work and b) the idea of

users bringing work to the computer instead of bringing the

computer to the user. This was followed by ‘stand alone PCs’

where the complete application had to be loaded on to a single

machine. Each user has his/her own copy of the software. The

major problems were a) sharing information and b)

redundancy.

These two concepts are now being balanced by a new concept

called computer networks. In computer networking a large

number of separate but interconnected computers work

together. An application that requires two or more computers

on the network is called a network application. The client–

server model is a standard model for network applications. A

server is a process that is waiting to be contacted by a client

process so that the server can do something for it. A client is a

process that sends a request to the server.

 REFERENCES

[1] Bubak M, Funika W, Metel P, Orłowski R and Wism¨uller

R 2002 Proc. 4 th Int. Conf. PPAM

2001, Naleczow, Poland, LNCS 2328 315

[2] Bubak M, Funika W, Smetek M, Kilianski Z and

Wism¨uller R 2003 Proc. 10 th European

PVM/MPI Users’ Group Meeting, Venice, Italy, LNCS 2840

447

[3] Bubak M, Funika W, Wism¨uller R, Metel P and Orłowski

R 2003 Future Generation

Computer Systems 19 651

[4] Bubak M, Funika W, Smetek M, Kilianski Z and

Wism¨uller R 2004 Proc. 5 th Int. Conf.

PPAM, Czestochowa, Poland, LNCS 3019 352

[5] Funika W, Bubak M, Smetek M and Wism¨uller R 2004

Proc. Int. Conf. on Computational

Science, Cracow, Poland, LNCS 3038 472

[6] Sun Microsystems: Java Virtual Machine Profiler Interface

(JVMDI),

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jvmdi-spec.html

[7] Sun Microsystems: Java Virtual Machine Profiler Interface

(JVMPI), http://java.sun.com/j2se

/1.4.2/docs/guide/jvmpi/jvmpi.html

[8] The SDK Profiler, http://www.javaworld.com

/javaworld/jw-12-2001/jw-1207-hprof.html

[9] Sun’s Heap Analysis Tool (HAT) for Analysing Output

from hprof,

http://java.sun.com/developer/onlineTraining/Programming/JD

CBook/hat bin.zip

[10] JTracer Tool, http://amslib.free.fr/

[11] Java Profiler J-Sprint, http://www.j-sprint.com/

[12] JProbe, http://java.quest.com/jprobe/jprobe.shtml

[13] JView, http://www.devstream.com/

http://java.sun.com/j2se
http://www.javaworld.com/

