o

onen secs www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 7 July 2015, Page No. 13585-13600

Implementation Of Clock Gating Logic By Matching Factored

Forms
A kirankumari', P.P. Nagaraja Rao?

IM. Tech scholar in VLSI System Design, Department of ECE, Sri Venkatesa Perumal College of Engineering & Technology,
Puttur, Chittoor (dt), A.P.
2Associate Professor & HOD, Department of ECE, Sri Venkatesa Perumal College of Engineering & Technology, Puttur,

Chittoor (dt), A.P.
Ikirankumari424@gmail.com, 2nagaraj9s@gmail.com

Abstract — Clock gating is one among the most widespread circuit technique to scale back power consumption.
Clock gating is sometimes done at the register transfer level (RTL). Automatic synthesis of clock gating in gate level
has been less explored, however it's certainly additional convenient to designers.Clock gating consists of 2 steps:
extraction of gating conditions by merging gating conditions of individual flip-flops, implementation of the gating
conditions with minimum quantity of further gates.In this paper,We show a way to do factored form matching,
within which gating operates in factored kinds ar matched, as way as possible, with factored kinds of the
mathematician functions of existing combinable nodes within the circuit; further gates are then introduced,
however just for the portion of gating functions that don't seem to be matched. sturdy matching identifies
matches that ar explicitly gift within the factored forms, and weak matching seeks matches that ar inexplicit the
logic and so are tougher to get.

Keywords: Clock gating, gating function, factored form.

1.INTRODUCTION
Clock gating is a well understood power optimization technique employed in both ASIC and FPGA designs to eliminate
unnecessary switching activity. This methodnusually requires the designers to add a small amount of logic to their RTL code to

disable or deselect unnecessarily active sequential elements, e.g. registers.

The condition in which clock is gated, called a gating function , is typically specified by designers during RTL design stage; the
logic for this condition is added by the designers. A prime example is a load-enable register, illustrated in Figure 1(a). When EN is
0, the register keeps the current value of Q; otherwise D is loaded at the next clock edge. A gating function generates EN in this
case.

N [Ganng \ g
LN = §ramil
] =j>_ rl—(fﬂct/on F|_; _________ Aﬂ

,__,-v'V' l J_I |J‘ _ :
—_/ Gating \j | :“ I _\u
{_function / CLK~ %

.
~\f ! |

.........

CLK L[CGC
@ 0

Fig. 1. Load-enable registers (a) before and (b) after clock gating

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13585

http://www.ijecs.in/

Clock gating can be applied by using a circuit shown in Figure 1(b), which is functionally equivalent to Figure 1(a). The
multiplexer is removed and the clock signal itself is gated with the EN signal. A circuitry within the dotted box is called a clock
gating cell (CGC); a latch is needed to remove any glitches in EN. Relative to the case in Figure 1, clock gating strategies can be
considerably more sophisticated in real circuits and generally involve analysis of when registers may be kept idle and subsequent

synthesis of clock gating (EN) signals which is determined by the designers.

RTL clock gating has two significant limitations: 1) the designer has to provide a gating function and 2) registers whose
gating functions are not specified are left ungated. One way to resolve these problems is to take each ungated register, connect its
input and output to an exclusive-NOR gate, and use the output of that gate as a gating function of register However, this
technique can only be applied when the register input arrives sufficiently early so that a delay through the exclusive-NOR gate and
the CGC can be tolerated.

In this paper, we propose a new technique to simplify gating functions. The idea is to use the existing logic as far as possible
while the gating functions are synthesized. This is achieved by matching factored forms of the gating functions with those of
existing logic nodes, thus we call this technique as factored form matching. We will present two matching methods: 1) strong
matching (SM), which looks for matches that are explicitly apparent in an expression of the circuit logic and 2) weak matching
(WM), which seeks matches that are logically present but cannot be found by inspection. Experiments on test circuits show
reductions in the area of gating functions between 11% and 39%, with an average of 24%. We contrast these results with those

from Boolean division in which, on average, 8% reduction is observed.

The rest of this paper is organized as follows. Factored form matching is introduced in Section 2, and the matching algorithm is

presented and analyzed. In Section 3, we present our experimental results, and, finally, a conclusion is summarized in Section 4.

2. FACTORED FORM MATCHING

If we have a set of gating functions {F1, F2, . . .}, such that each Fi enables (Fi = 0) and disables (Fi = 1) the clock to a set of flip-
flops. Each gating function can be represented in a factored form, or equivalently as a factoring tree, which we will assume to be
binary. Our task is to find some existing logic of a combinational circuit, which, together with a few extra gates, implements a
gating function. Simultaneously, we have to maximize the proportion of the gating function that is provided by existing logic, so
as to minimize the number of extra gates. Because the existing logic can also be represented as a factoring tree, the problem can
be recast as that of finding the parts of a factoring tree of a gating function that can be replaced by factoring trees taken from the

existing logic; we call this process as factored form matching, which consists of SM and WM.

An overview of factored form matching is shown in Fig. 2, in which it is performed for each individual gating function Fi or F
separately, so as to simplify the notation. A factoring tree of F, denoted by TF, is first obtained (L1) by factoring , which is
performed by recursive algebraic division using a kernel of F as a divisor.1 Matching is then performed in two steps: 1) SM (L3-
L9) and 2) WM (L10-L15).

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13586

Algorithm Factored _Form Marching (F')

L1 1'% <« Facroring (F')
L2 Esn &0, Loy +— 0
13 foreach internal node n do
4 if »n contains literals not in &' then skip n
L5 1., « Factoring (n)
LA M, + Strong _Match{ Ty, 1.}
L7 if M, # { then
LS if Containment (L,,.,, M,.) # yes then
1.9 L ¢ L — (n, M)
L10 foreach unskipped internal node » do
L1l M,, ¢ Weak March Ty, T,)
112 it M, # 0 then
LI13 if Contasnment {1.,,,, M,) = ves then skip n
L14 clse if Containmens (L, M,) = yes then skip n
L15 clse Lo ¢~ Law + (0, M)

Function Containment (1., M)
L16 foreach (n, M,) € L do

L17 foreach pair (g, '), where g € M, and ¢ € M do
L18 if g C ¢ them M, + M, — g

L19 clse if ¢ C g then M - M - ¢

1.20 if M., =0 then L « L — (n, M)

121 if M = ¢ then return yes

Fig. 2.An algorithm for factored form matching:

Where T is the factoring tree,Mn is the set of subtrees (in SM) or sets of vertices (in WM) of TF that are to be matched with Tn,
and L is the list of the resulting pairs (n,Mn).

A.Strong Matching

Consider the factoring tree of a gating function F shown in Fig. 3(a), and the factoring trees of three of the existing internal nodes
shown in (b)—(d). The subtree of F marked N1 and the tree n1 are structured in different ways, but they actually represent the same
Boolean expression abc+acd+bd; we say that N1 and nl are equivalent . N2 and n2 are also equivalent; in fact, these trees have
the same structure, except for the ordering of children; we say that such trees are syntactically equivalent . Finally, N3 and n3 are
syntactically equivalent, and children are ordered in the same way; rather obviously, we call these identical factored forms. Any of

these three types of equivalence are said to provide a strong match in this paper.

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13587

My =3 + B{acsb)

{€)

fg = 08 + {B+D)(C+1)

(9

Fig. 3. Factoring trees of (a) a gating function F: of internal nodes (b) n1, which is equivalent to subtree N1, (c) n2, which is

syntactically equivalent to subtree N2, and (d) n3, which is identical to subtree N3.

Finding the most general strong match involves the detection of equivalent factored forms. This, however, is a problem of

combinational equivalence checking, which is proven to be co-NP-complete.2 Thus, we focus on finding syntactically equivalent

and identical factored forms in this paper.

I)Detection of Syntactically Equivalent and Identical Factored Forms

Pseudocode for the algorithm that we use to detect syntactically equivalent factored forms is shown in Fig. 4. T is a large

factoring tree (similar to F in Fig. 3), which may contain one or more subtrees that are syntactically equivalent to a smaller tree t

(such as nl in Fig. 3). For each vertex v in T , we check whether the size of subtree rooted at v, denoted by Tv , is the same as that

of t (L4); note that, we only consider v that is the same as the root of t (L2) by the definition of syntactical equivalence. Then, we
label both Tvandt, level by level, starting at the deepest level.

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600

Page 13588

Algorithm Syntactically_Equivalent (T, 1)

L1 M1

L2 foreach vertex v € T, where v = root of ¢ do

L3 T, + subtree rooted at v

L4 if |T,| = |t| then

L5 foreach level ¢ of { and T, from deepest do
L6 Vi, + vertices at level i of T,

L7 Vi + vertices at level i of {

L8 if Labeling (V,,, V) = fail then skip v
L9 M M4T,

.10 Return M

Fig4. Algorithm to detect syntactically equivalent factored forms.
I1)SM Algorithm

The procedure Strong_Match called by the algorithm in Fig. 2 itself calls either Syntactically Equivalent or Identical,
depending on how the factoring trees of F and the existing internal nodes ni are obtained. We might apply quick factoring to the
ni terms to reduce runtime, and good factoring to F to obtain a smaller tree.3 Because different factoring methods may use
different divisors, they can yield syntactically equivalent as well as identical factored forms. On the other hand, if quick factoring
is applied to both F and the ni terms, we only need to look for identical factored forms, which takes less time. It can readily be
shown that the complexity of Syntactically_Equivalent is O(V log V) and that of Identical is O(V), where V is the number of

vertices.
B.Weak Matching

In searching for a strong match between a subtree of a gating function and the factoring tree corresponding to an existing logic
node, we only look for syntactically equivalent and identical factored forms, and so the two trees must have the same structure.
This is a rigid requirement, especially for large trees. Consider Fig.5, in which no subtree of F strongly matches n. The vertices of

F within the dotted circles collectively, however, constitute the same expression as n, because

F =aeg(d+ f(b+c))+abh+defg
= n(aeg) + abh + defg.

All the nodes n that are not skipped are checked for weak match (L10 of Fig. 2).

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13589

F =(ged + bh)a + fge(d + a(b+c))
E;
)

Fig5. Weak match of a gating function F with an internal node n.

n :d+f(b+c)

WM Algorithm: WM algorithm (denoted by Weak Match) pseudocode is shown in Fig6. T is a large tree (like F in Fig.5),
which may contain one or more sets of vertices that are weakly matched to a smaller tree t (similar to n in Fig. 5). Initially, for

each vertex v in T and t, we assign its subexpression Ev and factor F(v) to v and 1, respectively (L2), subexpression of each leaf

becomes itself (such as Ev5 = f) and factors for all vertices are initialized to one.

Now, we traverse the tree t in postorder. For each vertex v visited during the traverse, the expression using

subexpressions of its children and operation of itself is assigned to Ev_ (like Ev _2= E2 = f E1); note that, we only consider v_ that

is not a leaf (L3-L6). Tv_ is the set of three tuples (v, vr , and vA), all vertices of which are in T ; in each tuple, vA is the LCA of

vl and vr and is equal to v_, and vl and vr have the same subexpression as left and right child of v_, respectively (L23-L26).

Algee e Wl Aewoh (T =Y

k A o @Y e Faasandes 0!

L Toremecl: vertsa = € T Lt e K, - o Fewh o L
Ly Forvmch: vertex =" € 42, wihere o 3 200 = o de
LA vy st - <Relfze= ~d

| o > Chem N, - » B e »x B

ESs al.-’.‘.-O—l‘.";—-ﬁ’:
| 4 A "~ T - P. T o CTonlhlose T . w =2, -
E» Pevemad Yapds (ag s wma e T Aa
Le Fowy) » Facserywyg. . wvad = Fownwy
LSt S Fatoriwe, valt m Fowed
£33 Mo — »m o sxiw’ ™ 4 2 Nyt F i,y e
£az [R - At o L. ne }
| S) o a' ox hen N ioal e Fiwmt x FoeD
T 14 s Fowaltl - ey)
L3S WAt « @ ey Hatpaw B
Liw Ourwmasts par (%W VU wisew 3 € AL snd V' © AT de
Lay fogomch » © L7 A
Ls o e s om ok xnd v 6 V ihem sk (VWY
| S & o ix oot s load azd o F V them skzp LV, W)
| - WY o B3 LOCALY), N ¢ 5 PSS L L -
| o e B L SR
| & st wmm N
Pupatles Tarndi w3 ", ‘;, we
L= L
L4 Soxcach pas s, v, & T, wmbrar t':'ﬂ,-r),‘oi.‘; -— 2 da
| L oS Ay wm,) oy v Sem) » ¥ 4 . = -t
Los Farumwes ¥
Famitiew Facvuw (o w '
L2 - - e s e Reaoas
L. o ezt of wy .
— Meoetzsrs Focsarspameed o w watm mepoecsssan oF sobloug »F
| - 2 sine Morvgrn SMoctarpuscot o v w b

Fig6.Algorithm to detect weak matches.

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600

Page 13590

For each three-tuple (vl, vr, and vA) in Tv’, we find two factors F(vl) and F(vr) by ANDing their initial factors and the
expression obtained from Factor (L27-L30). If the check passes, Ev A is assigned to Ev’ and F(vA) is initialized either to F(vl) x
F(vr) when VA is a x operation or to F(vl) when vA is a + operation, and a set of vl and vr is added to M’, which is a set of sets
of vertices that are matched to the children of v’ (L8—L14). If M’ is empty, because no vertex in T matched to v’ exists, we return
empty set (L15). Otherwise, we pick a pair (V, V’), which, respectively, are extracted from M and M’, one by one;Mis a set of
sets of vertices in T matched to the vertices that are already traversed in t. We then, for each vertex v in V’,check if v is a leaf and
not contained in V or if v is not a leaf and contained in V; if all v satisfy the check condition, we unify V, V’, and LCA of
V’power 4 and add it to M new by which M will be replaced (L16-L21).

C.Factored Form Matching

L in Fig. 2 is the list of pairs (n,Mn); in each pair n is an internal node5 of a combinational circuit and Mn is a set of
subtrees (or sets of vertices) of TF that matches with Tn, which is a factoring tree of n (L5). Two lists Lsm and Lwm are

initialized and then updated to track strong and WM ,respectively (L2).

We restrict our Boolean manipulation to algebraic to limit computation time; therefore, if a node n contains literals that are not in

F, then n is dropped from further matching attempts (L4).

I)Containment in SM: Strong_Match returns a set of subtrees (L6). We can use the function Containment to check whether some

of these subtrees are redundant because they are contained in subtrees that are already determined to be strong matches.

Example : Consider Fig. 7, in which the tree nl is to be matched with subtrees N1 and N2. We set Mn1 = {N1, N2} and
Lsm = {(n1,Mn1)} (L9). We continue to determine Mn2 = {N3}. Then, we perform the containment check because N2 c N3, N2
can be discarded and we update Mn1= {N1} (L18) and Lsm = {(n1,Mnl1), (n2,Mn2)}.Similarly, Mn3 = {N4}, and N1 c N4.
Discarding N1 makes Mnl empty. Thus, (n1,Mnl) can also be discarded from Lsm (L20), and finally Lsm = {(n2,Mn2),

(n3,Mn3)} ={(n2, {N3}), (n3, {N4})}.

b c/
ny nNns 3
p— ¥ =
) s x
A - ~ - — =
a @& (3€) <, (2] (3€)
| ./,' \"-. \ .'/ \
b c b d a = b c a =+
b c b c

Fig7. Checking for subtree containment in SM.

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13591

We might think that the subtrees that are determined as strong matches might have a partial mutual intersection without

one being wholly contained in the other; but this never happens, as we show by proving the following proposition.

Proposition 1: Let, ni and n j be strong matches with subtrees Ni and Nj of F, respectively. If Ni N Nj = @, then either Ni € Nj or
Nj € Ni.

I1) Containment in WM: Now, we turn our attention to the possibility of nested matches: each weak match is checked to see

whether it is contained in or contains other strong or weak matches (L12-L15).

Example: Consider Fig8: nl and n2 are strong matches with subtrees N1 and N2, respectively. The set of vertices of F
that weakly matches with n3 includes N1; thus nl is dropped from the list of strong matches. The vertices that weakly match with
n4 make n3 redundant. The three vertices of F that weakly match with n5 constitute a subset of N2; thus n5 is also redundant.

Matches n2 and n4 remain after the containment check.

E
o Ne
Ns 2 it}
= -
“’g A N'J
ey <
f P CORN
P
Y am. ©
N:",f. \
/ = / 1,'?9 c)
ta, b H a'., (:‘4(-;]
; 7 AN
s, - " |
b (g
n, n, N3 g ns
o) 2 Jol OF ®
7\ / 4 -9 - f 4
a b * ¢ OO a2t a g
A\ oF X e N \
\ / \ / <L -
a (% a bd e N
£\ LN
/S \ -
. a bd e
b g

Fig. 8. Finding nested matches: nl and n2 are strong matches and the remainders are weak matches.

3.EXPERIMENTAL RESULTS

To assess factored form matching (denoted by Matching in Table 1), we implemented two additional methods of
simplification: using Boolean division , in which approximation ,in which product terms (in sum-of-products form of a gating
function) whose probability is smaller than 0.001 are declared as don’t-care set, a new gating function is submitted to two level
minimization followed by implementation in multi-level logic. The number of gates to implement gating functions without any
simplification, given in the second column of Table 1,serves as a reference to compute the difference of the number of gates
(denoted as Diff) of each simplification method.

Division achieves about 10% reduction in the number of gates, but there is wide variation (from 0% to 34%). This is
expected since the existence of larger divisor relies on a chance, in particular when algebraic division is applied. Approximation
achieves more reduction, but this comes at the cost of reduced gating probability. Average gating probability of gated flip-flops is
0.67 in ‘No simplification’, while that of Approximation is 0.62; note that Division and Matching do not sacrifice gating

probability.

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13592

Matching achieves substantial reduction in gate count compared to both division and ap- proximation. The matching
takes about 10% more runtime than division method in our current mplementation, ranging from 1 to 340 seconds (the last column
of Table 1). The majority of runtime is due to the detection of weak matches as can be expected from its complexity. Weak
matches account for only 10% of total number of matches; its contribution in gate count reduc- tion (the second last column of

Tablel) however is 25%, which demonstrates its importance in the factored form matching.

Table 1: Number of extra gates to implement gating functions. ‘No simplification’ serves as a reference to compute difference

Cireoit Ty T wrimioan & o rcori o cioon Fedmcching
=i liE ek e
7 Excrn o Extra Iidr. 7 Excrn IiET. o Excrn InaeE. Fluan-
et o o == et o [y | e [N | ciae (=]
=1 423 = o2 -33.= E= N == a2 —) a7
= T 2 =05 2HD -7 = —H_= el) 134 12 7
ST, 149 136 -2 1 1= -1 1= -1=.2 112
=l ST =84 5] pr- = | 8. = oA -1=.3 io.=
e e | 431 414 -3 e —1=.1 a7 —14.8 WS D
=R 1401 1401 — 1===d4 .= R e = D=3
s = a 1=17 1302 -1.1 1=rv -3. 121 = -T.T OBR. T
Bl L= [=n B -T.E = — 1= T AT =8 265
BT =0 =20 - =0 - o1 -2) 10 =
bl> =0 280 —-B.7 =l 0 _T D325 -21.3 Ad 2
bB1T 250 o> - =ro -3 D -149 2300
T [“4d -3d.= =T —dd . = =4 i T =1
i i=4 1= -B. 7 s o= L= 1&g id.+
Ar P o141 = = N -] 1= —i=.0 125
s oer L =11 =0n -1.= =10 e L= A= =205 ET.A
P2 o &1 -8 1 41 = =27 e N 20 =
L 119 101 -15.1 L= -18._= ol =D oo
e Y L e 253 -11.= =3 —-18. = P -1 5 oT.T
wabd top 1=8 134 -1 =5 - o B =1 -A=T 21.=
o b e [o3R -11.= =T o = bk B 140 20000
o —— -10E T g

6.1. PROPOSED METHOD RESULTS

In this chapter all the simulation results which are done using Xilinx ise 9.1 are shown in below

results.

A. SIMULATION RESULTS

Fig 1: BEFORE CLOCK GATING

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13593

Ay

Fig 3: MATCHED FACTORED FORMS: WEAK MATCHING

Fig 4: MATCHED FACTORED FORMS: STRONG MATCHING

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13594

Fig 5: C17 CIRCUIT IMPLEMENTATION

B. SCEMATIC DESIGNS:
1. Before clock gating:

Rtl schematic:

et P Peryart Nwowpeor M 00 - CAlhere'N T sty Erwe hurrar pee = ame - | 80_Sefonz Chgetneg (R1L2Y) - -y
< bre e e He

x i ow 2EREREPPIRA S > PRI PpPESL

o St | WD D miew | L) Lirarwe e R T e — T 1 Bwere 08 geing » T Pebye Digawgog: | 0 _befre Cgwirg 001 O
Osx
Dewagn Dhpects of Tap Loved Slock Propurties of Sigeet 0
& 50 _Beiore Clegatng I W 2o Chgeting -4 orthuterd
of | Porthuame o
G [ey | £l Warwes | P b s tomin =
- = . ‘llnixj
= - P el "

€ - el = T e e

Technology schematic:

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13595

T T Pyt Nwvegiis T OV - C AR € rw vty Bathing haas biatets o U hbbd gy e kbt pey et e - (V1L Bohass. CRigaton) (Tormis

ep

Cone | @) Wivmn | Wasnnon | b Wt i Was Mt

D —— I ——— ‘

Prapertas of limtasce: 50 Detare_ Obgatue

e 1 o 7T S
2. After clock gating:
Rtl schematic:

L P Pryart Nwogarir 00 « CAlberd'N T ety Daktios” bree hurrar pegert Strgncect Atarproyect sme - [80_Aw_ Obgebag (N112)|

Fropect

»
g St | W2 [esp maer | 1) Lirewe Cengr Surerwry (5 reme
Dewagn Dhpects of Tap Leved Block
9¢
8 » . &
& 50200 Chgmeg & e Ohgemg r 8 er Chprtrg

A (hgang §

Froserties of lawterece 01

Technology schematic:

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600

Page 13596

LR Byert Nwvwperr M N0« CAlbiar' N T rutity Dmnktiog' brwe burrar pegart Stsrgnciect daroroyect s - [50_AMwr_ Obgebing (Teckd]|

Fropect rece s Hep

£

» e
-y
=
>
rart Y Lrwe ey (St S A Ok uitry R _Aer_Ciegetrg 1oz _Abe Dhoadry RTLL O _Abwr Chguirgroe! ‘
-8 x
Dewign Ohpects of Tap Lowed Slock Frogertiex (Mo Schection)
o ter - F Ver. e A o prr
Sl = S e v ——
€ - £ Pl [
3. Strong matching:
Rtl schematic:
* PR Pyart Nwongaror P 00 © CA b’ T ety Dmaktos” bree hurrar pegert Sargncrect Ansroroyect sme - [5D_IPNM DM MTLY | [

. L Fropect

>
o
o
s ~arr v Des Sy Tortwwred] 50I_PPM_SirengPletesrex 50_PPM_Sroegheic (ETLL
Dewign Dhpects of Tap Leved Block
raer o -
. 90 » ¥ v
o 5 o L] ve
Pt
S [, JrS— g — |y i~ ip——

Propertees of Irstence: S0_ITI_SM4

Loz

"y

Technology schematic:

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600

Page 13597

T 4 LY

Fropertees of Irstence: S0_FTI_SH4

wt P Poryert Nwvwpetir I N0« Cothary' N T ety Dmaktios Erwe urran pegert Stssrgnciect Asarproy ezt sme - [50_1PW_OM (Textd)|
0 fhe t32 Ve Fropect ewss Frzoem h o o Hep
x " rERRS> 3 v - G » 1~
-y
-
[PoS
>
4 S .y e PPV _Srogpethrgl T _SaorgMath JITL _r™ g
Dewagn Dhpects of Tap Loved Slock
2ae o
" M a o S0.FM ¥e
O3rulartd
——, e— S— T Fur W-——
€y - '
4. Weak matching:
Rtl schematic:
L P Pryert Nwogeror M N0 - Chiberd' N T ety Dnktiog’ brae burrar pegart Sesrgncpect' Avargroy et sme - [50_1PN WA 10YLYY)
t42 Vew Progect Seuse Frooes = ndow Leyoas Mg
-
> “O P X
S P —— e
Masvaact
| Aiore
D) adebly
-~
P P) ravooemes <
C s , A

ts
=) Srares Swxh BT 0_IP ey e N R P e |
Dewagn Obpects of Tap Leved Siock

rae Vo
» »
. A o o d pe

Pt

S [) iy g— g par= .

P TN (Teeh) 0_pe g |

Prapertes of Imtamoe SO_PH_Wet

Technology schematic:

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600

Page 13598

L Pryert Nwvwgerir M N0 - Chlberd' N T ettt Dmsktiop’ brae hurran pegert Stargncpect Aarproy et sme - [50_1PRN W [Tach2 b
0 L Zur e oo o g ey

. i w 2 ERRD> _ R~ G 1~
ey
:
>
o Shart T Desp “her | L) v T Surreany (Trtterred T M)
A x
Denign Ohpects of Tap Lowed Slock Fropertses of Sgnat & DTN
& SD_FFRLM A FEM - B larre b0 JELE
1. BN
Coren | Bry | L warwen | P ot temin
. ———
‘) 4 L b=~ PG []
5 ¢17 circuit:
Rtl schematic:
[S—y e p— T T T T Ty e ey - R Ty — o T Ty T gy |

w8 = %
o 05 remmiins ¢ -

"
-
= g
= »
€
L]
2]
(2]
.=
Suveen Obgenbe it Fage borvel Bhas Penpurtins ot bagast K174}
fed -

s el - e ene]

Technology schematic:

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13599

et B Bryart Nwvwpetior M N0 + Atk T ety Dmnktiop’ brwe burrar pegeet'ct M) Yo - 3D _Yeperodule (Tecti) (o
o " L W ¢ >

Progect Sewrse Moces ook ndon Leyos Hep

x | o PERBEP,PIACN RS0 IR PSP

1 St | WD ey wey | 1) Liverwe T Surreany (Trtterred 50_Temdue wr: 1 " ol Tach %

Dewagn Obpects of Tap Lo Siock Progertes of astance: 5O _Topmmdvie

CONCLUSION

Gate-level clock gating synthesis is not yet in main stream use, but is a promising methodology due to its convenience
offered to designers. New solutions for two key problems of the synthesis, merge and simplification, have been proposed. The
iteration of minimum weight perfect matching formulation yields balanced grouping of flip-flops without too much decrease in
average gating probability; this is in an effort to overcome the limitation of greedy approach to merge. Factored form matching
has been proposed to utilize existing combinational logic as much as possible, this is an extension of a prior method using Boolean

division.
REFERENCES

[1] I. Han and Y. Shin, “Synthesis of clock gating logic through factored form matching,” in Proc. Int. Conf. IC Design
Tech., Jun. 2012,pp. 1-4.

[2] D. Chinnery and K. Keutzer, Closing the Power Gap Between ASIC & Custom, Norwell, MA, USA: Kluwer, 2007.
[3] S. Unger, “Double-edge-triggered flip-flops,” IEEE Trans. Comput.,vol. 30, no. 6, pp. 447-451, Jun. 1981.

[4] R. Pokala, R. Feretich, and R. McGuffin, “Physical synthesis for performance optimization,” in Proc. Int. ASIC Conf.
Exhibit., Sep. 1992, pp. 34-37.

[5] Power Compiler User Guide, Synopsys, Inc., Mountain View, CA, USA, Dec. 2010.

[6] F. Theeuwen and E. Seelen, “Power reduction through clock gating by symbolic manipulation,” in Proc. Symp. Logic

Archit. Design, Dec. 1996,pp. 184-191

A kirankumari! 1JECS Volume 4 Issue 7 July, 2015 Page No.13585-13600 Page 13600

