
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 6 June 2015, Page No. 12544-12549

Gowri P, IJECS Volume 4 Issue 6 June, 2015 Page No.12544-12549 Page 12544

Unit Level Web Databases Searching
Gowri P * Konda Reddy R

Dept. of CSE, PBR VITS, Kavali, India
gowri08594@gmail.com

Dept. of CSE, PBR VITS, Kavali, India

rkondareddy75@gmail.com

Abstract— An increasing number of databases have become web accessible through HTML form-based search interfaces. The

data units returned from the underlying database are usually encoded into the result pages dynamically for human browsing.

We present an automatic annotation approach that first aligns the data units on a result page into different groups such that

the data in the same group have the same semantic. Then, for each group we annotate it from different aspects and aggregate

the different annotations to predict a final annotation label for it. An annotation wrapper for the search site is automatically

constructed and can be used to annotate new result pages from the same web database.

Key words— Data alignment, Data annotation, Web database, Wrapper generation, Annotator

I. INTRODUCTION

Web database is a database application designed to be

managed and accessed through the internet.A large portion

of the deep web is database based, i.e., for many search

engines, data encoded in the returned result pages come

from the underlying structured databases. Such type of

search engines is often referred as Web databases (WDBs).

A typical result page returned from a WDB has multiple

search result records (SRRs). Each SRR contains multiple

data units each of which describes one aspect of a real-world

entity. In this paper, a data unit is a piece of text that

semantically represents one concept of an entity. It

corresponds to the value of a record under an attribute. It is

different from a text node which refers to a sequence of text

surrounded by a pair of html tags. Text node is a sequence

of text surrounded by pair of html tags. In this paper, we

perform data unit level annotation. There is a high demand

for collecting data of interest from multiple WDBs. For

example, once a book comparison shopping system collects

multiple result records from different book sites, it needs to

determine whether any two SRRs refer to the same book.

The ISBNs can be compared to achieve this. If ISBNs are

not available, their titles and authors could be compared.

The system also needs to list the prices offered by each site.

Thus, the system needs to know the semantic of each data

unit. Unfortunately, the semantic labels of data units are

often not provided in result pages. Having semantic labels

for data units is not only important for the above record

linkage task, but also for storing collected SRRs into a-

database table (e.g., Deep web crawlers [1]) for later

analysis. Early applications require tremendous human

efforts to annotate data units manually, which severely limit

their scalability. In this paper, we consider how to

automatically assign labels to the data units within the SRRs

returned from WDBs. Given a set of SRRs that have been

extracted from a result page returned from a WDB, our

automatic annotation solution consists of three phases. Let

dj
i denote the data unit belonging to the ith SRR of concept j.

The SRRs on a result page can be represented in a table

format with each row representing an SRR. Phase 1 is the

alignment phase. In this phase, we first identify all data units

in the SRRs and then organize them into different groups

with each group corresponding to a different concept (e.g.,

all titles are grouped together). The result of this phase with

each column containing data units of the same concept

across all SRRs. Grouping data units of the same semantic

can help identify the common patterns and features among

these data units. These common features are the basis of our

annotators. In Phase 2 (the annotation phase), we introduce

multiple basic annotators with each exploiting one type of

features. Every basic annotator is used to produce a label for

the units within their group holistically, and a probability

model is adopted to determine the most appropriate label for

each group. At the end of this phase, a semantic label Lj is

assigned to each column. In Phase 3 (the annotation wrapper

generation phase), for each identified concept, we generate

an annotation rule Rj that describes how to extract the data

units of this concept in the result page and what the

appropriate semantic label should be. The rules for all

aligned groups, collectively, form the annotation wrapper

for the corresponding WDB, which can be used to directly

annotate the data retrieved from the same WDB in response

to new queries without the need to perform the alignment

and annotation phases again.

II. LITERATURE SURVEY

In Wrapper Induction System, label the marked data at

the same time and then the system can induce rules to

extract the same information from same source. It has high

extraction accuracy and suffers poor scalability. It also

needs to extract from more web sources. In Conceptual

Model Based Data Extraction from Multiple-Record

WebPages, automatically extract data in multi record and

label them. Different domains must be constructed manually

.i.e., domain dependent. It is not fully automatics. Wrapper

is used data extraction only not for annotation. Automatic

Annotation of Data Extracted from Large Websites, it can

annotate data units with the closest labels on result pages.

But it also has limited applicability, because many web

http://www.ijecs.in/

Gowri P, IJECS Volume 4 Issue 6 June, 2015 Page No.12544-12549 Page 12545

databases don’t encode data units with their labels. Ontology

assisted Data Extraction System, after labeling the data

values with the same label are naturally aligned. It is

sensitive to quality and completeness. Vision based

approach for deep web Data Extraction, uses visual feature

on result pages for alignment, but its alignment is only at

text node level. Data Extraction & Label Assignment

(DELA) for WDBs uses html tags to align data units by

filling them into a table through regular expressions based

data tree algorithm.

III. EXISTING SYSTEM
In this existing system, a data unit is a piece of text that

semantically represents one concept of an entity. It

corresponds to the value of a record under an attribute. It is

different from a text node which refers to a sequence of text

surrounded by a pair of html tags. It describes the

relationships between text nodes and data units in detail. In

this paper, we perform data unit level annotation. There is a

high demand for collecting data of interest from multiple

WDBs. For example, once a book comparison shopping

system collects multiple result records from different book

sites, it needs to determine whether any two SRRs refer to

the same book.

The limitations of existing system are If ISBNs are not

available, their titles and authors could be compared. The

system also needs to list the prices offered by each site.

Thus, the system needs to know the semantic of each data

unit. Unfortunately, the semantic labels of data units are

often not provided in result pages. For instance, no semantic

labels for the values of title, author, publisher, etc., are

given. Having semantic labels for data units is not only

important for the above record linkage task, but also for

storing collected SRRs into a database table.

IV. PROPOSED SYSTEM

In this paper, we consider how to automatically assign

labels to the data units within the SRRs returned from

WDBs. Given a set of SRRs that have been extracted from a

result page returned from a WDB, our automatic annotation

solution consists of three phases. This paper has the

following contributions:

1) While most existing approaches simply assign

labels to each HTML text node, we thoroughly analyze the

relationships between text nodes and data units. We perform

data unit level annotation.

2) We propose a clustering-based shifting technique to

align data units into different groups so that the data units

inside the same group have the same semantic. Instead of

using only the DOM tree or other HTML tag tree structures

of the SRRs to align the data units (like most current

methods do), our approach also considers other important

features shared among data units, such as their data types

(DT), data contents (DC), presentation styles (PS), and

adjacency (AD) information.

3) We utilize the integrated interface schema (IIS)

over multiple WDBs in the same domain to enhance data

unit annotation. To the best of our knowledge, we are the

first to utilize IIS for annotating SRRs.

4) We employ six basic annotators; each annotator

can independently assign labels to data units based on

certain features of the data units. We also employ a

probabilistic model to combine the results from different

annotators into a single label. This model is highly flexible

so that the existing basic annotators may be modified and

new annotators may be added easily without affecting the

operation of other annotators.

5) We construct an annotation wrapper for any given

WDB. The wrapper can be applied to efficiently annotating

the SRRs retrieved from the same WDB with new queries.

Our Automatic Annotation Solution consists of three

phases they are Alignment Phase, Annotation Phase,

Annotation Wrapper Generation Phase .the main

improvements is relationship between text nodes and data

units are defined and it can explain the alignment algorithm

and cluster shifting algorithm.

Fig. 1 Block diagram of Unit-level Web databases searching

A. Alignment Phase

In the alignment phase we have data alignment. The

purpose of data alignment is to put the data units of the same

concept into one group so that they can be annotated

holistically. Whether two data units belong to the same

concept is determined by how similar they are based on the

features described. In this paper, the similarity between two

data units (or two text nodes) d1 and d2 is a weighted sum of

the similarities of the five features between them.

1) Data content similarity (SimC): It is the Cosine

similarity [2] between the term frequency vectors of d1 and

d2.

2) Presentation style similarity (SimP): It is the average

of the style feature scores (FS) over all six presentation style

features (F) between d1 and d2.

3) Data type similarity (SimD): It is determined by the

common sequence of the component data types between two

data units. The longest common sequence (LCS) cannot be

longer than the number of component data types in these

two data units. Thus, let t1 and t2 be the sequences of the

data types of d1 and d2, respectively, and TLen (t) represent

the number of component types of data type t, the data type

similarity between data units’ d1 and d2.

Gowri P, IJECS Volume 4 Issue 6 June, 2015 Page No.12544-12549 Page 12546

4) Tag path similarity (SimT): This is the edit distance

(EDT) between the tag paths of two data units. The edit

distance here refers to the number of insertions and deletions

of tags needed to transform one tag path into the other. It

can be seen that the maximum number of possible

operations needed is the total number of tags in the two tag

paths. Let p1 and p2 be the tag paths of d1 and d2,

respectively, and PLen (p) denote the number of tags in tag

path p, the tag path similarity between d1 and d2.

5) Adjacency similarity (SimA): The adjacency

similarity between two data units d1 and d2 is the average of

the similarity between dp
1 and dp

2 and the similarity between

ds
1 and ds

2.

Our alignment algorithm also needs the similarity

between two data unit groups where each group is a

collection of data units. We define the similarity between

groups G1 and G2 to be the average of the similarities

between every data unit in G1 and every data unit in G2. Our

data alignment algorithm is based on the assumption that

attributes appear in the same order across all SRRs on the

same result page, although the SRRs may contain different

sets of attributes (due to missing values). This is true in

general because the SRRs from the same WDB are normally

generated by the same template program.

Our data alignment method consists of the following

four steps. The detail of each step will be provided below.

Step 1: Merge text nodes. This step detects and removes

decorative tags from each SRR to allow the text nodes

corresponding to the same attribute (separated by decorative

tags) to be merged into a single text node.

Step 2: Align text nodes. This step aligns text nodes into

groups so that eventually each group contains the text nodes

with the same concept (for atomic nodes) or the same set of

concepts (for composite nodes).

Step 3: Split (composite) text nodes. This step aims to split

the “values” in composite text nodes into individual data

units. This step is carried out based on the text nodes in the

same group holistically. A group whose “values” need to be

split is called a composite group.

Step 4: Align data units. This step is to separate each

composite group into multiple aligned groups with each

containing the data units of the same concept.

B. Annotation Phase

1) Local versus Integrated Interface Schemas: For a

WDB, its search interface often contains some attributes of

the underlying data. We denote a LIS as Si = {A1; A2; . . .;

Ak}, where each Aj is an attribute. When a query is

submitted against the search interface, the entities in the

returned results also have a certain hidden schema, denoted

as Se = {a1; a2; . . . ; an}, where each aj (j= 1 . . . n) is an

attribute to be discovered. The schema of the retrieved data

and the LIS usually share a significant number of attributes.

This observation provides the basis for some of our basic

annotators. If an attribute at in the search results has a

matched attribute At in the LIS, all the data units identified

with at can be labeled by the name of At. However, it is

quite often that Se is not entirely contained in Si because

some attributes of the underlying database are not suitable or

needed for specifying query conditions as determined by the

developer of the WDB, and these attributes would not be

included in Si. This phenomenon raises a problem called

local interface schema inadequacy problem. Specifically, it

is possible that a hidden attribute discovered in the search

result schema Se does not have a matching attribute At in

the LIS Si. In this case, there will be no label in the search

interface that can be assigned to the discovered data units of

this attribute. Another potential problem associated with

using LISs for annotation is the inconsistent label problem,

i.e., different labels are assigned to semantically identical

data units returned from different WDBs because different

LISs may give different names to the same attribute. This

can cause problem when using the annotated data collected

from different WDBs, e.g., for data integration applications.

For each WDB in a given domain, our annotation method

uses both the LIS of the WDB and the IIS of the domain to

annotate the retrieved data from this WDB. Using IISs has

two major advantages. First, it has the potential to increase

the annotation recall. Since the IIS contains the attributes in

all the LISs, it has a better chance that an attribute

discovered from the returned results has a matching attribute

in the IIS even though it has no matching attribute in the

LIS. Second, when an annotator discovers a label for a

group of data units, the label will be replaced by its

corresponding global attribute name (if any) in the IIS by

looking up the attribute-mapping table so that the data units

of the same concept across different WDBs will have the

same label. We should point out that even though using the

IIS can significantly alleviate both the local interface

schema inadequacy problem and the inconsistent label

problem, it cannot solve them completely. For the first

problem, it is still possible that some attributes of the

underlying entities do not appear in any local interface, and

as a result, such attributes will not appear in the IIS. As to

the second problem if one or more of these annotations are

not local attribute names in the attribute mapping table for

this domain, then using the IIS cannot solve the problem and

new techniques are needed.

2) Basic Annotator:

1. Table Annotator (TA): Many WDBs use a table to

organize the returned SRRs. In the table, each row

represents an SRR. The table header, which indicates the

meaning of each column, is usually located at the top of the

table. Shows an example of SRRs presented in a table

format. Usually, the data units of the same concepts are well

aligned with its corresponding column header. This special

feature of the table layout can be utilized to annotate the

SRRs. Since the physical position information of each data

unit is obtained during SRR extraction, we can utilize the

information to associate each data unit with its

corresponding header. Our Table Annotator works as

follows: First, it identifies all the column headers of the

table. Second, for each SRR, it takes a data unit in a cell and

selects the column header whose area (determined by

coordinates) has the maximum vertical overlap (i.e., based

on the x-axis) with the cell. This unit is then assigned with

this column header and labelled by the header text A

(actually by its corresponding global name gn(A) if gn(A)

exists). The remaining data units are processed similarly. In

case that the table header is not provided or is not

successfully extracted by ViNTs [3], the Table Annotator

will not be applied.

2. Query-Based Annotator (QA): The basic idea of this

annotator is that the returned SRRs from a WDB are always

Gowri P, IJECS Volume 4 Issue 6 June, 2015 Page No.12544-12549 Page 12547

related to the specified query. Specifically, the query terms

entered in the search attributes on the local search interface

of the WDB will most likely appear in some retrieved SRRs.

A query term “machine” is submitted through the Title field

on the search interface of the WDB and all three titles of the

returned SRRs contain this query term. Thus, we can use the

name of search field Title to annotate the title values of

these SRRs. In general, query terms against an attribute may

be entered to a textbox or Chosen from a selection list on the

local search interface. Our Query-based Annotator works as

follows: Given a query with a set of query terms submitted

against an attribute A on the local search interface, first find

the group that has the largest total occurrences of these

query terms and then assign gn(A) as the label to the group.

3. Schema Value Annotator (SA): Many attributes on a

search interface have predefined values on the interface. For

example, the attribute Publishers may have a set of

predefined values (i.e., publishers) in its selection list. More

attributes in the IIS tend to have predefined values and these

attributes are likely to have more such values than those in

LISs, because when attributes from multiple interfaces are

integrated, their values are also combined [4]. Our schema

value annotator utilizes the combined value set to perform

annotation. Given a group of data units Gi= {d1; . . ; dn} the

schema value annotator is to discover the best matched

attribute to the group from the IIS. Let Aj be an attribute

containing a list of values {v1; . . . ; vm } in the IIS. For each

data unit dk, this annotator first computes the Cosine

similarities between dk and all values in Aj to find the value

(say vt) with the highest similarity. Then, the data fusion

function CombMNZ [5] is applied to the similarities for all

the data units. More specifically, the annotator sums up the

similarities and multiplies the sum by the number of nonzero

similarities. This final value is treated as the matching score

between Gi and Aj. The schema value annotator first

identifies the attribute Aj that has the highest matching score

among all attributes and then uses gn(Aj) to annotate the

group Gi. Note that multiplying the above sum by the

number of nonzero similarities is to give preference to

attributes that have more matches (i.e., having nonzero

similarities) over those that have fewer matches. This is

found to be very effective in improving the retrieval

effectiveness of combination systems in information

retrieval.

4. Frequency-Based Annotator (FA): In Frequency Based

Annotator, consider one example “Our Price” appears in the

three records and the followed price values are all different

in these records. In other words, the adjacent units have

different occurrence frequencies. As argued in [1], the data

units with the higher frequency are likely to be attribute

names, as part of the template program for generating

records, while the data units with the lower frequency most

probably come from databases as embedded values.

Following this argument, “Our Price” can be recognized as

the label of the value immediately following it. The

phenomenon described in this example is widely observable

on result pages returned by many WDBs and our frequency-

based annotator is designed to exploit this phenomenon.

Consider a group Gi whose data units have a lower

frequency. The frequency-based annotator intends to find

common preceding units shared by all the data units of the

group Gi. This can be easily conducted by following their

preceding chains recursively until the encountered data units

are different. All found preceding units are concatenated to

form the label for the group Gi.

5. In-Text Prefix/Suffix Annotator (IA): In some cases, a

piece of data is encoded with its label to form a single unit

without any obvious separator between the label and the

value, but it contains both the label and the value. Such

nodes may occur in all or multiple SRRs. After data

alignment, all such nodes would be aligned together to form

a group. For example, after alignment, one group may

contain three data units, {“You Save $9.50,” “You Save

$11.04,” “You Save $4.45”}. The in-text prefix/suffix

annotator checks whether all data units in the aligned group

share the same prefix or suffix. If the same prefix is

confirmed and it is not a delimiter, then it is removed from

all the data units in the group and is used as the label to

annotate values following it. If the same suffix is identified

and if the number of data units having the same suffix match

the number of data units inside the next group, the suffix is

used to annotate the data units inside the next group. In the

above example, the label “You save” will be assigned to the

group of prices. Any group whose data unit texts are

completely identical is not considered by this annotator.

6. Common Knowledge Annotator (CA): Some data units on

the result page are self-explanatory because of the common

knowledge shared by human beings. For example, “in stock”

and “out of stock” occur in many SRRs from e-commerce

sites. Human users understand that it is about the availability

of the product because this is common knowledge. So our

common knowledge annotator tries to exploit this situation

by using some predefined common concepts. Each common

concept contains a label and a set of patterns or values. For

example, a country concept has a label “country” and a set

of values such as “U.S.A.,” “Canada,” and so on. As another

example, the e-mail address (assume all lower cases)

concept has the pattern {a-z 0-9.-%+-]+ @([a-z0 - 9-] +\.)+

[a-z]{2, 4}. Given a group of data units from the alignment

step, if all the data units match the pattern or value of a

concept, the label of this concept is assigned to the data units

of this group. DeLa [6] also uses some conventions to

annotate data units. However, it only considers certain

patterns. Our Common knowledge annotator considers both

patterns and certain value sets such as the set of countries. It

should be pointed out that our common concepts are

different from the ontologies that are widely used in some

works in Semantic Web. First, our common concepts are

domain independent. Second, they can be obtained from

existing information resources with little additional human

effort.

TABLE I

Applicability and Success Rates of Annotators

Gowri P, IJECS Volume 4 Issue 6 June, 2015 Page No.12544-12549 Page 12548

3) Combining Annotator: Our analysis indicates that no

single annotator is capable of fully labelling all the data

units on different result pages. The applicability of an

annotator is the percentage of the attributes to which the

annotator can be applied. For example, if out of 10

attributes, four appear in tables, then the applicability of the

table annotator is 40 percent. Table shows the average

applicability of each basic annotator across all testing

domains in our data set. This indicates that the results of

different basic annotators should be combined in order to

annotate a higher percentage of data units. Moreover,

different annotators may produce different labels for a given

group of data units. Therefore, we need a method to select

the most suitable one for the group. To obtain the success

rate of an annotator, we use the annotator to annotate every

result page in a training data set. The training result is listed

in Table. It can be seen that the table annotator is 100

percent correct when applicable. The query-based annotator

also has very high success rate while the schema value

annotator is the least accurate. An important issue DeLa did

not address is what if multiple heuristics can be applied to a

data unit. In our solution, if multiple labels are predicted for

a group of data units by different annotators, we compute

the combined probability for each label based on the

annotators that identified the label, and select the label with

the largest combined probability. One advantage of this

model is its high flexibility in the sense that when an

existing annotator is modified or a new annotator is added

in, all we need is to obtain the applicability and success rate

of this new/revised annotator while keeping all remaining

annotators unchanged. We also note that no domain-specific

training is needed to obtain the applicability and success rate

of each annotator.

C. Annotation Wrapper Generation Phase

Each annotator group of data units corresponds to an

attribute in the SRRs. Annotation Wrapper is a description

of the annotation rules for all attributes on the result page.

To use the wrapper to annotate a new result page for each

data unit in an SRR, the annotation rules are applied on it.

Once the data units on a result page have been annotated, we

use these annotated data units to construct an annotation

wrapper for the WDB so that the new SRRs retrieved from

the same WDB can be annotated using this wrapper quickly

without reapplying the entire annotation process. We now

describe our method for constructing such a wrapper below.

Each annotated group of data units corresponds to an

attribute in the SRRs. The annotation wrapper is a

description of the annotation rules for all the attributes on

the result page. After the data unit groups are annotated,

they are organized based on the order of its data units in the

original SRRs. To use the wrapper to annotate a new result

page, for each data unit in an SRR, the annotation rules are

applied on it one by one based on the order they appear in

the wrapper. If this data unit has the same prefix and suffix

as specified in the rule, the rule is matched and the unit is

labelled with the given label in the rule. If the separators are

specified, they are used to split the unit, and labeli is

assigned to the unit at the position unitindexi.

IV. RESULTS

The optimal feature weights obtained through our

genetic training method over DS1 are {0.64, 0.81, 1.0, 0.48,

and 0.56} for SimC, SimP, SimD, SimT, and SimA,

respectively, and 0.59 for clustering threshold T. The

average alignment precision and recall are converged at

about 97 percent. The learning result shows that the data

type and the presentation style are the most important

features in our alignment method. Then, we apply our

annotation method on DS1 to determine the success rate of

each annotator. Table shows the performance of our data

alignment algorithm for all 90 pages in DS2. The precision

and recall for every domain are above 95 percent, and the

average precision and recall across all domains are above 98

percent. The performance is consistent with that obtained

over the training set. The errors usually happen in the

following cases. First, some composite text nodes failed to

be split into correct data units when no explicit separators

can be identified. For example, the data units in some

composite text nodes are separated by blank spaces created

by consecutive HTML entities like “ ” or some

formatting HTML tags such as . Second, the data

units of the same attribute across different SRRs may

sometimes vary a lot in terms of appearance or layout. For

example, the promotion price information often has color or

font type different from that for the regular price

information. Note that in this case, such two price data units

have low similarity on content, presentation style, and the

tag path.

Even though they share the same data type, the overall

similarity between them would still be low. Finally, the

decorative tag detection (Step 1 of the alignment algorithm)

is not perfect (accuracy about 90 percent), which results in

some tags to be falsely detected as decorative tags, leading

to incorrect merging of the values of different attributes. We

will address these issues in the future. We also conducted

experiments to evaluate the significance of each feature on

the performance of our alignment algorithm. For this

purpose, we compare the performance when a feature is

used with that when it is not used. Each time one feature is

selected not to be used, and its weight is proportionally

distributed to other features based on the ratios of their

weights to the total weight of the used features.

The alignment process then uses the new parameters to

run on DS2. It can be seen that when any one of these

features is not used, both the precision and recall decrease,

ANNOTATOR

APPLIC

ABILIT

Y

SUCCESS

RATE

Table Annotator

6%

1.0

Query Based

Annotator

35%

0.95

Schema Value

Annotator

14%

0.5

Frequency Based

Annotator

41%

0.86

In-Text Prefix/Suffix

Annotator

7%

0.85

Common Knowledge

Annotator

25%

0.84

Gowri P, IJECS Volume 4 Issue 6 June, 2015 Page No.12544-12549 Page 12549

indicating that all the features in our approach are valid and

useful. We can also see that the data type and the

presentation style are the most important features because

when they are not used, the precision and recall drop the

most (around 28 and 23 percentage points for precision, and

31 and 25 percentage points for recall, respectively). This

result is consistent with our training result where the data

type and the presentation style have the highest feature

weights.

V. CONCLUSION

In this study, the data annotation problem and proposed

a multi-annotator approach to automatically constructing an

annotation wrapper for annotating the search result records

retrieved from any given web database. This approach

consists of six basic annotators and a probabilistic method to

combine the basic annotators. Each of these annotators

exploits one type of features for annotation and our

experimental results show that each of the annotators is

useful and they together are capable of generating high

quality annotation. A special feature of our method is that,

when annotating the results retrieved from a web database, it

utilizes both the LIS of the web database and the IIS of

multiple web databases in the same domain. We also

explained how the use of the IIS can help alleviate the local

interface schema inadequacy problem and the inconsistent

label problem. Accurate alignment is critical to achieving

holistic and accurate annotation. Our method is a clustering

based shifting method utilizing richer yet automatically

obtainable features. This method is capable of handling a

variety of relationships between HTML text nodes and data

units, including one-to-one, one-to-many, many-to-one, and

one-to-nothing. Our experimental results show that the

precision and recall of this method are both above 98

percent. There is still room for improvement in several

areas. For example, we need to enhance our method to split

composite text node when there are no explicit separators.

We would also like to try using different machine learning

techniques and using more sample pages from each training

site to obtain the feature weights so that we can identify the

best technique to the data alignment problem.

REFERENCES

[1] Yiyao Lu, Hai He, Hongkun Zhao, Weiyi Meng,

and Clement Yu, Annotating Search Results from Web

Databases,

 IEEE Transactions on Knowledge and Data

Engineering, vol. 25, no. 3, Mar. 2013.

[2] N. Krushmerick, D. Weld, and R. Doorenbos,

Wrapper Induction for Information Extraction, Proc. Int’l

Joint Conf.

 Artificial Intelligence (IJCAI), 1997.

[3] Embley, D. Campbell, Y. Jiang, S. Liddle, D.

Lonsdale, Y. Ng, and R. Smith, Conceptual-Model-Based

Data

 Extraction from Multiple-Record Web Pages, Data and

Knowledge Eng., vol. 31, no. 3, pp. 227-251, 1999.

[4] V. Crescenzi, G. Mecca, and P. Merialdo,

RoadRUNNER: Towards Automatic Data Extraction from

Large Web

 Sites, Proc. Very Large Data Bases (VLDB) Conf.,

2001.

[5] W. Liu, X. Meng, and W. Meng, ViDE: A Vision-

Based Approach for Deep Web Data Extraction, IEEE

Trans.

 Knowledge and Data Eng., vol. 22, no. 3, pp. 447-460,

Mar. 2010.

[6] J. Wang and F.H. Lochovsky, Data Extraction and

Label Assignment for Web Databases, Proc. 12th Int’l Conf.

 World Wide Web (WWW), 2003.

