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Abstract— An increasing number of databases have become web accessible through HTML form-based search interfaces. The 

data units returned from the underlying database are usually encoded into the result pages dynamically for human browsing. 

We present an automatic annotation approach that first aligns the data units on a result page into different groups such that 

the data in the same group have the same semantic. Then, for each group we annotate it from different aspects and aggregate 

the different annotations to predict a final annotation label for it. An annotation wrapper for the search site is automatically 

constructed and can be used to annotate new result pages from the same web database. 
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I. INTRODUCTION

Web database is a database application designed to be 

managed and accessed through the internet.A large portion 

of the deep web is database based, i.e., for many search 

engines, data encoded in the returned result pages come 

from the underlying structured databases. Such type of 

search engines is often referred as Web databases (WDBs). 

A typical result page returned from a WDB has multiple 

search result records (SRRs). Each SRR contains multiple 

data units each of which describes one aspect of a real-world 

entity. In this paper, a data unit is a piece of text that 

semantically represents one concept of an entity. It 

corresponds to the value of a record under an attribute. It is 

different from a text node which refers to a sequence of text 

surrounded by a pair of html tags. Text node is a sequence 

of text surrounded by pair of html tags. In this paper, we 

perform data unit level annotation. There is a high demand 

for collecting data of interest from multiple WDBs. For 

example, once a book comparison shopping system collects 

multiple result records from different book sites, it needs to 

determine whether any two SRRs refer to the same book. 

The ISBNs can be compared to achieve this.  If ISBNs are 

not available, their titles and authors could be compared. 

The system also needs to list the prices offered by each site. 

Thus, the system needs to know the semantic of each data 

unit. Unfortunately, the semantic labels of data units are 

often not provided in result pages. Having semantic labels 

for data units is not only important for the above record 

linkage task, but also for storing collected SRRs into a- 

database table (e.g., Deep web crawlers [1]) for later 

analysis. Early applications require tremendous human 

efforts to annotate data units manually, which severely limit 

their scalability. In this paper, we consider how to 

automatically assign labels to the data units within the SRRs 

returned from WDBs. Given a set of SRRs that have been 

extracted from a result page returned from a WDB, our 

automatic annotation solution consists of three phases. Let 

dj
i denote the data unit belonging to the ith SRR of concept j. 

The SRRs on a result page can be represented in a table 

format with each row representing an SRR. Phase 1 is the 

alignment phase. In this phase, we first identify all data units 

in the SRRs and then organize them into different groups 

with each group corresponding to a different concept (e.g., 

all titles are grouped together). The result of this phase with 

each column containing data units of the same concept 

across all SRRs. Grouping data units of the same semantic 

can help identify the common patterns and features among 

these data units. These common features are the basis of our 

annotators. In Phase 2 (the annotation phase), we introduce 

multiple basic annotators with each exploiting one type of 

features. Every basic annotator is used to produce a label for 

the units within their group holistically, and a probability 

model is adopted to determine the most appropriate label for 

each group. At the end of this phase, a semantic label Lj is 

assigned to each column. In Phase 3 (the annotation wrapper 

generation phase), for each identified concept, we generate 

an annotation rule Rj that describes how to extract the data 

units of this concept in the result page and what the 

appropriate semantic label should be. The rules for all 

aligned groups, collectively, form the annotation wrapper 

for the corresponding WDB, which can be used to directly 

annotate the data retrieved from the same WDB in response 

to new queries without the need to perform the alignment 

and annotation phases again. 

 

II. LITERATURE SURVEY 

In Wrapper Induction System, label the marked data at 

the same time and then the system can induce rules to 

extract the same information from same source. It has high 

extraction accuracy and suffers poor scalability. It also 

needs to extract from more web sources. In Conceptual 

Model Based Data Extraction from Multiple-Record 

WebPages, automatically extract data in multi record and 

label them. Different domains must be constructed manually 

.i.e., domain dependent. It is not fully automatics. Wrapper 

is used data extraction only not for annotation. Automatic 

Annotation of Data Extracted from Large Websites, it can 

annotate data units with the closest labels on result pages. 

But it also has limited applicability, because many web 

http://www.ijecs.in/


 

Gowri P, IJECS Volume 4 Issue 6 June, 2015 Page No.12544-12549 Page 12545 

databases don’t encode data units with their labels. Ontology 

assisted Data Extraction System, after labeling the data 

values with the same label are naturally aligned. It is 

sensitive to quality and completeness.  Vision based 

approach for deep web Data Extraction, uses visual feature 

on result pages for alignment, but its alignment is only at 

text node level. Data Extraction & Label Assignment 

(DELA) for WDBs uses html tags to align data units by 

filling them into a table through regular expressions based 

data tree algorithm. 

 

III. EXISTING SYSTEM 
In this existing system, a data unit is a piece of text that 

semantically represents one concept of an entity. It 

corresponds to the value of a record under an attribute. It is 

different from a text node which refers to a sequence of text 

surrounded by a pair of html tags. It describes the 

relationships between text nodes and data units in detail. In 

this paper, we perform data unit level annotation. There is a 

high demand for collecting data of interest from multiple 

WDBs. For example, once a book comparison shopping 

system collects multiple result records from different book 

sites, it needs to determine whether any two SRRs refer to 

the same book. 

The limitations of existing system are If ISBNs are not 

available, their titles and authors could be compared. The 

system also needs to list the prices offered by each site. 

Thus, the system needs to know the semantic of each data 

unit. Unfortunately, the semantic labels of data units are 

often not provided in result pages. For instance, no semantic 

labels for the values of title, author, publisher, etc., are 

given. Having semantic labels for data units is not only 

important for the above record linkage task, but also for 

storing collected SRRs into a database table. 

 

IV. PROPOSED SYSTEM 

In this paper, we consider how to automatically assign 

labels to the data units within the SRRs returned from 

WDBs. Given a set of SRRs that have been extracted from a 

result page returned from a WDB, our automatic annotation 

solution consists of three phases. This paper has the 

following contributions: 

1) While most existing approaches simply assign 

labels to each HTML text node, we thoroughly analyze the 

relationships between text nodes and data units. We perform 

data unit level annotation. 

2) We propose a clustering-based shifting technique to 

align data units into different groups so that the data units 

inside the same group have the same semantic. Instead of 

using only the DOM tree or other HTML tag tree structures 

of the SRRs to align the data units (like most current 

methods do), our approach also considers other important 

features shared among data units, such as their data types 

(DT), data contents (DC), presentation styles (PS), and 

adjacency (AD) information. 

3) We utilize the integrated interface schema (IIS) 

over multiple WDBs in the same domain to enhance data 

unit annotation. To the best of our knowledge, we are the 

first to utilize IIS for annotating SRRs. 

4) We employ six basic annotators; each annotator 

can independently assign labels to data units based on 

certain features of the data units. We also employ a 

probabilistic model to combine the results from different 

annotators into a single label. This model is highly flexible 

so that the existing basic annotators may be modified and 

new annotators may be added easily without affecting the 

operation of other annotators. 

5) We construct an annotation wrapper for any given 

WDB. The wrapper can be applied to efficiently annotating 

the SRRs retrieved from the same WDB with new queries. 

Our Automatic Annotation Solution consists of three 

phases they are Alignment Phase, Annotation Phase, 

Annotation Wrapper Generation Phase .the main 

improvements is relationship between text nodes and data 

units are defined and it can explain the alignment algorithm 

and cluster shifting algorithm. 

 

 
 

Fig. 1  Block diagram of Unit-level Web databases searching 

 

A. Alignment Phase 

In the alignment phase we have data alignment. The 

purpose of data alignment is to put the data units of the same 

concept into one group so that they can be annotated 

holistically. Whether two data units belong to the same 

concept is determined by how similar they are based on the 

features described. In this paper, the similarity between two 

data units (or two text nodes) d1 and d2 is a weighted sum of 

the similarities of the five features between them.  

1) Data content similarity (SimC): It is the Cosine 

similarity [2] between the term frequency vectors of d1 and 

d2. 

2) Presentation style similarity (SimP): It is the average 

of the style feature scores (FS) over all six presentation style 

features (F) between d1 and d2. 

3) Data type similarity (SimD): It is determined by the 

common sequence of the component data types between two 

data units. The longest common sequence (LCS) cannot be 

longer than the number of component data types in these 

two data units. Thus, let t1 and t2 be the sequences of the 

data types of d1 and d2, respectively, and TLen (t) represent 

the number of component types of data type t, the data type 

similarity between data units’ d1 and d2. 
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4) Tag path similarity (SimT): This is the edit distance 

(EDT) between the tag paths of two data units. The edit 

distance here refers to the number of insertions and deletions 

of tags needed to transform one tag path into the other. It 

can be seen that the maximum number of possible 

operations needed is the total number of tags in the two tag 

paths. Let p1 and p2 be the tag paths of d1 and d2, 

respectively, and PLen (p) denote the number of tags in tag 

path p, the tag path similarity between d1 and d2. 

5) Adjacency similarity (SimA): The adjacency 

similarity between two data units d1 and d2 is the average of 

the similarity between dp
1 and dp

2 and the similarity between 

ds
1 and ds

2. 

Our alignment algorithm also needs the similarity 

between two data unit groups where each group is a 

collection of data units. We define the similarity between 

groups G1 and G2 to be the average of the similarities 

between every data unit in G1 and every data unit in G2. Our 

data alignment algorithm is based on the assumption that 

attributes appear in the same order across all SRRs on the 

same result page, although the SRRs may contain different 

sets of attributes (due to missing values). This is true in 

general because the SRRs from the same WDB are normally 

generated by the same template program. 

Our data alignment method consists of the following 

four steps. The detail of each step will be provided below. 

Step 1: Merge text nodes. This step detects and removes 

decorative tags from each SRR to allow the text nodes 

corresponding to the same attribute (separated by decorative 

tags) to be merged into a single text node. 

Step 2: Align text nodes. This step aligns text nodes into 

groups so that eventually each group contains the text nodes 

with the same concept (for atomic nodes) or the same set of 

concepts (for composite nodes). 

Step 3: Split (composite) text nodes. This step aims to split 

the “values” in composite text nodes into individual data 

units. This step is carried out based on the text nodes in the 

same group holistically. A group whose “values” need to be 

split is called a composite group. 

Step 4: Align data units. This step is to separate each 

composite group into multiple aligned groups with each 

containing the data units of the same concept. 

 

B. Annotation Phase 

1) Local versus Integrated Interface Schemas: For a 

WDB, its search interface often contains some attributes of 

the underlying data. We denote a LIS as Si = {A1; A2; . . .; 

Ak}, where each Aj is an attribute. When a query is 

submitted against the search interface, the entities in the 

returned results also have a certain hidden schema, denoted 

as       Se = {a1; a2; . . . ; an}, where each aj (j= 1 . . . n) is an 

attribute to be discovered. The schema of the retrieved data 

and the LIS usually share a significant number of attributes. 

This observation provides the basis for some of our basic 

annotators. If an attribute at in the search results has a 

matched attribute At in the LIS, all the data units identified 

with at can be labeled by the name of At. However, it is 

quite often that Se is not entirely contained in Si because 

some attributes of the underlying database are not suitable or 

needed for specifying query conditions as determined by the 

developer of the WDB, and these attributes would not be 

included in Si. This phenomenon raises a problem called 

local interface schema inadequacy problem. Specifically, it 

is possible that a hidden attribute discovered in the search 

result schema Se does not have a matching attribute At in 

the LIS Si. In this case, there will be no label in the search 

interface that can be assigned to the discovered data units of 

this attribute. Another potential problem associated with 

using LISs for annotation is the inconsistent label problem, 

i.e., different labels are assigned to semantically identical 

data units returned from different WDBs because different 

LISs may give different names to the same attribute. This 

can cause problem when using the annotated data collected 

from different WDBs, e.g., for data integration applications. 

For each WDB in a given domain, our annotation method 

uses both the LIS of the WDB and the IIS of the domain to 

annotate the retrieved data from this WDB. Using IISs has 

two major advantages. First, it has the potential to increase 

the annotation recall. Since the IIS contains the attributes in 

all the LISs, it has a better chance that an attribute 

discovered from the returned results has a matching attribute 

in the IIS even though it has no matching attribute in the 

LIS. Second, when an annotator discovers a label for a 

group of data units, the label will be replaced by its 

corresponding global attribute name (if any) in the IIS by 

looking up the attribute-mapping table so that the data units 

of the same concept across different WDBs will have the 

same label. We should point out that even though using the 

IIS can significantly alleviate both the local interface 

schema inadequacy problem and the inconsistent label 

problem, it cannot solve them completely. For the first 

problem, it is still possible that some attributes of the 

underlying entities do not appear in any local interface, and 

as a result, such attributes will not appear in the IIS. As to 

the second problem if one or more of these annotations are 

not local attribute names in the attribute mapping table for 

this domain, then using the IIS cannot solve the problem and 

new techniques are needed. 

 

2) Basic Annotator: 

1. Table Annotator (TA): Many WDBs use a table to 

organize the returned   SRRs. In the table, each row 

represents an SRR. The table header, which indicates the 

meaning of each column, is usually located at the top of the 

table. Shows an example of SRRs presented in a table 

format. Usually, the data units of the same concepts are well 

aligned with its corresponding column header. This special 

feature of the table layout can be utilized to annotate the 

SRRs. Since the physical position information of each data 

unit is obtained during SRR extraction, we can utilize the 

information to associate each data unit with its 

corresponding header. Our Table Annotator works as 

follows: First, it identifies all the column headers of the 

table. Second, for each SRR, it takes a data unit in a cell and 

selects the column header whose area (determined by 

coordinates) has the maximum vertical overlap (i.e., based 

on the x-axis) with the cell. This unit is then assigned with 

this column header and labelled by the header text A 

(actually by its corresponding global name gn(A) if gn(A) 

exists). The remaining data units are processed similarly. In 

case that the table header is not provided or is not 

successfully extracted by ViNTs [3], the Table Annotator 

will not be applied. 

 

2. Query-Based Annotator (QA): The basic idea of this 

annotator is that the returned SRRs from a WDB are always 
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related to the specified query. Specifically, the query terms 

entered in the search attributes on the local search interface 

of the WDB will most likely appear in some retrieved SRRs. 

A query term “machine” is submitted through the Title field 

on the search interface of the WDB and all three titles of the 

returned SRRs contain this query term. Thus, we can use the 

name of search field Title to annotate the title values of 

these SRRs. In general, query terms against an attribute may 

be entered to a textbox or Chosen from a selection list on the 

local search interface. Our Query-based Annotator works as 

follows: Given a query with a set of query terms submitted 

against an attribute A on the local search interface, first find 

the group that has the largest total occurrences of these 

query terms and then assign gn(A) as the label to the group. 

 

3. Schema Value Annotator (SA): Many attributes on a 

search interface have predefined values on the interface. For 

example, the attribute Publishers may have a set of 

predefined values (i.e., publishers) in its selection list. More 

attributes in the IIS tend to have predefined values and these 

attributes are likely to have more such values than those in 

LISs, because when attributes from multiple interfaces are 

integrated, their values are also combined [4]. Our schema 

value annotator utilizes the combined value set to perform 

annotation. Given a group of data units Gi= {d1; . . ; dn} the 

schema value annotator is to discover the best matched 

attribute to the group from the IIS. Let Aj be an attribute 

containing a list of values {v1; . . . ; vm } in the IIS. For each 

data unit dk, this annotator first computes the Cosine 

similarities between dk and all values in Aj to find the value 

(say vt) with the highest similarity. Then, the data fusion 

function CombMNZ [5] is applied to the similarities for all 

the data units. More specifically, the annotator sums up the 

similarities and multiplies the sum by the number of nonzero 

similarities. This final value is treated as the matching score 

between Gi and Aj. The schema value annotator first 

identifies the attribute Aj that has the highest matching score 

among all attributes and then uses gn(Aj) to annotate the 

group Gi. Note that multiplying the above sum by the 

number of nonzero similarities is to give preference to 

attributes that have more matches (i.e., having nonzero 

similarities) over those that have fewer matches. This is 

found to be very effective in improving the retrieval 

effectiveness of combination systems in information 

retrieval. 

 

4. Frequency-Based Annotator (FA): In Frequency Based 

Annotator, consider one example “Our Price” appears in the 

three records and the followed price values are all different 

in these records. In other words, the adjacent units have 

different occurrence frequencies. As argued in [1], the data 

units with the higher frequency are likely to be attribute 

names, as part of the template program for generating 

records, while the data units with the lower frequency most 

probably come from databases as embedded values. 

Following this argument, “Our Price” can be recognized as 

the label of the value immediately following it. The 

phenomenon described in this example is widely observable 

on result pages returned by many WDBs and our frequency-

based annotator is designed to exploit this phenomenon. 

Consider a group Gi whose data units have a lower 

frequency. The frequency-based annotator intends to find 

common preceding units shared by all the data units of the 

group Gi. This can be easily conducted by following their 

preceding chains recursively until the encountered data units 

are different. All found preceding units are concatenated to 

form the label for the group Gi. 

 

5. In-Text Prefix/Suffix Annotator (IA): In some cases, a 

piece of data is encoded with its label to form a single unit 

without any obvious separator between the label and the 

value, but it contains both the label and the value. Such 

nodes may occur in all or multiple SRRs. After data 

alignment, all such nodes would be aligned together to form 

a group. For example, after alignment, one group may 

contain three data units, {“You Save $9.50,” “You Save 

$11.04,” “You Save $4.45”}. The in-text prefix/suffix 

annotator checks whether all data units in the aligned group 

share the same prefix or suffix. If the same prefix is 

confirmed and it is not a delimiter, then it is removed from 

all the data units in the group and is used as the label to 

annotate values following it. If the same suffix is identified 

and if the number of data units having the same suffix match 

the number of data units inside the next group, the suffix is 

used to annotate the data units inside the next group. In the 

above example, the label “You save” will be assigned to the 

group of prices. Any group whose data unit texts are 

completely identical is not considered by this annotator. 

 

6. Common Knowledge Annotator (CA): Some data units on 

the result page are self-explanatory because of the common 

knowledge shared by human beings. For example, “in stock” 

and “out of stock” occur in many SRRs from e-commerce 

sites. Human users understand that it is about the availability 

of the product because this is common knowledge. So our 

common knowledge annotator tries to exploit this situation 

by using some predefined common concepts. Each common 

concept contains a label and a set of patterns or values. For 

example, a country concept has a label “country” and a set 

of values such as “U.S.A.,” “Canada,” and so on. As another 

example, the e-mail address (assume all lower cases) 

concept has the pattern {a-z 0-9.-%+- ]+ @([a-z0 - 9- ] +\.)+ 

[a-z]{2, 4}. Given a group of data units from the alignment 

step, if all the data units match the pattern or value of a 

concept, the label of this concept is assigned to the data units 

of this group. DeLa [6] also uses some conventions to 

annotate data units. However, it only considers certain 

patterns. Our Common knowledge annotator considers both 

patterns and certain value sets such as the set of countries. It 

should be pointed out that our common concepts are 

different from the ontologies that are widely used in some 

works in Semantic Web. First, our common concepts are 

domain independent. Second, they can be obtained from 

existing information resources with little additional human 

effort. 

TABLE I 

Applicability and Success Rates of Annotators 
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3) Combining Annotator: Our analysis indicates that no 

single annotator is capable of fully labelling all the data 

units on different result pages. The applicability of an 

annotator is the percentage of the attributes to which the 

annotator can be applied. For example, if out of 10 

attributes, four appear in tables, then the applicability of the 

table annotator is 40 percent. Table shows the average 

applicability of each basic annotator across all testing 

domains in our data set. This indicates that the results of 

different basic annotators should be combined in order to 

annotate a higher percentage of data units. Moreover, 

different annotators may produce different labels for a given 

group of data units. Therefore, we need a method to select 

the most suitable one for the group. To obtain the success 

rate of an annotator, we use the annotator to annotate every 

result page in a training data set. The training result is listed 

in Table. It can be seen that the table annotator is 100 

percent correct when applicable. The query-based annotator 

also has very high success rate while the schema value 

annotator is the least accurate. An important issue DeLa did 

not address is what if multiple heuristics can be applied to a 

data unit. In our solution, if multiple labels are predicted for 

a group of data units by different annotators, we compute 

the combined probability for each label based on the 

annotators that identified the label, and select the label with 

the largest combined probability. One advantage of this 

model is its high flexibility in the sense that when an 

existing annotator is modified or a new annotator is added 

in, all we need is to obtain the applicability and success rate 

of this new/revised annotator while keeping all remaining 

annotators unchanged. We also note that no domain-specific 

training is needed to obtain the applicability and success rate 

of each annotator. 

 

C. Annotation Wrapper Generation Phase 

Each annotator group of data units corresponds to an 

attribute in the SRRs. Annotation Wrapper is a description 

of the annotation rules for all attributes on the result page. 

To use the wrapper to annotate a new result page for each 

data unit in an SRR, the annotation rules are applied on it. 

Once the data units on a result page have been annotated, we 

use these annotated data units to construct an annotation 

wrapper for the WDB so that the new SRRs retrieved from 

the same WDB can be annotated using this wrapper quickly 

without reapplying the entire annotation process. We now 

describe our method for constructing such a wrapper below. 

Each annotated group of data units corresponds to an 

attribute in the SRRs. The annotation wrapper is a 

description of the annotation rules for all the attributes on 

the result page. After the data unit groups are annotated, 

they are organized based on the order of its data units in the 

original SRRs. To use the wrapper to annotate a new result 

page, for each data unit in an SRR, the annotation rules are 

applied on it one by one based on the order they appear in 

the wrapper. If this data unit has the same prefix and suffix 

as specified in the rule, the rule is matched and the unit is 

labelled with the given label in the rule. If the separators are 

specified, they are used to split the unit, and labeli is 

assigned to the unit at the position unitindexi. 

 

IV. RESULTS 

The optimal feature weights obtained through our 

genetic training method over DS1 are {0.64, 0.81, 1.0, 0.48, 

and 0.56} for SimC, SimP, SimD, SimT, and SimA, 

respectively, and 0.59 for clustering threshold T. The 

average alignment precision and recall are converged at 

about 97 percent. The learning result shows that the data 

type and the presentation style are the most important 

features in our alignment method. Then, we apply our 

annotation method on DS1 to determine the success rate of 

each annotator. Table shows the performance of our data 

alignment algorithm for all 90 pages in DS2. The precision 

and recall for every domain are above 95 percent, and the 

average precision and recall across all domains are above 98 

percent. The performance is consistent with that obtained 

over the training set. The errors usually happen in the 

following cases. First, some composite text nodes failed to 

be split into correct data units when no explicit separators 

can be identified. For example, the data units in some 

composite text nodes are separated by blank spaces created 

by consecutive HTML entities like “&nbsp;” or some 

formatting HTML tags such as <SPAN>. Second, the data 

units of the same attribute across different SRRs may 

sometimes vary a lot in terms of appearance or layout. For 

example, the promotion price information often has color or 

font type different from that for the regular price 

information. Note that in this case, such two price data units 

have low similarity on content, presentation style, and the 

tag path. 

Even though they share the same data type, the overall 

similarity between them would still be low. Finally, the 

decorative tag detection (Step 1 of the alignment algorithm) 

is not perfect (accuracy about 90 percent), which results in 

some tags to be falsely detected as decorative tags, leading 

to incorrect merging of the values of different attributes. We 

will address these issues in the future. We also conducted 

experiments to evaluate the significance of each feature on 

the performance of our alignment algorithm. For this 

purpose, we compare the performance when a feature is 

used with that when it is not used. Each time one feature is 

selected not to be used, and its weight is proportionally 

distributed to other features based on the ratios of their 

weights to the total weight of the used features. 

The alignment process then uses the new parameters to 

run on DS2. It can be seen that when any one of these 

features is not used, both the precision and recall decrease, 

 

ANNOTATOR 

 

APPLIC

ABILIT

Y 

 

SUCCESS 

RATE 

 

Table Annotator 

 

6% 

 

1.0 

 

Query Based 

Annotator 

 

35% 

 

0.95 

 

Schema Value 

Annotator 

 

14% 

 

0.5 

 

Frequency Based 

Annotator 

 

41% 

 

0.86 

 

In-Text Prefix/Suffix 

Annotator 

 

7% 

 

0.85 

 

Common Knowledge 

Annotator 

 

25% 

 

0.84 
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indicating that all the features in our approach are valid and 

useful. We can also see that the data type and the 

presentation style are the most important features because 

when they are not used, the precision and recall drop the 

most (around 28 and 23 percentage points for precision, and 

31 and 25 percentage points for recall, respectively). This 

result is consistent with our training result where the data 

type and the presentation style have the highest feature 

weights. 

 

V. CONCLUSION 

In this study, the data annotation problem and proposed 

a multi-annotator approach to automatically constructing an 

annotation wrapper for annotating the search result records 

retrieved from any given web database. This approach 

consists of six basic annotators and a probabilistic method to 

combine the basic annotators. Each of these annotators 

exploits one type of features for annotation and our 

experimental results show that each of the annotators is 

useful and they together are capable of generating high 

quality annotation. A special feature of our method is that, 

when annotating the results retrieved from a web database, it 

utilizes both the LIS of the web database and the IIS of 

multiple web databases in the same domain. We also 

explained how the use of the IIS can help alleviate the local 

interface schema inadequacy problem and the inconsistent 

label problem. Accurate alignment is critical to achieving 

holistic and accurate annotation. Our method is a clustering 

based shifting method utilizing richer yet automatically 

obtainable features. This method is capable of handling a 

variety of relationships between HTML text nodes and data 

units, including one-to-one, one-to-many, many-to-one, and 

one-to-nothing. Our experimental results show that the 

precision and recall of this method are both above 98 

percent. There is still room for improvement in several 

areas. For example, we need to enhance our method to split 

composite text node when there are no explicit separators. 

We would also like to try using different machine learning 

techniques and using more sample pages from each training 

site to obtain the feature weights so that we can identify the 

best technique to the data alignment problem. 
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