
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 7 July 2015, Page No. 13403-13410

Chembeti silpa, IJECS Volume 4 Issue 7 July, 2015 Page No.13403-13410 Page 13403

An Efficient FPGA Implementation Of Multifunction Residue

Architectures

Chembeti silpa, G.Mukesh,, M.Tech
Department of Electronics and communication Engineering

Audisankara College of Engineering & Technology, gudur
(Autonomous)

Abstract—A design methodology for incorporating Residue Number System (RNS) and Polynomial Residue Number System

(PRNS) in Montgomery modular multiplication in GF(p) or GF(2n) respectively, as well as a VLSI architecture of a dual-field

residue arithmetic Montgomery multiplier are presented in this paper. An analysis of input/output conversions to/from residue

representation, along with the proposed residue Montgomery multiplication algorithm, reveals common multiply-accumulate data

paths both between the converters and between the two residue representations. A versatile architecture is derived that supports all

operations of Montgomery multiplication in GF(p) and GF(2n), input/output conversions, Mixed Radix Conversion (MRC) for

integers and polynomials, dual-field modular exponentiation and inversion in the same hardware. Detailed comparisons with state-

of-the-art implementations prove the potential of residue arithmetic exploitation in dual-field modular multiplication.

Index Terms—Computations in finite fields, computer

arithmetic, Montgomery multiplication, parallel arithmetic

and logic

structures

I. INTRODUCTION

A significant number of applications including cryptography,

error correction coding, computer algebra, DSP, etc., rely on

the efficient realization of arithmetic over finite fields of the

form GF(2n), where n € Z and n ≥ 1 or the form GF(p) where

p a prime. Cryptographic applications form a special case,

since, for security reasons, they require large integer operands

[1]–[5].

 Efficient field multiplication with large operands is

crucial for achieving a satisfying cryptosystem performance,

since multiplication is the most time- and area-consuming

operation. Therefore, there is a need for increasing the speed

of cryptosystems employing modular arithmetic with the least

possible area penalty. An obvious approach to achieve this

would be through Parallelization of their operations. In recent

years, RNS and PRNS have enjoyed renewed scientific

interest due to their ability to perform fast and parallel

modular arithmetic [6]–[13]. Using RNS/PRNS, a given path

serving a large data range is replaced by parallel paths of

smaller dynamic ranges, with no need for exchanging

information between paths. As a result, the use of residue

systems can offer reduced complexity and power consumption

of arithmetic units with large word lengths [14].On the other

hand, RNS/PRNS implementations bear the extra cost of input

converters to translate numbers from a standard binary format

into residues and output converters to translate from

RNS/PRNS to binary representations [14].

 A new methodology for embedding residue arithmetic in

a dual-field Montgomery modular multiplication algorithm for

integers in GF(p) and for polynomials in is presented in

GF(2n) this paper. The mathematical conditions that need to

be satisfied for a valid RNS/PRNS incorporation are

examined. The derived architecture is highly parallelizable and

versatile, as it supports binary-to-RNS/PRNS and RNS/PRNS-

to-binary conversions, Mixed Radix Conversion (MRC) for

integers and polynomials, dual-field Montgomery

multiplication, and dual-field modular exponentiation and

inversion in the same hardware.

 The rest of the paper is organized as follows. A brief

overview of related previous work is offered in Section II,

while the main concepts of RNS and PRNS are summarized in

Section III. In Section IV, basic finite-field arithmetic

concepts are provided and the operation of field multiplication

is defined. Following GF(2n) and GF(p) Montgomery

multiplication algorithms are presented. In Section VI, the

proposed RNS/PRNS Montgomery multiplication algorithm is

analyzed. The mathematical conditions that allow a valid

incorporation of residue arithmetic in the Montgomery

algorithm are also presented. In section VI, a detailed

overview of the proposed dual-field Montgomery multiplier

architecture is provided. Section VII provides time and area

complexity measurements, as well as comparisons with other

state-of-the-art implementations. Conclusions are offered in

Section VIII.

II. PREVIOUS WORK

Important progress has been reported lately regarding GF(2n)

implementations. The Massey-Omura algorithm the

introduction of optimal normal bases and their software and

hardware implementations the Montgomery algorithm for

multiplication in GF(2n) as well as PRNS application in

GF(2n) multiplication, are, among others, important advances

[9], [10], [12], PRNS incorporation in field multiplication, as

proposed in [9], is based on a straightforward implementation

of the Chinese Remainder Theorem (CRT) for polynomials

which requires large storage resources and many pre-

computations. The multipliers proposed in [10], [20], perform

multiplication in PRNS, but the result is converted back to

http://www.ijecs.in/

Chembeti silpa, IJECS Volume 4 Issue 7 July, 2015 Page No.13403-13410 Page 13404

polynomial representation. This limitation makes them

inappropriate for cryptographic algorithms which require

consecutive multiplications. Finally, an algorithm which

employs trinomials for the modulus set and performs PRNS

Montgomery multiplication has been proposed [12]. However,

there is no reference to conversion methods and the use of

trinomials may issue limitations in the PRNS data range.

 GF(p) implementations have also withstood great analysis,

with the Montgomery algorithm being used in the majority of

them. Montgomery multiplication designs fall into two

categories. The first includes fixed-precision input operand

implementations, in which the multiplicand and modulus are

processed in full word length, while the multiplier is handled

bit-by-bit. These designs are optimized for certain word

lengths and do not scales efficiently for departures from these

word lengths. Their performance has been improved by high-

radix algorithms and architectures.

 The second category includes scalable architectures for

variable word-length operands, based on algorithms, in which

the multiplicand and modulus are processed word by word,

while the multiplier is consumed bit by bit.

 Montgomery’s algorithm has also become a predicate for

dual-field implementations. The Montgomery architectures

perform well for RSA key word lengths, by processing word-

size data, since RSA key sizes (512, 1024, 2048, etc.) are

always multiples of word size. However, in ECC, key sizes are

not integer multiples of word size, meaning that, if these

architectures were to be used in ECC, they would require more

clock cycles for their execution and thus more power

consumption. An architecture configured at bit-level

overcomes this problem

 Finally, methods for embedding RNS in Montgomery

multiplication have also been proposed [6], [7], [13]. Detailed

analysis and comparisons with such works are offered in

Section VII.

III. RESIDUE ARITHMETIC

A. Residue Number System

RNS consists of a set of L, pair-wise relatively prime integers

A= (m1,m2,..,.mL) (called the base) and the range of the RNS is

computed as A=𝜋𝑖=1
𝐿 mi. Any integer z € [0, A-1] has a unique

RNS representation zA given by zA= (z1,z2,..zL) = ((z)m1 ,(z)m2

,… (z)mL), where (z)mi denotes the operation z mod mi. Assuming

two integers a,b in RNS format, i.e., aA= (a1,a2,…,aL) and bA =

(b1, b2,…bL) then one can perform the operations € (+, -, *) in

parallel by aA bA= ((a1 b1)m1 , (a2 b2)m1 , ,(aL
bL)mL ,

 To reconstruct the integer from its residues, two methods

may be employed [14]. The first is through the CRT according

to z=∑ (zi
𝑛

𝑘=0
 Ai

−1)mi . Ai – γA where Ai=A/mi, 𝐴𝑖
−1 is the

inverse of Ai modulo mi and γ is an integer correction factor.

 The second method is through the MRC. The MRC of an

integer with an RNS representation zA= (z1,z2,..zL) is given by

z = U1 + W2 U2 + …. + WL UL where Wi = 𝜋𝑗=1
𝑖−1mj , for all i €

[2,L] and the Ui s are computed according to

U1 = z1

U2 = (z2 – z1) m2

U3 = (z3 – z1 – W2 U2) m3

….

…..

UL= (zL – z1 - W2 U2 - W3 U3- …-WL-1UL-1)mL providing that

the predetermined factors V1≡ 1 and Vi = ((𝜋𝑗=1
𝑖−1mj , for all i €

[2,L] are all unity . Of the two methods, the proposed

architecture uses the MRC, as it avoids the problem of

evaluating

the correction factor of (2).

B. Polynomial Residue Number System

Similar to RNS, a PRNS is defined through a set of L, pair-

wise relatively prime polynomials A=(m1(x), m2(x), … mL(x)

). We denote by A(x) = 𝜋𝑖=1
𝐿 mi(x) the dynamic range of the

PRNS. In PRNS, every polynomial z(x) € GF(2n) , with deg{

z(x) } < deg { A(x) }, has a unique PRNS representation: zA =

(z1,z2,…zL) such as zi = z(x) mod mi(x) , i € [1,L], denoted as

(z)mi. In the rest of the paper, the notation “(x)” to denote

polynomials shall be omitted, for simplicity. The notation will

be used interchangeably to denote either an integer or a

polynomial z(x), according to context.

 Assuming the PRNS representation aA= (a1,a2,…aL) and

bA= (b1,b2,…bL) of two polynomials a,b € GF(2n), then all

operations € (+, - , *), can be performed in parallel, as aA bA=

((a1 b1)m1 , (a2 b2)m1 , …,(aL bL)mL , Conversion from

PRNS to weighted polynomial representation is identical to

the MRC for integers. The only difference is that, the

subtractions in (4) are substituted by polynomial additions.

IV. MONTGOMERY MULTIPLICATION

A. GF(p) Arithmetic

Field elements in GF(p) are integers in [0,p-1] and

arithmetic is performed modulo. Montgomery’s algorithm for

modular multiplication without division [43] is presented

below, as Algorithm 1, in five steps, where R is the

Montgomery radix, gcd(R,p) = 1,and p<R. R must be chosen

so that steps 2 and 5 are efficiently computed.

It is usually chosen to be a power of 2, when radix-2

representation is employed. Since Montgomery’s method was

originally devised to avoid divisions, it is well-suited to RNS

implementations, considering that RNS division is inefficient

to perform.

B. GF(2n) Arithmetic

 Field elements in GF(2n) are polynomials represented as

binary vectors of dimension , relative to a given polynomial

basis (1, α , α2 , …αn-1), where α is a root of an irreducible

polynomial of degree over GF(2). The field is then realized as

GF(2)[x]/(p) and the arithmetic is that of polynomials of

degree at most n-1, modulo p[1].

 The addition of two polynomials a and b in GF (2n) is

performed by adding the polynomials, with their coefficients

added in GF(2) i.e., modulo 2. This is equivalent to a bit-wise

XOR operation on the vectors. The product of two elements a

Chembeti silpa, IJECS Volume 4 Issue 7 July, 2015 Page No.13403-13410 Page 13405

and b in GF(2n) is obtained by computing c = a . b mod p

where is a polynomial of degree atmost n-1 and c € GF (2n). A

Montgomery multiplication algorithm suitable for polynomials

in GF (2n) has been proposed [19]. Instead of computing the

product c = a . b mod p , the algorithm computes c = a.b.R-

1mod p, with deg{ c(x) < n} and R is a special fixed element in

GF (2n). The selection of R(x) = xn is the most appropriate,

since modular reduction and division by xn are simple shifts

[3]. The algorithm is identical to Algorithm 1, except from the

constant –p-1 in step 2, which is p-1 in GF (2n).

V. A NEW METHODOLOGY FOR EMBEDDING

RESIDUE ARITHMETIC IN MONTGOMERY

MULTIPLICATION

A. Embedding RNS in GF(p) Montgomery

Multiplication

An MRC-based algorithm [44] that avoids the evaluation of

the γ factor of (2) forms the basis of the proposed RNS-based

Montgomery multiplication algorithm. The derived algorithm

is briefly presented here as Algorithm 2, and extended for the

case of GF (2n) .

 Two RNS bases are introduced, namely A= (p1, p2, …, pL)

and B= (q1,q2,..qL), such that gcd(pi,qj) = 1, for all i, j € [1,L].

The 5 steps of the Montgomery algorithm are translated to

RNS computations in both bases, denoted from now on as Ί =

A U B.

 Initially, the inputs are expressed in RNS

representation in both bases as aΊ and bΊ. Steps 1, 3, and 4 of

Algorithm 1, involve addition and multiplication operations,

thus their transformation to RNS is straightforward. For steps

2 and 5, the Montgomery radix is replaced by Q = 𝜋𝑖=1
𝐿 qi,

which is the range of B .We also denote as P = 𝜋𝑖=1
𝐿 pi the

range of base A. Then, in the second step, in RNS format is

computed in base B by tB = sB.B-1. Nevertheless, the

computations in base cannot be continued for steps 3, 4, and 5

of Algorithm 1, since in step 5 we would need to compute a

quantity of the form Q-1 mod qi, which does not exist since qi s

are factors of Q. Thus, a base conversion (BC) step, from base

to base , is inserted, to compute tA.tA is then used to execute

the old steps 3, 4, and 5 in base .The result at the end of this

algorithm is a quantity cΊ in RNS format that equals c ≡ abQ-1

mod p, since BC is error-free.

In Algorithm 2, inputs and output are all less than 2p, so that

they are compatible with each other. This allows the

construction of a modular exponentiation algorithm by

repetition of the RNS Montgomery multiplication. Base

conversion in step 7 is utilized for the same reason. Algorithm

3 depicts the proposed base conversion process that converts

an integer ζ expressed in RNS base B as ζB to the RNS

representation of another base A. In contrast to other RNS

Montgomery multiplication algorithms which also employ

MRC the proposed one implements a simplified version of the

MRC in (3) and (4) which, as will be shown in next sections,

not only reduces the total complexity of the algorithm but also

offers better opportunities for parallelization of operations.

Dual-field circuitry is also not offered by the works in.

Algorithm 3 implements (4) in steps 1–8 to obtain the mixed-

radix digits Ui of ζ. In steps 9, (3) is realized, while the whole

summation is computed modulo each modulus pi of the new

base A. The two base conversions in the RMM algorithm are

error-free, contrasted to other algorithms that employ CRT and

utilize approximation methods to compute the correction

factor γ of (2) [6], [7] . Conditions gcd(Q,p)=1 and

gcd(P,Q)=1 are sufficient for the existence of (−𝑝𝐵
−1) and 𝑄𝐴

−1,

respectively. As it holds that

c =
𝑣

𝑄
 =

𝑎𝑏+𝑡𝑝

𝑄
 <

(2p)2

𝑄
 +

𝑄𝑝

𝑄
 = (

4𝑝

𝑄
 + 1) p ≤ 2p it follows that 4p ≤

Q is sufficient for c < 2p to hold when a, b < 2p. Finally (8)

also shows that 2p ≤ P is sufficient for c < Q and v < PQ.

Since v is the maximum intermediate value, all values are less

than PQ[6].

B. Embedding PRNS in GF(2n) Montgomery

Multiplication

 A modification of the Montgomery algorithm for

multiplication in GF(2n) that encompasses PRNS is proposed

next. The proposed algorithm employs general polynomials of

any degree, and is an extension of an algorithm [12], which

employs trinomials for the PRNS modulus set. Additionally,

the proposed algorithm addresses the problem of converting

data to/from PRNS representation. In contrast to a similar

algorithm in which employed CRT for polynomials for the

BC algorithm, the proposed architecture employs MRC. This

allows for dual-field RNS/PRNS implementation, which is not

supported in [45], and a new methodology to implement RNS-

to-binary conversion as will be shown in Section V-D.

 The proposed algorithm for GF(2n) PRNS Montgomery

multiplication (PRMM) is presented below as Algorithm 3.

The only difference is that integer additions/subtractions and

multiplications are replaced by polynomial ones. Again, the

degree of input and output polynomials are both less than n,

which allows the construction of a modular exponentiation

algorithm by repetition of the PRMM. Base conversion is

employed for the same reason.

1) Proof of PRMM Algorithm’s Validity:

Theorem 1: If (1) gcd {p,Q}=1, (2) gcd{Q,p}=1, (3) deg{P} >

n, then Algorithm 4 outputs cΊ , for which c = abQ-1mod p and

degree { c } < n.

 Proof: Since gcd {p,Q}=1 and gcd {Q,P}=1,p is relatively

prime to Q and Q is relatively prime to P. Thus, the quantities

(p-1)qi and (Q-1)pi exist for all € [1,L], and therefore pB
-1and

QA
-1 exist.

 Assume that the polynomial v is a multiple of Q , i.e., v

mod Q = 0. Then, s + t . p = 0 mod Q, which means that t = s

. p-1 mod Q. This corresponds to step 2 of the PRMM

algorithm,

which means that step 6 is error-free since base conversion in

step 3 is error-free, therefore PRMM holds.

 Furthermore, it must be proved that the resulting

polynomial c of Algorithm 4 is a polynomial of degree less

than n . It holds that

deg { c } ≤ deg {
𝑣

𝑄
 } ═>

Chembeti silpa, IJECS Volume 4 Issue 7 July, 2015 Page No.13403-13410 Page 13406

deg { c } ≤ deg {
𝑎𝑏+𝑡𝑝

𝑄
} ═>

deg { c } ≤ deg {ab + tp} – deg { Q } ═>

deg{ c } ≤ max{deg {ab},deg {tp}} – deg{Q}═>

deg { c } ≤ deg{tp} – deg{Q} ═>

deg { c } ≤ deg{ Q } – 1 +n – deg { Q } ═>

deg { c } ≤ n – 1 (9)

 Since v is the maximum intermediate value of

Algorithm 4, its degree must be less than the degree of the

polynomial PQ. Under this assumption, we get

deg { v } < deg{ PQ } ═>

deg{ cQ } < deg{ PQ } ═>

deg{ c } + deg{ Q } < deg{ P } + deg{ Q } ═>

deg{ c } < deg{ P } (10)

From (9) and (10) we have

deg { c } < n

deg { c } < deg { P } , both ═> deg { P} > n (11)

Finally, note that (10) is independent of deg {Q}, thus

selecting deg{ Q } > n is sufficient.

 C. Conversions

In the following discussion, base A =(p1, p2, …..pL,) shall n be

used as an example to analyze the conversions to/from residue

representations, without loss of generality.

1) Binary-to-Residue Conversion: A radix- 2r representation

of an integer z as an L-tuple (Z(L-1),….., Z(0)) satisfies

𝒛 = ∑ 𝒛(𝒊)𝟐𝒓𝒊 = (𝟐𝒓(𝑳−𝟏), … . , 𝟐𝒓, 𝟏)

[

𝒛(𝑳−𝟏)

.

.
𝒛(𝟏)

𝒛(𝟎)]

 (𝟏𝟒)

𝑳−𝟏

𝒊=𝟎

where,0≤z(i) ≤ 2r -1 . A method to compute zA must be devised,

that matches the proposed DRAMM’s multiply-accumulate

structure. By applying the modulo pj operation in (14) we

obtain

〈𝒛〉𝒑𝒋 = 〈∑ 𝒛(𝒊)〈𝟐𝒓𝒊〉𝒑𝒋𝑳−𝟏
𝒊=𝟎 〉𝒑𝒋, ∀𝒋 ∈ [𝟏, 𝑳] (𝟏𝟓)

If constants 〈2𝑟𝑖〉𝑝𝑗 are pre-computed, this computation is well

suited to the proposed MAC structure and can be computed in

L steps, when executed by units in parallel. Similar to the

integer case, a polynomial z(x) Є GF(2n) can be written as

𝒛 = ∑ 𝒛(𝒊)𝒙𝒓𝒊 = (𝒙𝒓(𝑳−𝟏), … . , 𝒙𝒓, 𝟏)

[

𝒛(𝑳−𝟏)

.

.
𝒛(𝟏)

𝒛(𝟎)]

 (𝟏𝟔)𝑳−𝟏
𝒊=𝟎

Applying the modulo pj operation in (16) it yields

〈𝒛〉𝒑𝒋 = 〈∑ 𝒛(𝒊)〈𝒙𝒓𝒊〉𝒑𝒋𝑳−𝟏
𝒊=𝟎 〉𝒑𝒋, ∀𝒋 ∈ [𝟏, 𝑳] (𝟏𝟕)

Which is a similar operation to (15), if 〈𝑥𝑟𝑖〉𝑝𝑗 are pre-

computed. From (15) and (17), it is deduced that conversions

in both fields can be unified into a common conversion

method, if dual field circuitry is employed, as already

mentioned for the case of the DRAMM and DBC. In the rest

of the paper, the radix vectors (2r(L-1),…., 2r,1) and (xr(L-1),…,

xr,1) of both fields shall be denoted as a common radix vector

V , without loss of generality.

2) Residue-to-Binary Conversion: As all operands in (4) are

of word length r, they can be efficiently handled by an r-bit

MAC unit. However, (3) employs multiplications with large

values, namely the Wi s.

Fig.1. Dual-field full-adder cell (DFA).

To overcome this problem, (3) can be rewritten in

matrix notation, as in (18), shown at the bottom of the page,

which implies a fully parallel implementation of the

conversion process. The inner products of a row i are

calculated in parallel in each MAC unit. Each MAC then

propagates its result to subsequent MACs, so that at the end

the last MAC(L) outputs the radix-2r digit Z(i) of the result. In

parallel with this summation, inner products of the next row

i+1 can be formulated, since the adder and multiplier of the

proposed MAC architecture may operate in parallel.

VI. HARDWARE IMPLEMENTATION

A. Dual-Field Addition/Subtraction

A dual-field full-adder (DFA) cell (Fig. 1) is basically a full-

adder (FA) cell, equipped with a field-select signal (fsel) that

controls the operation mode [33]. In the proposed

implementation, 3-level, carry-look ahead adders (CLA) with

4-bit carry-look ahead generator groups (CLG) are employed

[47]. An example of a 4-bit dual-field CLA adder is shown in

Fig.2.

Algorithm 3.PRNS Montgomery

Multiplication (PRMM) in GF(2N) :

:

Input : aΊ , bΊ , 𝑝𝐵
−1 , 𝑄𝐴

−1 , pA, / * deg{

a} < n ,deg{ b} < n

Output : cΊ , /*deg {c} < n, c = abQ-1

mod p

1. sΊ ← aΊ . bΊ

2.tB ← sB . 𝑝𝐵
−1

3.tA ← tB

4. UA ← tA . pA

5. vA ← sA + uA

6.cA ← vA . 𝑄𝐴
−1

7. cB ← cA

Chembeti silpa, IJECS Volume 4 Issue 7 July, 2015 Page No.13403-13410 Page 13407

The GAP modules generate the signals pi= xi XOR yi, gi= xi

AND yi, ∝ 𝑖 = 𝑥𝑖 𝑂𝑅 𝑦𝑖 and AND gates along with a signal

control whether to eliminate carries or not. The carry-look

ahead generator is an AND-OR network based on (19) .

Fig. 2. Dual-field CLA.

1) Dual-Field Modular/Normal Addition/Subtraction:

 With trivial modifications of algorithms for modular

addition/subtraction in GF(p)[3], [4], a dual-field modular

adder/subtractor (DMAS) shown in Fig. 3 can be mechanized

using CLA adders. When , fsel=0, the circuit is in GF(2n)

mode and the output is derived directly from the top adder

which performs a GF(2n) addition. When fsel=1 , the circuit

may operate either as a normal (2r+log2 L)-bit adder/subtracter

(conv_mode = 0)or as a modular adder/subtracter (conv_mode

= 1).

Fig.3.Dual-field modular/normal adder/subtracter (DMAS).

In the first case, the output is the concatenation of the

outputs of the two adders. This is required during residue-to-

binary conversion, since (18) dictates that L ,2r -bit quantities

need to be added recursively via a normal adder.

B. Dual-Field Multiplication

A parallel tree multiplier, which is suitable for high-speed

arithmetic, and requires little modification to support both

fields, is considered in the proposed architecture. Regarding

input operands, either integers or polynomials, partial product

generation is common for both fields, i.e., an AND operation

among all operand bits. Consequently, the addition tree that

sums the partial products must support both formats. In GF(2n)

mode, if DFA cells are used, all carries are eliminated and

only XOR operations are performed among partial products.

In GF(p) mode, the multiplier acts as a conventional

tree multiplier. A 4 * 4-bit example of the proposed dual-field

multiplier (DM) with output in carry-save format is depicted in

Fig. 4.

Fig. 4. Dual-field multiplier (DM)

C. Dual-Field Modular Reduction

A final modular reduction by each RNS/PRNS modulus is

required, for each multiplication outcome, within each MAC

unit. From several modular reduction strategies [3], a method

based on careful modulus selection is utilized, since, not only

it offers efficient implementations but also provides the best

unification potential at a low area penalty. Assume a -bit

product that needs to be reduced modulo an integer modulus .

By selecting pi of the form 2r - 𝜇𝑖, where the h –bit µ𝑖 ≪ 2𝑟 ,

the modular reduction process can be simplified as

The same decomposition can be applied to polynomials and

consequently, if dual-field adders and dual-field multipliers

are employed, a dual-field modular reduction (DMR) unit can

be mechanized as shown in Fig. 5. The word length of can be

limited to a maximum of 10 bits for a base with 66 elements.

Chembeti silpa, IJECS Volume 4 Issue 7 July, 2015 Page No.13403-13410 Page 13408

Fig. 5. Dual-field modular reduction unit (DMR).

D. MAC Unit

The circuit organization of the proposed MAC unit is shown in

Fig. 6. Its operation is analyzed below in three steps,

corresponding to the three phases of the calculations it

handles, i.e., binary-to-residue conversion, RNS/PRNS

Montgomery multiplication, and residue-to-binary conversion.

Fig.6. The proposed MAC unit.

1) Binary-to-Residue Conversion:

Initially, -bit words of the input operands, as implied

by (15), are cascaded to each MAC unit and stored in RAM1

at the top of Fig. 6. These words serve as the first input to the

multiplier, along with the quantities which are stored in a

ROM. Their multiplication produces the inner products of (15)

or (17) which are added recursively in the DMAS unit. The

result is stored via the bus in RAM1. The process is repeated

for the second operand and the result is stored in RAM2, so

that when the conversion is finished, each MAC unit holds the

residue digits of the two operands in the two RAMs. The

conversion requires steps to be executed.

2) Montgomery Multiplication:

The first step of the proposed DRAMMis a modular

multiplication of the residue digits of the operands. Since these

digits are immediately available by the two RAMs, a modular

multiplication is executed and the result in is stored in RAM1

for base and RAM2 for base . Step 2 of DRAMM is a

multiplication of the previous result with a constant provided

by the ROM. The results correspond to inputs of the DBC

algorithm and are stored again in RAM1. All MAC units are

updated through the bus with the corresponding RNS digits of

all other MACs and a DBC process is initiated.

To illustrate the DBC process, a task distribution

graph is presented in Fig. 7 for a DRAMM requiring moduli.

Fig.7. Task distribution in the proposed DRAMM.

Two cases are represented; the first corresponds to a fully

parallel architecture with units and the second shows how the

tasks can be overlapped when only MAC units are available.

Each MAC unit has been assigned to a different color, thus in

the overlapped case the color codes signify when a MAC unit

performs operations for other units. In the example of Fig. 6,

MAC(1) handles MAC(4) and MAC(2) handles MAC(3). In

each cycle, modular additions and multiplications are

performed in parallel in each MAC. To depict this, each cycle

is split in two parts: the operations on the left correspond to

modular additions and on the right to modular multiplications.

The results obtained by each operation are depicted in each

cycle, while idle states are denoted by dashed lines. An

analysis on the number of clock cycles required, and how

MAC units can be efficiently paired is presented in the next

section.

Table I

Normalized Area and Delay Of The Proposed DRAMM

Architecture

3) Residue-to-Binary Conversion:

Residue-to-binary conversion is essentially a repetition of the

DBC algorithm, except for steps 9–14, which is no longer

modulo operations. To illustrate the conversion process,

assume the generation of the inner products in row 1 of (18).

Each product is calculated in parallel in each MAC unit and a

“carry-propagation” from MAC(1) to is performed to add all

inner products. When summation finishes the first digit of the

Chembeti silpa, IJECS Volume 4 Issue 7 July, 2015 Page No.13403-13410 Page 13409

result is produced in . In parallel with this “carry-

propagation”, the inner products of line 2 are calculated. As

soon as a MAC unit completes an addition of carry-propagated

inner products for line 1, a new addition for line 2 is

performed. The process continues for all lines of (18) and the

result is available after steps. The complete DRAMM

architecture is depicted in Fig. 8.

Fig. 8. The proposed DRAMM architecture.

VII. SIMULATION RESULTS

The simulations of the proposed design are carried out by

using Verilog HDL in Xilinx tool. The RTL SCHEMATIC

AND SIMULATION RESULTS OF FOUR MAC are shown

in below figures.

Fig.9. RTL schematic of proposed design

Fig.10. Simulation results of the proposed design

VIII. CONCLUSION

The mathematical framework and a flexible, dual-field,

residue arithmetic architecture for Montgomery multiplication

in GF(p) and GF(2n) is developed and the necessary conditions

for the system parameters (number of moduli channels,

modulus word length) are derived. The proposed DRAMM

architecture supports all operations of Montgomery

multiplication in GF(p) and GF(2n), residue-to-binary and

binary-to-residue conversions, MRC for integers and

polynomials, dual-field modular exponentiation and inversion,

in the same hardware. Generic complexity and real

performance comparisons with state-of-the-art works prove

the potential of residue arithmetic exploitation in Montgomery

multiplication.

REFERENCES

[1] I. Blake, G. Seroussi, and N.Smart, Elliptic Curves in

Cryptography. Cambridge, U.K.: Cambridge Univ. Press,

2002.

[2] D. Hankerson, A. Menezes, and S. Vanstone, Guide to

Elliptic Curves Cryptography. New York, NY, USA:

Springer-Verlag & Hall/CRC, 2004.

[3] J.-P. Deschamps, Hardware Implementation of Finite-

Field Arithmetic. New York, NY, USA: McGraw-Hill, 2009.

[4] R. Lidl and H. Niederreiter, Introduction to Finite Fields

and Their Applications. New York, NY, USA: Cambridge

Univ. Press, 1986.

[5] R. Rivest, A. Shamir, and L. Adleman, “A method for

obtaining digital signatures and public key cryptosystems,”

Commun. ACM, vol. 21, pp. 120–126, Feb. 1978.

[6] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-

Rower architecture for fast parallel Montgomery

multiplication,” in EUROCRYPT’ 00: Proc. 19th Int. Conf.

Theory and Application of Cryptographic Techniques, 2000,

pp. 523–538.

[7] J.-C. Bajard and L. Imbert, “Brief contributions: A full

RNS implementation of RSA,” IEEE Trans. Comput., vol. 53,

no. 6, pp. 769–774, Jun. 2004.

[8] D. Schinianakis, A. Fournaris, H. Michail, A. Kakarountas,

and T. Stouraitis, “An RNS implementation of an elliptic

curve point multiplier,”

IEEE Trans. Circuits Syst. I, vol. 56, no. 6, pp. 1202–1213,

Jun. 2009.

[9] A. Halbutoğullari and Ç. K. Koç, “Parallel multiplication

in using polynomial residue arithmetic,” Design, Codes and

Cryptography, vol. 20, no. 2, pp. 155–173, Jun. 2000.

[10] M. G. Parker and M. Benaissa, “ multiplication using

polynomial residue number systems,” IEEE Trans. Circuits

Syst. II, vol. 42, no. 11, pp. 718–721, Nov. 1995.

[11] H. Nozaki, M. Motoyama, A. Shimbo, and S.-I.

Kawamura, “Implementation of RSA algorithm based on RNS

Montgomery multiplication,” in Proc. 3rd Int.Workshop on

Cryptographic Hardware and Embedded Systems (CHES ’01),

2001.

[12] J.-C. Bajard, L. Imbert, and G. A. Jullien, “Parallel

Montgomery multiplication in using Trinomial Residue

Arithmetic,” in IEEE Symp. Computer Arithmetic, 2005, vol.

0, pp. 164–171.

[13] N. Guillermin, “A high speed coprocessor for elliptic

curve scalar multiplications over ,” in Cryptographic

Hardware and Embedded Systems, CHES 2010, 2010, pp. 48–

64, Lecture Notes in Computer Science 6225.

[14] F. J. Taylor, “Residue arithmetic: A tutorial with

examples,” IEEE Computer, vol. 17, pp. 50–62, May 1988.

Author’s Profile:

Chembeti silpa, IJECS Volume 4 Issue 7 July, 2015 Page No.13403-13410 Page 13410

 Chembeti Silpa received her

B.Tech degree in Electronics and communication Engineering

from Priyadarshini college of Engineering and Technology,

Kanuparthipadu, Nellore District, affiliated to JNTU

Anantapur. She is currently pursuing M.Tech VLSI in

Audisankara college of Engineering and Technology,

Gudur(Autonomous), SPSR Nellore (Dist), affiliated to JNTU

Anantapur.

 G..Mukesh received his

M.Tech in VLSI from PBR VITS ,

Kavali, SPSR Nellore District. He has 3 years teaching

experience. He is presently working as Assistant Professor in

the department of ECE Audisankara College of Engineering

and Technology,Gudur (Autonomous), Affiliated to JNTU,

Anantpur.

Y..

