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Abstract—A design methodology for incorporating Residue Number System (RNS) and Polynomial Residue Number System 

(PRNS) in Montgomery modular multiplication in GF(p) or GF(2n) respectively, as well as a VLSI architecture of a dual-field 

residue arithmetic Montgomery multiplier are presented in this paper. An analysis of input/output conversions to/from residue 

representation, along with the proposed residue Montgomery multiplication algorithm, reveals common multiply-accumulate data 

paths both between the converters and between the two residue representations. A versatile architecture is derived that supports all 

operations of Montgomery multiplication in GF(p)  and GF(2n), input/output conversions, Mixed Radix Conversion (MRC) for 

integers and polynomials, dual-field modular exponentiation and inversion in the same hardware. Detailed comparisons with state-

of-the-art implementations prove the potential of residue arithmetic exploitation in dual-field modular multiplication. 

 

Index Terms—Computations in finite fields, computer 

arithmetic, Montgomery multiplication, parallel arithmetic 

and logic 

structures 

 

I. INTRODUCTION 

A significant number of applications including cryptography, 

error correction coding, computer algebra, DSP, etc., rely on 

the efficient realization of arithmetic over finite fields of the 

form GF(2n), where n €  Z and n ≥ 1 or the form GF(p)  where 

p a prime. Cryptographic applications form a special case, 

since, for security reasons, they require large integer operands 

[1]–[5]. 

           Efficient field multiplication with large operands is 

crucial for achieving a satisfying cryptosystem performance, 

since multiplication is the most time- and area-consuming 

operation. Therefore, there is a need for increasing the speed 

of cryptosystems employing modular arithmetic with the least 

possible area penalty. An obvious approach to achieve this 

would be through Parallelization of their operations. In recent 

years, RNS and PRNS have enjoyed renewed scientific 

interest due to their ability to perform fast and parallel 

modular arithmetic [6]–[13]. Using RNS/PRNS, a given path 

serving a large data range is replaced by parallel paths of 

smaller dynamic ranges, with no need for exchanging 

information between paths. As a result, the use of residue 

systems can offer reduced complexity and power consumption 

of arithmetic units with large word lengths [14].On the other 

hand, RNS/PRNS implementations bear the extra cost of input 

converters to translate numbers from a standard binary format 

into residues and output converters to translate from 

RNS/PRNS to binary representations [14]. 

         A new methodology for embedding residue arithmetic in 

a dual-field Montgomery modular multiplication algorithm for 

integers in GF(p)  and for polynomials in is presented in 

GF(2n) this paper. The mathematical conditions that need to 

be satisfied for a valid RNS/PRNS incorporation are 

examined. The derived architecture is highly parallelizable and 

versatile, as it supports binary-to-RNS/PRNS and RNS/PRNS-

to-binary conversions, Mixed Radix Conversion (MRC) for 

integers and polynomials, dual-field Montgomery 

multiplication, and dual-field modular exponentiation and 

inversion in the same hardware. 

            The rest of the paper is organized as follows. A brief 

overview of related previous work is offered in Section II, 

while the main concepts of RNS and PRNS are summarized in 

Section III. In Section IV, basic finite-field arithmetic 

concepts are provided and the operation of field multiplication 

is defined. Following GF(2n) and GF(p)  Montgomery 

multiplication algorithms are presented. In Section VI, the 

proposed RNS/PRNS Montgomery multiplication algorithm is 

analyzed. The mathematical conditions that allow a valid 

incorporation of residue arithmetic in the Montgomery 

algorithm are also presented. In section VI, a detailed 

overview of the proposed dual-field Montgomery multiplier 

architecture is provided. Section VII provides time and area  

complexity measurements, as well as comparisons with other 

state-of-the-art implementations. Conclusions are offered in 

Section VIII. 

 

II. PREVIOUS WORK 

Important progress has been reported lately regarding GF(2n) 

implementations. The Massey-Omura algorithm the 

introduction of optimal normal bases and their software and 

hardware implementations  the Montgomery algorithm for 

multiplication in GF(2n) as well as PRNS application in 

GF(2n) multiplication, are, among others, important advances 

[9], [10], [12], PRNS incorporation in field multiplication, as 

proposed in [9], is based on a straightforward implementation 

of the Chinese Remainder Theorem (CRT) for polynomials 

which requires large storage resources and many pre-

computations. The multipliers proposed in [10], [20], perform 

multiplication in PRNS, but the result is converted back to 
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polynomial representation. This limitation makes them 

inappropriate for cryptographic algorithms which require 

consecutive multiplications. Finally, an algorithm which 

employs trinomials for the modulus set and performs PRNS 

Montgomery multiplication has been proposed [12]. However, 

there is no reference to conversion methods and the use of 

trinomials may issue limitations in the PRNS data range. 

     GF(p) implementations have also withstood great analysis, 

with the Montgomery algorithm being used in the majority of 

them. Montgomery multiplication designs fall into two 

categories. The first includes fixed-precision input operand 

implementations, in which the multiplicand and modulus are 

processed in full word length, while the multiplier is handled 

bit-by-bit. These designs are optimized for certain word 

lengths and do not scales efficiently for departures from these 

word lengths. Their performance has been improved by high-

radix algorithms and architectures. 

       The second category includes scalable architectures for 

variable word-length operands, based on algorithms, in which 

the multiplicand and modulus are processed word by word, 

while the multiplier is consumed bit by bit. 

     Montgomery’s algorithm has also become a predicate for 

dual-field implementations. The Montgomery architectures 

perform well for RSA key word lengths, by processing word-

size data, since RSA key sizes (512, 1024, 2048, etc.) are 

always multiples of word size. However, in ECC, key sizes are 

not integer multiples of word size, meaning that, if these 

architectures were to be used in ECC, they would require more 

clock cycles for their execution and thus more power 

consumption. An architecture configured at bit-level 

overcomes this problem 

        Finally, methods for embedding RNS in Montgomery 

multiplication have also been proposed [6], [7], [13]. Detailed 

analysis and comparisons with such works are offered in 

Section VII. 

 

III. RESIDUE ARITHMETIC 

A. Residue Number System 

RNS consists of a set of L, pair-wise relatively prime integers 

A= (m1,m2,..,.mL) (called the base) and the range of the RNS is 

computed as A=𝜋𝑖=1
𝐿  mi. Any integer z € [0, A-1] has a unique 

RNS representation  zA given by zA= (z1,z2,..zL) = ( (z)m1 ,(z)m2 

,… (z)mL), where (z)mi denotes the operation z mod mi. Assuming 

two integers a,b in RNS format, i.e., aA= (a1,a2,…,aL) and bA = 

(b1, b2,…bL) then one can perform the operations  € (+, -, *) in 

parallel by aA    bA= ( (a1       b1)m1 , (a2       b2)m1 , ,(aL                                                                                                                                            
bL)mL ,  

           To reconstruct the integer from its residues, two methods 

may be employed [14]. The first is through the CRT according 

to     z=∑ (zi
𝑛

𝑘=0
 Ai

−1)mi . Ai – γA where Ai=A/mi, 𝐴𝑖
−1 is the 

inverse of Ai modulo mi and γ is an integer correction factor. 

        The second method is through the MRC. The MRC of an 

integer with an RNS representation  zA= (z1,z2,..zL) is given by 

z = U1 + W2 U2 + …. + WL UL where  Wi = 𝜋𝑗=1
𝑖−1mj , for all i € 

[2,L] and the Ui s are computed according to 

U1 = z1 

U2 = (z2 – z1) m2 

U3 = (z3 – z1 – W2 U2) m3 

…. 

….. 

UL= (zL – z1 - W2 U2 - W3 U3- …-WL-1UL-1)mL providing that 

the predetermined factors V1≡ 1 and Vi = ((𝜋𝑗=1
𝑖−1mj , for all i € 

[2,L] are all unity . Of the two methods, the proposed 

architecture uses the MRC, as it avoids the problem of 

evaluating 

the correction factor of (2). 

B.  Polynomial Residue Number System 

Similar to RNS, a PRNS is defined through a set of L, pair-

wise relatively prime polynomials A=( m1(x), m2(x), … mL(x) 

). We denote by A(x) = 𝜋𝑖=1
𝐿 mi(x) the dynamic range of the 

PRNS. In PRNS, every polynomial z(x) € GF(2n) , with deg{ 

z(x) } < deg { A(x) }, has a unique PRNS representation: zA = 

(z1,z2,…zL) such as zi = z(x) mod  mi(x) , i € [1,L], denoted as 

(z)mi. In the rest of the paper, the notation “(x)” to denote 

polynomials shall be omitted, for simplicity. The notation will 

be used interchangeably to denote either an integer or a 

polynomial z(x), according to context. 

     Assuming the PRNS representation aA= (a1,a2,…aL) and 

bA= (b1,b2,…bL) of two polynomials a,b € GF(2n), then all 

operations  € (+, - , *), can be performed in parallel, as aA    bA= 

( (a1       b1)m1 , (a2       b2)m1 ,  …,(aL       bL)mL ,  Conversion from 

PRNS to weighted polynomial representation is identical to 

the MRC for integers. The only difference is that, the 

subtractions in (4) are substituted by polynomial additions. 

 

IV. MONTGOMERY MULTIPLICATION 

A. GF(p) Arithmetic 

Field elements in GF(p) are integers in [0,p-1] and 

arithmetic is performed modulo. Montgomery’s algorithm for 

modular multiplication without division [43] is presented 

below, as Algorithm 1, in five steps, where R is the 

Montgomery radix, gcd(R,p) = 1,and  p<R. R must be chosen 

so that steps 2 and 5 are efficiently computed. 

 
It is usually chosen to be a power of 2, when radix-2 

representation is employed. Since Montgomery’s method was 

originally devised to avoid divisions, it is well-suited to RNS 

implementations, considering that RNS division is inefficient 

to perform. 

B. GF(2n) Arithmetic 

          Field elements in GF(2n) are polynomials represented as 

binary vectors of dimension , relative to a given polynomial 

basis  (1, α , α2 , …αn-1), where α is a root of an irreducible 

polynomial of degree over GF(2). The field is then realized as 

GF(2)[x]/(p) and the arithmetic is that of polynomials of 

degree at most  n-1, modulo p[1]. 

        The addition of two polynomials a and b in  GF (2n) is 

performed by adding the polynomials, with their coefficients 

added in GF(2) i.e., modulo 2. This is equivalent to a bit-wise 

XOR operation on the vectors. The product of two elements a 
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and b in GF(2n) is obtained by computing c = a . b mod p 

where is a polynomial of degree atmost n-1 and c € GF (2n). A 

Montgomery multiplication algorithm suitable for polynomials 

in GF (2n) has been proposed [19]. Instead of computing the 

product   c = a . b mod p , the algorithm computes c = a.b.R-

1mod p, with deg{ c(x) < n} and R is a special fixed element in 

GF (2n). The selection of R(x) = xn is the most appropriate, 

since modular reduction and division by xn are simple shifts 

[3]. The algorithm is identical to Algorithm 1, except from the 

constant –p-1 in step 2, which is p-1 in GF (2n). 

 

V. A NEW METHODOLOGY FOR EMBEDDING 

RESIDUE ARITHMETIC IN MONTGOMERY 

MULTIPLICATION 

 

A. Embedding RNS in GF(p) Montgomery 

Multiplication 

An MRC-based algorithm [44] that avoids the evaluation of 

the γ factor of (2) forms the basis of the proposed RNS-based 

Montgomery multiplication algorithm. The derived algorithm 

is briefly presented here as Algorithm 2, and extended for the 

case of GF (2n) . 

       Two RNS bases are introduced, namely A= (p1, p2, …, pL) 

and B= (q1,q2,..qL), such that  gcd(pi,qj) = 1, for all i, j € [1,L]. 

The 5 steps of the Montgomery algorithm are translated to 

RNS computations in both bases, denoted from now on as  Ί = 

A U B. 

      Initially, the inputs are expressed in RNS 

representation in both bases as aΊ and bΊ. Steps 1, 3, and 4 of 

Algorithm 1, involve addition and multiplication operations, 

thus their transformation to RNS is straightforward. For steps 

2 and 5, the Montgomery radix is replaced by Q = 𝜋𝑖=1
𝐿 qi, 

which is the range of B .We also denote as P = 𝜋𝑖=1
𝐿 pi the 

range of base A. Then, in the second step, in RNS format is 

computed in base B by tB = sB.B-1. Nevertheless, the 

computations in base cannot be continued for steps 3, 4, and 5 

of Algorithm 1, since in step 5 we would need to compute a 

quantity of the form Q-1 mod qi, which does not exist since qi s 

are factors of Q. Thus, a base conversion (BC) step, from base 

to base , is inserted, to compute tA.tA is then used to execute 

the old steps 3, 4, and 5 in base .The result at the end of this 

algorithm is a quantity cΊ in RNS format that equals c ≡ abQ-1 

mod p, since BC is error-free. 

 
In Algorithm 2, inputs and output are all less than 2p, so that 

they are compatible with each other. This allows the 

construction of a modular exponentiation algorithm by 

repetition of the RNS Montgomery multiplication. Base 

conversion in step 7 is utilized for the same reason. Algorithm 

3 depicts the proposed base conversion process that converts 

an integer ζ expressed in RNS base B as ζB to the RNS 

representation of another base A. In contrast to other RNS 

Montgomery multiplication  algorithms which also employ 

MRC the proposed one implements a simplified version of the 

MRC in (3) and (4) which, as will be shown in next sections, 

not only reduces the total complexity of the algorithm but also 

offers better opportunities for parallelization of operations. 

Dual-field circuitry is also not offered by the works in. 

Algorithm 3 implements (4) in steps 1–8 to obtain the mixed-

radix digits Ui of ζ. In steps 9, (3) is realized, while the whole 

summation is computed modulo each modulus pi of the new 

base A. The two base conversions in the RMM algorithm are 

error-free, contrasted to other algorithms that employ CRT and 

utilize approximation methods to compute the correction 

factor  γ of  (2) [6], [7] . Conditions gcd(Q,p)=1 and 

gcd(P,Q)=1 are sufficient for the existence of (−𝑝𝐵
−1) and 𝑄𝐴

−1, 

respectively. As it holds that 

 

c = 
𝑣

𝑄
 = 

𝑎𝑏+𝑡𝑝

𝑄
 < 

(2p)2

𝑄
 + 

𝑄𝑝

𝑄
 = (

4𝑝

𝑄
 + 1) p ≤ 2p it follows that 4p ≤ 

Q is sufficient for c < 2p to hold when a, b < 2p. Finally (8) 

also shows that 2p  ≤ P is sufficient for c < Q and v < PQ. 

Since v is the maximum intermediate value, all values are less 

than PQ[6]. 

B. Embedding PRNS in GF(2n) Montgomery 

Multiplication 

     A modification of the Montgomery algorithm for 

multiplication in GF(2n) that encompasses PRNS is proposed 

next. The proposed algorithm employs general polynomials of 

any degree, and is an extension of an algorithm [12], which 

employs trinomials for the PRNS modulus set. Additionally, 

the proposed algorithm addresses the problem of converting 

data to/from PRNS representation. In contrast to a similar 

algorithm in  which employed CRT for polynomials for the 

BC algorithm, the proposed architecture employs MRC. This 

allows for dual-field RNS/PRNS implementation, which is not 

supported in [45], and a new methodology to implement RNS-

to-binary conversion as will be shown in Section V-D. 

       The proposed algorithm for GF(2n) PRNS Montgomery 

multiplication (PRMM) is presented below as Algorithm 3. 

The only difference is that integer additions/subtractions and 

multiplications are replaced by polynomial ones. Again, the 

degree of input and output polynomials are both less than n, 

which allows the construction of a modular exponentiation 

algorithm by repetition of the PRMM. Base conversion is 

employed for the same reason. 

1) Proof of PRMM Algorithm’s Validity: 

Theorem 1: If  (1) gcd {p,Q}=1, (2) gcd{Q,p}=1, (3) deg{P} > 

n, then Algorithm 4 outputs cΊ , for which c = abQ-1mod p and 

degree { c } < n. 

     Proof: Since gcd {p,Q}=1 and gcd {Q,P}=1,p is relatively 

prime to Q and  Q is relatively prime to P. Thus, the quantities 

(p-1)qi and ( Q-1)pi exist for all € [1,L], and therefore pB
-1and 

QA
-1 exist. 

     Assume that the polynomial v is a multiple of Q , i.e., v 

mod Q = 0. Then, s + t . p = 0 mod  Q, which means that t = s 

. p-1 mod Q. This corresponds to step 2 of the PRMM 

algorithm, 

which means that step 6 is error-free since base conversion in 

step 3 is error-free, therefore PRMM holds. 

      Furthermore, it must be proved that the resulting 

polynomial c of Algorithm 4 is a polynomial of degree less 

than n . It holds that 

deg { c } ≤ deg { 
𝑣

𝑄
 } ═> 
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deg { c } ≤  deg {
𝑎𝑏+𝑡𝑝

𝑄
} ═> 

deg { c } ≤  deg {ab + tp} – deg { Q } ═> 

deg{ c } ≤ max{deg {ab},deg {tp}} – deg{Q}═> 

deg { c } ≤  deg{tp} – deg{Q} ═> 

deg { c } ≤  deg{ Q } – 1 +n – deg { Q } ═> 

deg { c } ≤ n – 1                                    ( 9 ) 

          Since v is the maximum intermediate value of 

Algorithm 4, its degree must be less than the degree of the 

polynomial PQ. Under this assumption, we get 

deg { v } <  deg{ PQ } ═> 

deg{ cQ } <  deg{ PQ } ═> 

deg{ c } + deg{ Q } < deg{ P } + deg{ Q } ═> 

deg{ c } < deg{ P }                            ( 10 ) 

From  ( 9 ) and (10) we have 

deg { c } <  n 

deg { c } < deg { P  } , both ═> deg { P} > n ( 11 ) 

Finally, note that (10) is independent of deg {Q}, thus 

selecting deg{ Q } >  n  is  sufficient. 

  C. Conversions 

In the following discussion, base A =(p1, p2, …..pL,) shall n be 

used as an example to analyze the conversions to/from residue 

representations, without loss of generality.   

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

1) Binary-to-Residue Conversion: A radix- 2r representation 

of an integer z as an L-tuple (Z(L-1),….., Z(0)) satisfies    

𝒛 = ∑ 𝒛(𝒊)𝟐𝒓𝒊 = (𝟐𝒓(𝑳−𝟏), … . , 𝟐𝒓, 𝟏)

[
 
 
 
 
𝒛(𝑳−𝟏)

.

.
𝒛(𝟏)

𝒛(𝟎) ]
 
 
 
 

   (𝟏𝟒)

𝑳−𝟏

𝒊=𝟎

 

where,0≤z(i) ≤ 2r -1 . A method to compute zA must be devised, 

that matches the proposed DRAMM’s multiply-accumulate 

structure. By applying the modulo pj operation in (14) we 

obtain    

        

〈𝒛〉𝒑𝒋 = 〈∑ 𝒛(𝒊)〈𝟐𝒓𝒊〉𝒑𝒋𝑳−𝟏
𝒊=𝟎 〉𝒑𝒋,   ∀𝒋 ∈ [𝟏, 𝑳]      (𝟏𝟓)            

If constants 〈2𝑟𝑖〉𝑝𝑗 are pre-computed, this computation is well 

suited to the proposed MAC structure and can be computed in 

L steps, when executed by units in parallel. Similar to the 

integer case, a polynomial z(x) Є GF(2n) can be written as      

      

𝒛 = ∑ 𝒛(𝒊)𝒙𝒓𝒊 = (𝒙𝒓(𝑳−𝟏), … . , 𝒙𝒓, 𝟏)

[
 
 
 
 
𝒛(𝑳−𝟏)

.

.
𝒛(𝟏)

𝒛(𝟎) ]
 
 
 
 

   (𝟏𝟔)𝑳−𝟏
𝒊=𝟎         

 

Applying the modulo pj operation in (16) it yields 

    

〈𝒛〉𝒑𝒋 = 〈∑ 𝒛(𝒊)〈𝒙𝒓𝒊〉𝒑𝒋𝑳−𝟏
𝒊=𝟎 〉𝒑𝒋,   ∀𝒋 ∈ [𝟏, 𝑳]      (𝟏𝟕)         

 

Which is a similar operation to (15), if 〈𝑥𝑟𝑖〉𝑝𝑗  are pre-

computed. From (15) and (17), it is deduced that conversions 

in both fields can be unified into a common conversion 

method, if dual field circuitry is employed, as already 

mentioned for the case of the DRAMM and DBC. In the rest 

of the paper, the radix vectors (2r(L-1),…., 2r,1) and (xr(L-1),…, 

xr,1) of both fields shall be denoted as a common radix vector 

V , without loss of generality. 

2) Residue-to-Binary Conversion: As all operands in (4) are 

of word length r, they can be efficiently handled by an r-bit 

MAC unit. However, (3) employs multiplications with large 

values, namely the Wi s.       

 
Fig.1. Dual-field full-adder cell (DFA). 

To overcome this problem, (3) can be rewritten in 

matrix notation, as in (18), shown at the bottom of the page, 

which implies a fully parallel implementation of the 

conversion process. The inner products of a row i are 

calculated in parallel in each MAC unit. Each MAC then 

propagates its result to subsequent MACs, so that at the end 

the last MAC(L) outputs the radix-2r digit Z(i) of the result. In 

parallel with this summation, inner products of the next row 

i+1 can be formulated, since the adder and multiplier of the 

proposed MAC architecture may operate in parallel.      

 

VI. HARDWARE IMPLEMENTATION 

A. Dual-Field Addition/Subtraction 

A dual-field full-adder (DFA) cell (Fig. 1) is basically a full-

adder (FA) cell, equipped with a field-select signal (fsel) that 

controls the operation mode [33]. In the proposed 

implementation, 3-level, carry-look ahead adders (CLA) with 

4-bit carry-look ahead generator groups (CLG) are employed 

[47]. An example of a 4-bit dual-field CLA adder is shown in 

Fig.2.  

Algorithm 3.PRNS Montgomery 

Multiplication (PRMM) in GF(2N) : 

 

 

: 

Input : aΊ , bΊ , 𝑝𝐵
−1 , 𝑄𝐴

−1 , pA, / * deg{ 

a}  <  n ,deg{ b} < n 

Output : cΊ , /*deg {c} < n, c = abQ-1 

mod  p 

1. sΊ   ← aΊ .  bΊ 

2.tB  ← sB . 𝑝𝐵
−1 

3.tA  ←  tB 

4. UA  ← tA . pA 

5. vA ← sA + uA 

6.cA ← vA . 𝑄𝐴
−1

 

7. cB ← cA 
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The GAP modules generate the signals  pi= xi XOR yi, gi= xi 

AND yi, ∝ 𝑖 = 𝑥𝑖 𝑂𝑅 𝑦𝑖 and AND gates along with a signal 

control whether to eliminate carries or not. The carry-look 

ahead generator is an AND-OR network based on (19) . 

 

                                                                                      

 

 
Fig. 2. Dual-field CLA. 

 

1) Dual-Field Modular/Normal Addition/Subtraction: 

 With trivial modifications of algorithms for modular 

addition/subtraction in GF(p)[3], [4], a dual-field modular 

adder/subtractor (DMAS) shown in Fig. 3 can be mechanized 

using CLA adders. When , fsel=0, the circuit is in GF(2n) 

mode and the output is derived directly from the top adder 

which performs a GF(2n) addition. When fsel=1 , the circuit 

may operate either as a normal (2r+log2 L)-bit adder/subtracter 

(conv_mode = 0)or as a modular adder/subtracter (conv_mode 

= 1). 

 
Fig.3.Dual-field modular/normal adder/subtracter (DMAS). 

In the first case, the output is the concatenation of the 

outputs of the two adders. This is required during residue-to-

binary conversion, since (18) dictates that L ,2r -bit quantities 

need to be added recursively via a normal adder. 

B. Dual-Field Multiplication 

A parallel tree multiplier, which is suitable for high-speed 

arithmetic, and requires little modification to support both 

fields, is considered in the proposed architecture. Regarding 

input operands, either integers or polynomials, partial product 

generation is common for both fields, i.e., an AND operation 

among all operand bits. Consequently, the addition tree that 

sums the partial products must support both formats. In GF(2n) 

mode, if DFA cells are used, all carries are eliminated and 

only XOR operations are performed among partial products. 

In GF(p) mode, the multiplier acts as a conventional 

tree multiplier. A 4 * 4-bit example of the proposed dual-field 

multiplier (DM) with output in carry-save format is depicted in 

Fig. 4. 

 

 
Fig. 4. Dual-field multiplier (DM) 

 

C. Dual-Field Modular Reduction 

A final modular reduction by each RNS/PRNS modulus is 

required, for each multiplication outcome, within each MAC 

unit. From several modular reduction strategies [3], a method 

based on careful modulus selection is utilized, since, not only 

it offers efficient implementations but also provides the best 

unification potential at a low area penalty. Assume a -bit 

product that needs to be reduced modulo an integer modulus . 

By selecting pi of the form 2r - 𝜇𝑖, where the h –bit µ𝑖 ≪ 2𝑟 , 

the modular reduction process can be simplified as 

 
The same decomposition can be applied to polynomials and 

consequently, if dual-field adders and dual-field multipliers 

are employed, a dual-field modular reduction (DMR) unit can 

be mechanized as shown in Fig. 5. The word length of can be 

limited to a maximum of 10 bits for a base with 66 elements. 
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Fig. 5. Dual-field modular reduction unit (DMR). 

D. MAC Unit 

The circuit organization of the proposed MAC unit is shown in 

Fig. 6. Its operation is analyzed below in three steps, 

corresponding to the three phases of the calculations it 

handles, i.e., binary-to-residue conversion, RNS/PRNS 

Montgomery multiplication, and residue-to-binary conversion. 

 
Fig.6. The proposed MAC unit. 

1) Binary-to-Residue Conversion: 

Initially, -bit words of the input operands, as implied 

by (15), are cascaded to each MAC unit and stored in RAM1 

at the top of Fig. 6. These words serve as the first input to the 

multiplier, along with the quantities which are stored in a 

ROM. Their multiplication produces the inner products of (15) 

or (17) which are added recursively in the DMAS unit. The 

result is stored via the bus in RAM1. The process is repeated 

for the second operand and the result is stored in RAM2, so 

that when the conversion is finished, each MAC unit holds the 

residue digits of the two operands in the two RAMs. The 

conversion requires steps to be executed. 

2) Montgomery Multiplication: 

The first step of the proposed DRAMMis a modular 

multiplication of the residue digits of the operands. Since these 

digits are immediately available by the two RAMs, a modular 

multiplication is executed and the result in is stored in RAM1 

for base and RAM2 for base . Step 2 of DRAMM is a 

multiplication of the previous result with a constant provided 

by the ROM. The results correspond to inputs of the DBC 

algorithm and are stored again in RAM1. All MAC units are 

updated through the bus with the corresponding RNS digits of 

all other MACs and a DBC process is initiated. 

To illustrate the DBC process, a task distribution 

graph is presented in Fig. 7 for a DRAMM requiring moduli.  

 
Fig.7. Task distribution in the proposed DRAMM. 

 

Two cases are represented; the first corresponds to a fully 

parallel architecture with units and the second shows how the 

tasks can be overlapped when only MAC units are available. 

Each MAC unit has been assigned to a different color, thus in 

the overlapped case the color codes signify when a MAC unit 

performs operations for other units. In the example of Fig. 6, 

MAC(1) handles MAC(4) and MAC(2) handles MAC(3). In 

each cycle, modular additions and multiplications are 

performed in parallel in each MAC. To depict this, each cycle 

is split in two parts: the operations on the left correspond to 

modular additions and on the right to modular multiplications. 

The results obtained by each operation are depicted in each 

cycle, while idle states are denoted by dashed lines. An 

analysis on the number of clock cycles required, and how 

MAC units can be efficiently paired is presented in the next 

section. 

Table I 

Normalized Area and Delay Of The Proposed DRAMM 

Architecture 

 
3) Residue-to-Binary Conversion:  

Residue-to-binary conversion is essentially a repetition of the 

DBC algorithm, except for steps 9–14, which is no longer 

modulo operations. To illustrate the conversion process, 

assume the generation of the inner products in row 1 of (18). 

Each product is calculated in parallel in each MAC unit and a 

“carry-propagation” from MAC(1) to is performed to add all 

inner products. When summation finishes the first digit of the 
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result is produced in . In parallel with this “carry-

propagation”, the inner products of line 2 are calculated. As 

soon as a MAC unit completes an addition of carry-propagated 

inner products for line 1, a new addition for line 2 is 

performed. The process continues for all lines of (18) and the 

result is available after steps. The complete DRAMM 

architecture is depicted in Fig. 8. 

 
Fig. 8. The proposed DRAMM architecture. 

 

VII. SIMULATION RESULTS 

The simulations of the proposed design are carried out by 

using Verilog HDL in Xilinx tool. The RTL SCHEMATIC 

AND SIMULATION RESULTS OF FOUR MAC are shown 

in below figures. 

 
Fig.9. RTL schematic of proposed design 

 

 
Fig.10. Simulation results of the proposed design 

 

VIII. CONCLUSION 

The mathematical framework and a flexible, dual-field, 

residue arithmetic architecture for Montgomery multiplication 

in GF(p) and GF(2n) is developed and the necessary conditions 

for the system parameters (number of moduli channels, 

modulus word length) are derived. The proposed DRAMM 

architecture supports all operations of Montgomery 

multiplication in GF(p) and GF(2n), residue-to-binary and 

binary-to-residue conversions, MRC for integers and 

polynomials, dual-field modular exponentiation and inversion, 

in the same hardware. Generic complexity and real 

performance comparisons with state-of-the-art works prove 

the potential of residue arithmetic exploitation in Montgomery 

multiplication. 
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