
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 7 July 2015, Page No. 13292-13297

Aditya Vikram Sharma, IJECS Volume 4 Issue 7 July, 2015 Page No.13292-13297 Page 13292

Review of Evolutionary Optimization Algorithms for Test Case

Minimization

Aditya Vikram Sharma

adityasharma720@gmail.com

Abstract - Multi-objective test suite minimization problem is to select a set of test cases from the available test suite while optimizing the

multi objectives like code coverage, cost and fault history.[1] Regression Test suite optimization is an effective technique to reduce time

and cost of testing. Many researchers have used computational intelligence techniques to enhance the effectiveness of test suite. These

approaches optimize test suite for a single objective. Introduction of nature inspired algorithms like GA, PSO and BFO may be used to

optimize test suite for multi-objective selection criteria. Main focus of our approach is to find a test suite that is optimal for multi-objective

regression testing.[2]

Keywords – Regression testing, Test suite minimization,

Bacterial Foraging Optimization Algorithm.

I. INTRODUCTION

As any software system is developed changes are made

to the software. Changes are done to introduce new features

and functionalities. So after upgradation it is necessary to

test the software to make sure that the system is working as

intended. Hence, during regression testing the new test

cases along with the old ones are executed to certify the

functionality of the software. So, it becomes a tough task to

carry out regression testing as size of test suite grows.[1]

In order to assist the software engineer in regression

testing, test suite minimization techniques can be used

Test Suite Minimization Approach: Initially, a test

suite T is given with all the possible test cases to test the

software completely. Then use some algorithm to reduce T

to get the test suite reduction T '.

T ' is not redundant, meaning that if any of the test cases

is removed from T ' , the rest of the test case does not meet

all the requirements.[3]

Test suite can be optimized based on fault detection,

execution time and coverage given in eqn. (1),

𝑀𝑖𝑛(𝐸𝑇) ʌ 𝑀𝑎𝑥(𝐶𝑜𝑣) ʌ 𝑀𝑎𝑥(𝐹𝐷) ʌ 𝑀𝑖𝑛(𝑆) (1)

Where ET= Execution Time, Cov = Path Coverage, FD=

Fault detection, S= Test Suite Size.[2]

 The NP-completeness nature of test suite minimization

problem inspired many researchers to experiment with

different heuristics for its solution.
In recent years, biological intelligent heuristic

optimization algorithms have become one of the

mainstream methods to solve the non-linear, non-

differential, multi-peak and complex problems. Many

different bionic algorithms have been introduced by

scholars from different countries, inspired from the

foraging behaviors in the nature creature. Dorigo M et al.

proposed the Ant Colony Optimization (ACO) [4] in 1991;

Eberhart and Kennedy proposed the Particle Swarm

Optimization (PSO) [5] in 1995; Passino et al proposed the

Bacterial Foraging Optimization (BFO) [6] in 2002.

Because of the advantages of parallel searching, jumping

out of local minimum easily and so on, BFO is becoming a

hot spot of bionic algorithm. Since the researching work of

this algorithm in China is at the beginning stage and the

randomness of bacterial chemotaxis in the algorithm, it

leads to the slow chemotaxis speed and inefficient. So that,

combining some common mechanisms

and principles of intelligent bionic algorithm with the

differences in the internal operation mechanism becomes a

natural way to optimize the algorithm.[7] The optimization

algorithms are explained below :

A. Genetic Algorithm

Genetic Algorithms are population-based general

purpose algorithms used to find accurate or estimated

solutions to optimization and search problem.

They are stochastic search techniques based on the

phenomenon of natural selection and genetics.GA begins

with an initial population which is a random set of

solutions. Each individual solution in the population is

called a Chromosome. A chromosome can be a binary digit

or any other data structure. The chromosomes evolve

through successive iterations, called generations. During

each generation, the chromosomes are evaluated, using

some measure of fitness.

Selection, Crossover and Mutation are three basic

operators responsible for GA and these are described

below:

http://www.ijecs.in/

Aditya Vikram Sharma, IJECS Volume 4 Issue 7 July, 2015 Page No.13292-13297 Page 13293

1. Selection : A new generation is formed by

selecting those chromosomes that satisfy the

fitness value criteria. Suitable chromosomes with

higher probability are selected. Some parents and

offsprings are retained while others are rejected so

as to keep the population size constant. After

several generations the algorithm converge to

optimal or near optimal solution.

2. Crossover : the exchange of parents’ information

produces an offspring, as shown in figrure 1.

 Fig 1: Crossover operation.[14]

3. Mutation : Randomly change one or more digits in

the string representing an individual.

 Fig 2: Genetic Algorithm Flow-Chart.[15]

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-

based meta-heuristic algorithm developed from the

simulation of social models of bird flocking, fish

schooling, and swarming able to find best possible

solution(s) to the non-linear numeric problems. PSO was

first introduced in 1995 by Eberhart and Kennedy.

However, PSO can easily be trapped in local optimal point

when dealing with some complex and multimodal

functions.

PSO involves a number of particles, which are initialized

randomly in the space of the design variables. These

particles fly through the search space and their positions

are updated based on the best positions of individual

particles and the best position among all particles in the

search space which in truss sizing problems corresponds to

a particle with the smallest weight[5]. In PSO, a swarm

consists of N particles moving around in a D-dimensional

search space. The position of the jth particle at the kth

iteration is used to evaluate the quality of the particle and

represents candidate solution(s) for the search or

optimization problems. The update moves a particle by

adding a change velocity Vj
k+1 to the current position Xj

k as

follows:

Vj
k+1 = wVj

k + c1 × r1j
k ⨂(Pj

k − Xj
k) + c2 × r2j

k ⨂(Pg
k − Xj

k)

(2)

Xj
k+1 = Xj

k + Vj
k (3)

where w is an inertia weight to control the influence of

the previous velocity; r1j
k and r2j

k are random numbers

uniformly distributed in the range of (0,1); c1 and c2 are

 two acceleration constants called cognitive and social

parameter, respectively; Pj
k is the best position of the jth

particle up to iteration k; Pg
k is the best position among all

particles in the swarm up to iteration k. In order to increase

PSO’s exploration ability, the inertia weight is now

modified during the optimization process with the

following equation:

𝑤𝑘+1 = 𝑤𝑘 × 𝐷𝑟 × 𝑟𝑎𝑛𝑑 (4)

where 𝐷𝑟 is the damping ratio which is a constant

number in the interval (0,1); and rand is a uniformly

distributed random number in the range of (0,1).[18]

Unlike GA there are no selection, crossover and

variation operation in PSO. So its algorithm is very simple

and has a high execution speed.

However if some particle finds a present optimal point

then other particle will be closed to it rapidly. Hence the

diversity of whole swarm and its global searching ability

will be weakened obviously. [17]

Aditya Vikram Sharma, IJECS Volume 4 Issue 7 July, 2015 Page No.13292-13297 Page 13294

C. Ant Colony Optimization

Ant Colony Optimization(ACO) algorithm was

proposed by Marico Dorigo in 2005.[8] ACO is a

probabilistic technique for solving computational problems

which can be used for searching shortest paths.[9]

ACO deals with two important processes, namely:

Pheromone deposition and trail pheromone evaporation.

Pheromone deposition is the phenomenon of ants adding

the pheromone on all paths they follow. Pheromone trail

evaporation means decreasing the amount of pheromone

deposited on every path with respect to time. Updating the

trail is performed when ants either complete their search or

get the shortest path to reach the food source.[16]

Basic Principle of the algorithm is that Ants always find

a shortest path between the nest to food source, which

mainly depends on a hormone-pheromones. The shorter

path contains more pheromone, the probability of choosing

that path by ants is greater and finally ants colony will find

a shortest path.[3]

ACO technique has been already used in solving various

combinatorial problem such as knapsack problem,

travelling salesman problem, distributed network,

telecommunication network, vehicle routing, test data

generation.[9]

Though ACO is next generation technique for

optimization problems but it is not providing good

solutions of problems like multiple objectives optimization,

Dynamic Optimization Problems, the Stochastic

Optimization Problems, continuous optimization and

Parallel Implementations of the constraints.[10]

Most ant colony optimization algorithms use this

algorithm demonstrated below :[11]

Initiation of the parameters which determines the

pheromone trail.

While (until result conditions supplied) do

Generate Solutions

Apply Local Search

Update Pheromone Trail

End

D. BFO Algorithm

Bacteria Foraging Optimization Algorithm (BFOA),

given by Passino in 2002 , belongs to nature-inspired

optimization algorithms. Main idea behind the algorithm is

group foraging strategy of E.Coli. bacteria in order to

maximize energy obtained per unit time. Communication

also occurs between individual bacterium to improve the

searching strategy. This algorithm consists of four prime

steps[13] :

1. Chemotaxis: Here, swimming and tumbling are

the two prime ways which define the manner in

which bacteria search for food. Swimming means

moving in a pre-specified direction. Tumbling

means moving in a completely new direction.

Mathematically, tumble of any bacterium can be

given by multiplication of ɸ(j) and C(i),where ɸ(j)

is unit length in random direction and C(i) is step

length. In case of swimming, C(i) is constant.

2. Swarming: For the algorithm to converge at the

optimal solution, it is required that the optimum

bacteria attract other bacteria so that together they

converge at the solution point quickly. To achieve

this, a penalty function is added to the original

cost function on the basis of relative distances of

each bacterium from the fittest one. Penalty

function becomes zero when all the bacteria have

reached to the solution point.

3. Reproduction: Here, the fittest bacteria are

divided into two groups. The weaker set of

bacteria are replaced by other more fit set of

bacteria. This keeps the population of bacteria

constant throughout the evolution process.

4. Elimination and Dispersal: Because of changes in

environment some bacteria may be killed or may

be dispersed to a new place. In BFOA, this

phenomenon is simulated by liquidating some

bacteria and initialing new replacements randomly

in the search space. It helps in reducing the

probability of being trapped in pre-mature solution

point.[12]

Table 1: Existing Approaches to optimize Regression Test Suite

Genetic Algorithm Particle Swarm

Optimization[17]

Ant Colony Optimization

Algorithm

Bacterial Foraging

Optimization Algorithm [13]

Genetic Algorithms can be

applied to virtually any

problem that has a large

search space.[19]

Simple Mathematical

Model

ACO technique has been already

used in solving various

combinatorial problems such as

knapsack problem, travelling

salesman problem.

Widely accepted as a global

optimization algorithm of

current interest for distributed

optimization and control.

Aditya Vikram Sharma, IJECS Volume 4 Issue 7 July, 2015 Page No.13292-13297 Page 13295

Genetic algorithm are

computationally slow.[20]

Unlike GA, there are no

selection, crossover and

mutation operation in

PSO. So, its algorithm

has high execution

speed.

Not providing good solutions of

problems like multiple objectives

optimization, Dynamic

Optimization Problems, the

Stochastic Optimization Problems

Multi-optimal function

optimization is the key idea of

the new algorithm.

There is a problem of local

optimum points but mutation

and crossover help get out of

this.

Standard PSO often falls

into local optimal points.

Increasing the number of ants used

to tackle a large problem almost

yield to a worse algorithm

performance.[11]

Ability to escape from local

optimal point due to

elimination and dispersal step.

Table 2: Existing Approaches to optimize Regression Test Suite.[2]

Authors Algorithm used Objective Limitation Year

Krishnamoorthi et

al

Genetic Algorithm Maximized code

coverage.

Time constrained

execution environment.

2009

Nachiyappan et al Genetic Algorithm To find a test suite

with minimum test

size.

To find test cases that

have maximum

coverage.

2010

Suri et al Ant Colony Optimization Test suites covering

the paths with

minimum

time were selected

for final testing

Time constrained

regression testing.

2011

Subramanian et al Mutant gene algorithm To find test suite

with greater fitness

based on

mutation score.

Branch-type coverage

measures are chosen as

the test adequacy

criteria.Path-coverage

can also be considered.

2011

Kaur et al Hybrid algorithm of

Particle swarm

optimization and mutation

To find a test suite

that finds maximum

faults in minimum

time.

The HPSO depends on

randomly generating a

mutant that makes the

execution time quite

long.

2011a

Kaur et al Genetic Algorithm To optimize test

cases that cover all

independent paths

with minimum

number of test

cases.

Time constrained

regression testing.

2011b

Kaur et al Particle Swarm

Optimization (PSO) with

cross over

Test cases that cover

the entire path or

find all faults are

selected

as global best.

Time constrained

regression testing.

2011c

Kaur et al Genetic Algorithm Test suite

optimization in

Minimum time.

To find test cases that

have maximum

coverage.

2011d

Kaur et al Bee Colony Optimization The primary

objective is to

uncover all faults

and time

minimization is

second objective.

Requires manual

interface for the

input test suite data

making the technique

restricted to small

sized test suite.

2011e

Aditya Vikram Sharma, IJECS Volume 4 Issue 7 July, 2015 Page No.13292-13297 Page 13296

Sehrawat et al Neuro Genetic Algorithm Whole Path

Coverage.

Time constrained

regression testing.

2012

Suri et al Bee Colony Optimization +

Genetic Algorithm

Primary Objective is

finding “all faults”.

Secondary is “time

minimization”.

Approach is not

repeatable

2012

Vivekanandan et al Ant Colony Optimization To find the faults

earlier or

“in minimum time

span”.

Time constrained

regression testing.

2012

Maia et al Weighted sum approach Select optimal test

path.

Will not be

successful to find an

aggregate weightage of

each test.

2012

Suri et al Swarm optimization and

GA hybrid approach.

Reduction in Test-

Suite.

The technique can

provide different

results in each run.

2012

Ming Chn et al[17] PSO combined with

mutative scale chaos

method.

To mitigate the slow

convergence and

local optimum points

in Standard PSO

algorithm.

Results are not

repeatable.

2012

ACKNOWLEDGMENT

 I wish to express my deep gratitude to Guide, Assistant

Professor, Computer Science & engineering department,

Deenbandhu Chhotu Ram University of Science &

Technology for providing his uncanny guidance and

support throughout the paper.

REFERENCES

[1] A.Charan Kumari, K.Srinivas, M.P.Gupta (2012). Multi-objective test

suite minimization using quantum-inspired multi-objective differential

evolution algorithm. IEEE, 978-1-4673-1344-5/12.

[2] Aftab Ali Haider, Shahzad Rafiq, Aamer Nadeem (2012). Test Suite

Optimization using Fuzzy Logic. IEEE, 978-1-4673-4451-7/12.

[3] Cui Donghua, Yin Wenjie (2011). The Research of Test-Suite

Reduction Technique, IEEE, 978-1-61284-459-6/11.

[4] Colorni A, Dorigo M, Maniezzo V (1991). Distributed optimization by

ant colonies. Proceedings of ECAL’91, European Conference on Artificial

Life. Paris, France: Elsevier Publishing (134 – 142).

[5] Eberhart R C, Kennedy J (1995). A New Optimizer Using Particle

Swarm Theory. Proc. The Sixth Int. Symposium on Micro Machine and

Human Science, Nagoya Japan, IEEE Robotics and Automation Society

(39-43).

[6] Passino K M (2002). Biomimicry of Bacterial Foraging for Distributed

Optimization and Control. IEEE Control Systems Magazine (52-67).

[7] Liu Xiao Long, Li RongJun, YangPing (2010). A Bacterial Foraging

Global Optimization Algorithm Based On the Particle Swarm
Optimization, IEEE, 978-1-4244-6585-9/10.

[8] M.Dorigo (2006). Ant Colony Optimization: Artificial Ants as
Computational Intelligence Technique, IEEE Computaional Intelligence

Magazine.

[9] Bharti Suri, Isha Mangal (April 2012). Analyzing Test Case Selection
using Proposed Hybrid Technique based on BCO and Genetic Algorithm

and a Comparison with ACO, IJARCSSE, Volume 2, Issue 4, ISSN: 2277

128X.

[10] Manoj Kumar, Arun Sharma, Rajesh Kumar (November 2011).

Optimization of Test Cases using Soft Computing Techniques: A Critical
Review. WSEAS TRANSACTIONS on INFORMATION SCIENCE and

APPLICATIONS, Issue 11, Volume 8, ISSN: 1790-0832.

[11] Teerapun Saeheaw, Nivit Charoenchai, and Wichai Chattinnawat

(December 2009). Application of Ant colony optimization for Multi-

objective Production Problems, World Academy of Science, Engineering
and Technology Vol 36.

Aditya Vikram Sharma, IJECS Volume 4 Issue 7 July, 2015 Page No.13292-13297 Page 13297

[12] Swagatam Das, Arijit Biswas, Sambarta Dasgupta, and Ajith

Abraham. Bacterial Foraging Optimization Algorithm: Theoretical

Foundations, Analysis, and Applications.

[13] Nikhil Kushwaha, Vimal Singh Bisht

Gautam Shah (2012). Genetic Algorithm based Bacterial Foraging
Approach for Optimization. International Journal of Computer

Applications (IJCA).

[14] Emad Elbeltagi, Tarek Hegazy Donald Grierson (2005). Comparison

among five evolutionary-based optimization algorithms. Advanced

Engineering Informatics 19 (43–53).

[15] Siba Prasada Tripathy, Debananda Kanhar (February 2013).

Optimization of Software Testing for Discrete Test suite using Genetic
Algorithm and Sampling Technique. International Journal of Computer

Applications (0975 – 8887) Volume 63– No.

[16] Priyanka Bansal (2013). A Critical Review on Test Case

Prioritization and Optimization using Soft Computing Techniques. 2nd

International Conference on Role of Technology in Nation Building

(ICRTNB) ISBN: 97881925922-1-3.

[17] MING CHEN, TAO WANG, JIAN FENG, YONG-YONG TANG1,
LI-XIN ZHAO (2012). A Hybrid Particle Swarm Optimization Improved

by Mutative Scale Chaos Algorithm. 2012 Fourth International

Conference on Computational and Information Sciences, 978-0-7695-
4789-3/12 IEEE.

[18] A. Kaveh, R. Sheikholeslami, S. Talatahari, M. Keshvari-Ilkhichi
(2014). Chaotic swarming of particles: A new method for size

optimization of truss structures. Advances in Engineering Software 67,

136–147.

[19] Muhannad Harrim. Genetic-Algorithms. Retrieved from

https://www.cs.wmich.edu/~elise/courses/cs6800/ Genetic-Algorithms.ppt

[20] Soft Computing Paradigm. Lecture Module 23. Retrieved from
http://www.cse.iitd.ac.in/~saroj/AI/ai2013/L23.ppt

https://www.cs.wmich.edu/~elise/courses/cs6800/Genetic-Algorithms.ppt
http://www.cse.iitd.ac.in/~saroj/AI/ai2013/L23.ppt

