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Abstract -  Multi-objective test suite minimization problem is to select a set of test cases from the available test suite while optimizing the 

multi objectives like code coverage, cost and fault history.[1] Regression Test suite optimization is an effective technique to reduce time 

and cost of testing. Many researchers have used computational intelligence techniques to enhance the effectiveness of test suite. These 

approaches optimize test suite for a single objective. Introduction of nature inspired algorithms like GA, PSO and BFO may be used to 

optimize test suite for multi-objective selection criteria. Main focus of our approach is to find a test suite that is optimal for multi-objective 

regression testing.[2] 
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I. INTRODUCTION 

As any software system is developed changes are made 

to the software. Changes are done to introduce new features 

and functionalities. So after upgradation it is necessary to 

test the software to make sure that the system is working as 

intended. Hence, during regression testing the new test 

cases along with the old ones are executed to certify the 

functionality of the software. So, it becomes a tough task to 

carry out regression testing as size of test suite grows.[1] 

In order to assist the software engineer in regression 

testing, test suite minimization techniques can be used 

Test Suite Minimization Approach: Initially, a test 

suite T is given with all the possible test cases to test the 

software completely. Then use some algorithm to reduce T 

to get the test suite reduction T '.  

T ' is not redundant, meaning that if any of the test cases 

is removed from T ' , the rest of the test case does not meet 

all the requirements.[3] 

Test suite can be optimized based on fault detection, 

execution time and coverage given in eqn. (1), 

 

𝑀𝑖𝑛(𝐸𝑇) ʌ 𝑀𝑎𝑥(𝐶𝑜𝑣) ʌ 𝑀𝑎𝑥(𝐹𝐷) ʌ 𝑀𝑖𝑛(𝑆)            (1) 

 

Where ET= Execution Time, Cov = Path Coverage, FD= 

Fault detection, S= Test Suite Size.[2] 

 

 The NP-completeness nature of test suite minimization 

problem inspired many researchers to experiment with 

different heuristics for its solution.  
In recent years, biological intelligent heuristic 

optimization algorithms have become one of the 

mainstream methods to solve the non-linear, non-

differential, multi-peak and complex problems. Many 

different bionic algorithms have been introduced by 

scholars from different countries, inspired from the 

foraging behaviors in the nature creature. Dorigo M et al. 

proposed the Ant Colony Optimization (ACO) [4] in 1991; 

Eberhart and Kennedy proposed the Particle Swarm 

Optimization (PSO) [5] in 1995; Passino et al proposed the 

Bacterial Foraging Optimization (BFO) [6] in 2002. 

Because of the advantages of parallel searching, jumping 

out of local minimum easily and so on, BFO is becoming a 

hot spot of bionic algorithm. Since the researching work of 

this algorithm in China is at the beginning stage and the 

randomness of bacterial chemotaxis in the algorithm, it 

leads to the slow chemotaxis speed and inefficient. So that, 

combining some common mechanisms 

and principles of intelligent bionic algorithm with the 

differences in the internal operation mechanism becomes a 

natural way to optimize the algorithm.[7] The optimization 

algorithms are explained below : 

A. Genetic Algorithm 

Genetic Algorithms are population-based general 

purpose algorithms used to find accurate or estimated 

solutions to optimization and search problem.  

They are stochastic search techniques based on the 

phenomenon of natural selection and genetics.GA begins 

with an initial population which is a random set of 

solutions. Each individual solution in the population is 

called a Chromosome. A chromosome can be a binary digit 

or any other data structure. The chromosomes evolve 

through successive iterations, called generations. During 

each generation, the chromosomes are evaluated, using 

some measure of fitness.  

Selection, Crossover and Mutation are three basic 

operators responsible for GA and these are described 

below: 

http://www.ijecs.in/
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1. Selection : A new generation is formed by 

selecting those chromosomes that satisfy the 

fitness value criteria. Suitable chromosomes with 

higher probability are selected. Some parents and 

offsprings are retained while others are rejected so 

as to keep the population size constant. After 

several generations the algorithm converge to 

optimal or near optimal solution. 

 

2. Crossover : the exchange of parents’ information 

produces an offspring, as shown in figrure 1. 

 

 
             

              Fig 1: Crossover operation.[14] 

 

3. Mutation : Randomly change one or more digits in 

the string representing an individual. 

 
       Fig 2: Genetic Algorithm Flow-Chart.[15] 

 

B. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population-

based meta-heuristic algorithm developed from the 

simulation of social models of bird flocking, fish 

schooling, and swarming able to find best possible 

solution(s) to the non-linear numeric problems. PSO was 

first introduced in 1995 by Eberhart and Kennedy. 

However, PSO can easily be trapped in local optimal point 

when dealing with some complex and multimodal 

functions. 

PSO involves a number of particles, which are initialized 

randomly in the space of the design variables. These 

particles fly through the search space and their positions 

are updated based on the best positions of individual 

particles and the best position among all particles in the 

search space which in truss sizing problems corresponds to 

a particle with the smallest weight[5]. In PSO, a swarm 

consists of N particles moving around in a D-dimensional 

search space. The position of the jth particle at the kth 

iteration is used to evaluate the quality of the particle and 

represents candidate solution(s) for the search or 

optimization problems. The update moves a particle by 

adding a change velocity Vj
k+1 to the current position Xj

k as 

follows: 

 

Vj
k+1 = wVj

k + c1 × r1j
k ⨂(Pj

k − Xj
k) + c2 × r2j

k ⨂(Pg
k − Xj

k)   

(2) 

 

Xj
k+1 = Xj

k + Vj
k                                 (3)            

where w is an inertia weight to control the influence of 

the previous velocity; r1j
k  and r2j

k  are random numbers 

uniformly distributed in the range of (0,1);  c1 and c2  are 

 two acceleration constants called cognitive and social 

parameter, respectively; Pj
k is the best position of the jth 

particle up to iteration k; Pg
k  is the best position among all 

particles in the swarm up to iteration k. In order to increase 

PSO’s exploration ability, the inertia weight is now 

modified during the optimization process with the 

following equation: 

 

𝑤𝑘+1 = 𝑤𝑘 × 𝐷𝑟 × 𝑟𝑎𝑛𝑑                         (4) 

 

where 𝐷𝑟  is the damping ratio which is a constant  

number in the interval (0,1); and rand is a uniformly 

distributed random number in the range of (0,1).[18] 

 

Unlike GA there are no selection, crossover and 

variation operation in PSO. So its algorithm is very simple 

and has a high execution speed. 

However if some particle finds a present optimal point 

then other particle will be closed to it rapidly. Hence the 

diversity of whole swarm and its global searching ability 

will be weakened obviously. [17]  
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C. Ant Colony Optimization 

Ant Colony Optimization(ACO)  algorithm was 

proposed by Marico Dorigo in 2005.[8] ACO is a 

probabilistic technique for solving computational problems 

which can be used for searching shortest paths.[9] 

ACO deals with two important processes, namely: 

Pheromone deposition and trail pheromone evaporation. 

Pheromone deposition is the phenomenon of ants adding 

the pheromone on all paths they follow. Pheromone trail 

evaporation means decreasing the amount of pheromone 

deposited on every path with respect to time. Updating the 

trail is performed when ants either complete their search or 

get the shortest path to reach the food source.[16] 

Basic Principle of the algorithm is that Ants always find 

a shortest path between the nest to food source, which 

mainly depends on a hormone-pheromones. The shorter 

path contains more pheromone, the probability of choosing 

that path by ants is greater and finally ants colony will find 

a shortest path.[3] 

ACO technique has been already used in solving various 

combinatorial problem such as knapsack problem, 

travelling salesman problem, distributed network, 

telecommunication network, vehicle routing, test data 

generation.[9] 

Though ACO is next generation technique for 

optimization problems but it is not providing good 

solutions of problems like multiple objectives optimization, 

Dynamic Optimization Problems, the Stochastic 

Optimization Problems, continuous optimization and 

Parallel Implementations of the constraints.[10] 

 

Most ant colony optimization algorithms use this 

algorithm demonstrated below :[11] 

 

Initiation of the parameters which determines the 

pheromone trail. 

While (until result conditions supplied) do 

Generate Solutions 

Apply Local Search 

Update Pheromone Trail 

End 

D. BFO Algorithm   

Bacteria Foraging Optimization Algorithm (BFOA), 

given by Passino in 2002 , belongs to nature-inspired 

optimization algorithms. Main idea behind the algorithm is 

group foraging strategy of E.Coli. bacteria in order to 

maximize energy obtained per unit time. Communication 

also occurs between individual bacterium to improve the 

searching strategy. This algorithm consists of four prime 

steps[13] : 

 

1. Chemotaxis: Here, swimming and tumbling are 

the two prime ways which define the manner in 

which bacteria search for food. Swimming means 

moving in a pre-specified direction. Tumbling 

means  moving in a completely new direction. 

Mathematically, tumble of any bacterium can be 

given by multiplication of ɸ(j) and C(i),where ɸ(j) 

is unit length in random direction and C(i) is step 

length. In case of swimming, C(i) is constant.  

 

2. Swarming: For the algorithm to converge at the 

optimal solution, it is required that the optimum 

bacteria attract other bacteria so that together they 

converge at the solution point quickly. To achieve 

this, a penalty function is added to the original 

cost function on the basis of relative distances of 

each bacterium from the fittest one. Penalty 

function becomes zero when all the bacteria have 

reached to the solution point. 

 

3. Reproduction: Here, the fittest       bacteria  are 

divided into two groups. The weaker set of 

bacteria are replaced by other more fit set of 

bacteria. This keeps the population of bacteria 

constant throughout the evolution process. 

 

4. Elimination and Dispersal: Because of changes in 

environment some bacteria may be killed or may 

be dispersed to a new place. In BFOA, this 

phenomenon is simulated by liquidating some 

bacteria and initialing new replacements randomly 

in the search space. It helps in reducing the 

probability of being trapped in pre-mature solution 

point.[12] 

 

Table 1: Existing Approaches to optimize Regression Test Suite 

Genetic Algorithm  Particle Swarm 

Optimization[17] 

Ant Colony Optimization 

Algorithm 

Bacterial Foraging 

Optimization Algorithm [13] 

Genetic Algorithms can be 

applied to virtually any 

problem that has a large 

search space.[19]  

 

Simple Mathematical 

Model 

ACO technique has been already 

used in solving various 

combinatorial problems such as 

knapsack problem, travelling 

salesman problem. 

Widely accepted as a global 

optimization algorithm of 

current interest for distributed 

optimization and control. 
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Genetic algorithm are 

computationally slow.[20] 

 

 

Unlike GA, there are no 

selection, crossover and 

mutation operation in 

PSO. So, its algorithm 

has high execution 

speed. 

Not providing good solutions of 

problems like multiple objectives 

optimization, Dynamic 

Optimization Problems, the 

Stochastic Optimization Problems 

 

  

Multi-optimal function 

optimization is the key idea of 

the new algorithm. 

There is a problem of local 

optimum points but mutation 

and crossover help get out of 

this. 

Standard PSO often falls 

into local optimal points. 

Increasing the number of ants used 

to tackle a large problem almost 

yield to a worse algorithm 

performance.[11] 

Ability to escape from local 

optimal point due to 

elimination and dispersal step. 

Table 2: Existing Approaches to optimize Regression Test Suite.[2] 

Authors  Algorithm used Objective Limitation  Year 

Krishnamoorthi et 

al 

Genetic Algorithm Maximized code 

coverage. 

Time constrained 

execution environment. 

2009 

Nachiyappan et al Genetic Algorithm To find a test suite 

with minimum test 

size. 

To find test cases that 

have maximum 

coverage. 

2010 

Suri et al Ant Colony Optimization Test suites covering 

the paths with 

minimum 

time were selected 

for final testing 

Time constrained 

regression testing. 

2011 

Subramanian et al Mutant gene algorithm To find test suite 

with greater fitness 

based on 

mutation score. 

Branch-type coverage 

measures are chosen as 

the test adequacy 

criteria.Path-coverage 

can also be considered. 

2011 

Kaur et al Hybrid algorithm of 

Particle swarm 

optimization and mutation 

To find a test suite 

that finds maximum 

faults in minimum 

time. 

The HPSO depends on 

randomly generating a 

mutant that makes the 

execution time quite 

long. 

2011a 

Kaur et al Genetic Algorithm To optimize test 

cases that cover all 

independent paths 

with minimum 

number of test 

cases. 

Time constrained 

regression testing. 

2011b 

Kaur et al Particle Swarm 

Optimization (PSO) with 

cross over 

Test cases that cover 

the entire path or 

find all faults are 

selected 

as global best. 

Time constrained 

regression testing. 

2011c 

Kaur et al Genetic Algorithm Test suite 

optimization in 

Minimum time. 

To find test cases that 

have maximum 

coverage. 

2011d 

Kaur et al Bee Colony Optimization The primary 

objective is to 

uncover all faults 

and time 

minimization is 

second objective. 

Requires manual 

interface for the  

input test suite data 

making the technique 

restricted to small  

sized test suite. 

 

2011e 
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Sehrawat et al Neuro Genetic Algorithm Whole Path 

Coverage. 

Time constrained 

regression testing. 

2012 

Suri et al Bee Colony Optimization + 

Genetic Algorithm 

Primary Objective is 

finding “all faults”. 

Secondary is “time 

minimization”. 

Approach is not 

repeatable 

2012 

Vivekanandan et al Ant Colony Optimization To find the faults 

earlier or 

“in minimum time 

span”. 

Time constrained 

regression testing. 

2012 

Maia et al Weighted sum approach Select optimal test 

path. 

Will not be 

successful to find an 

aggregate weightage of 

each test. 

2012 

Suri et al Swarm optimization and 

GA hybrid approach. 

Reduction in Test-

Suite. 

The technique can 

provide different  

results in each run. 

 

2012 

Ming Chn et al[17] PSO combined with 

mutative scale chaos 

method. 

To mitigate the slow 

convergence and 

local optimum points 

in Standard PSO 

algorithm.  

Results are not 

repeatable. 

2012 
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