
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 7 July 2015, Page No. 13273-13278

P.Swapna Shankar, IJECS Volume 4 Issue 7 July, 2015 Page No.13273-13278 Page 13273

Assessing Version Consistency by Identifying systematic Code

Changes during Runtime
P.Swapna Shankar, P.Niranjan, P.Shireesha

M.Tech(SE), Department of CSE,

KITS Warangal,T.S, INDIA

swaps2644@gmail.com

Prof&head Department of CSE,

 KITS Warangal, T.S,INDIA

npolala@yahoo.co.in

Asst.professor, Department of CSE,

KITS Warangal,T.S,INDIA

Siriniru55@gmail.com

Abstract: In compelling software revisions there survive various degrees of potential behavior change. The easiest strategy

of adapting an request is to alter the performance of a system body, i.e., upgrading the method body to a classic version

without modifying the entire request, for instance if a bug inside a single technique gets unchanging, or a quicker

algorithm through the same features gets arranged. A next move in the direction of absolute revisions is the ability to alter

the method signature, where not just the internals of a method, but also the endeavor signature alone, i.e., the quantity as

well as types of variables, the review type or the technique name get altered. The final step regarding random

modifications and completely energetically updateable techniques is the sustain for modifying global fields also fields inside

of schemes, for instance in the case of class-based techniques the fields of elements as specific by their individual sessions.

In this device we provide a runtime evaluation version persistence to evaluate the impact of the dynamic software

revisions.

Keywords: Software evaluation, dynamic software loaded, JRE, Component bug prediction

1. Introduction

Dynamic component load is frequently used in software

technique progress to build standard as well as pliant

software method. Java run-time setting (JRE) generally

provides appropriate strategy calls to connect dynamic

attributes. The internal JRE solves also much the certain

part; each beginning technique phone is invoked. Part

quality depends upon the process the half is certain what is

much from laterally the scheduled part's complete path or

its file-name. Presented an entire path, the JAVA Runtime

environment just utilizes it for quality. That sequence of

websites to search is handling at run-time by the unique

index search order at that chance of system quality

invocation? The ability of the standard strategy of part

loading can incorporate a price associate degree built-in

security apprehension is revealed by it. For runtime

security as well as fortification, correlate degree demand

should merely fill its planned elements. However, as a

component is resolute by the JRE entirely during its name,

development errors may result in the initiation of correlate

degree accidental part with effectively the equivalent

name.

2. Recent work [12] has recognized that dangerous loadings

are common and should origin remote code execution

attacks. Associate quantity approach was recommended to

seek out dangerous half loadings. It then executes an

analysis to find 2 sorts of dangerous loadings: decision and

backbone failure hijacking. Once the target half is not

exposed, though resolution hijacking happens once

unusual sites are looked earlier than the listing wherever

the half lives a top excellence failure happens.

3. We demonstrate this perplexity victimization deferred

loading, associate degree optimization to holdup the

loading of seldom used components till their appallingly

initial use. Since it's fatiguing to activate all delayed

loadings at runtime delayed loading is durable for dynamic

detection.

4. Within this document, we are inclined to current the

appallingly initial static analysis to seek out risky loadings

from program binaries. 2 things of essential proposal are

required: one) all components which can be crowded at

each loading resolution web site, and 2) the protection of

every possible loading From these findings, we tend to

fashion a - amount analysis: checking and extraction. The

elimination stage is demand driven, operating backwards

from each loading assessment web site} to calculate the

collect of potential loadings; the stage establishes the

security of the loading by analyzing the appropriate

directory search order within the begin site.

Context-Sensitive Emulation We start context sensitive

emulation, a unique mix of emulation as well as segmenting, to

comprehend the vulnerable computation of constraint values

http://www.ijecs.in/

P.Swapna Shankar, IJECS Volume 4 Issue 7 July, 2015 Page No.13273-13278 Page 13274

throughout the elimination amount. For a specific decision

website, we come with a tendency to remove its context prone

efficient blocks in significance its pointers, one for every

effecting context. We have an inclination to later copy the

blocks to evaluate the limitation values.

Incremental and typical Segmenting: One specific challenge is

that the compliment of evaluate diffident locks scalable.

Ordinary segmenting techniques [1, 5, 9, 16, 20, 21] are

centered on strategy a program's whole system addiction graph

(SDG) a priori also are subsequently limited in measurability.

Through we have an appreciation to merely must be obligated

to consider loading decision websites additionally because the

performance pathways to determine the constraint values to the

describe are generally relatively short, exclusively a bit a part

of the definite SDG is appropriate for our evaluation. This

conjures up the usage of AN in tiny stages as well as normal

sectioning guideline (cf. Section 3)--incremental as a result of

we have a possibility to establish the blocks idly when

required; typical due to once we notice a complete decision foo

(x,y), we come with an affinity to usage AN conditional

determine concerning what dependence foo's variables and

return worth have in exploratory the caller. In the end, we have

a inclination to join the executes function blocks inside the

traditional manner by concerning real as well as formal

variables.

Emulation of Context-sensitive Slice: when we've supposed the

piece s regarding an explicit loading selection web site, we

come with an affinity to must determine values for the essential

pointers. One unrefined solution might be to perform basic

delegate evaluation on the piece to determine the values. The

main disadvantage for this strategy is that the concern in

reckoning symbolically about tactic calls as the appropriate

variables often views complicated, lower level setup calls.

To overcome this concern, we apply emulation. In particular,

we generate, from the backward piece s , a collection of

context sensitive feasible sub blocks, which we eventually

emulate to determine the limitation values (cf. Area three). s ’s

sub-blocks 1s ,..., ns . Directives in each sub-slice is are then

follow topologically, about their data and control-flow

dependencies.

For evaluation, we usually apply our strategy in a fairly model

system for Windows enclose. We often evaluate our tool's

efficiency beside the above dynamic method [12] regarding

exactitude, quantifiability, as well as coverage. Listings on 9

frequent programs reveal that our system is scalable as well as

appropriate (cf half 4). Such as, it obtained but 2 occasions to

seem at each of the 9 choose a check issues, collectively with

significant programs as participant Reader, Safari, and

QuickTime. The outcomes also reveal that our estimated

context sensitive emulation obtains orders of magnitude

reduction inside the size of the code essential to be analyzed

and critically provide to the quantifiability of our method. In

provisions of coverage, our tool identifies more prospective

perilous loadings also comfortably matches the dynamic

strategy.

Main Contributions:

We've urbanized the main static twin assessment to choose

unsafe component loadings. Attributable to its quantifiability as

well as advanced code coverage, our strategy efficiently

enhances the obtainable dynamic strategy.

We have estimated context-sensitive emulation, Correlate in

nursing affordable strategy that mixes segmenting as well as

emulation for the proper also ascendible evaluation of runtime

specifications of program factors.

The rest of this premise is prepared as observe. Section a pair

of demonstrates our strategy with a running model. Section

three provides complete information of our static appreciation

algorithmic strategy. We often illustrate our implementation as

well as assessment in Section four. Lastly, Section five studies

further associated work, also Section six ends with a spoken

language of upcoming work.

1. OVERVIEW

This section demonstrates our strategy. Our strategy performs

on binaries, but for presentational purpose, we reveal the

sample in C-like pseudo code.

Extraction Phase: We foremost evaluate selection sites for

component loading. Inside the sample, line 23 refers to a

decision website from the Load Library controller call

direction. The program call’s only limitation target_api

establishes that component should be encumbered. We obtain a

possibility to utilize context-sensitive emulation to evaluate its

possible values.

Incremental and standard Segmenting: System segmenting

generally looks at point stream dependencies also information

to eliminate a piece. In our option, since the initial objective is

to work out doable values of target_api, we obtain a possibility

to produce the piece as well as think about data dependencies.

To determine the possible values of goal_api, we'd choose

require completely the code that results the primary factor of

the function. To the final, we get a tendency to preserve the

backward segmenting in relevance your latest segmenting

standard, which is developed secured caller-callee connection

also conjointly the callee's function image. In our illustration,

there exist to determination sites. Therefore, we have a

possibility to maintain with situations of Intra techie backward

segmenting in relevance original segmenting requirements. We

have a possibility to generate context sensitive lay proceeding

blocks by instantiating twice as the piece for delay as well as

connecting each event with its several caller's slice. We obtain

a possibility to conjointly manage the maps around all of the

newer segmenting standards and so the callee's comparative

variables for the bluffly emulation quantity. We provide a

possibility to determine the segmenting computation, through

neither of provides any signaling.

Emulation of flow connected blocks: the blocks square estimate

adopted by U.S., to determine standards for target nine api. We

provide a possibility to arrange the rules inside the blocks

earlier to they may be traced. We obtain a tendency to do

thereby regarding the information and handle flow

dependencies joining the directions. Particularly, we obtain a

possibility to 1st program the relevant blocks in topological

determine with relevance the data flow dependencies around

them. We have a possibility to subsequently determine the

obtaining of the procedures in each designed essential block

regarding their setup flow dependencies limit within the initial

code.

Checking part. When the JRE masses the elements, it iterates

during a series of websites, established at run-time, to choose

the data. Throughout this state of issues, these consignments

square determine dangerous, if the JRE monitors various sites

to disentangle these factors. This may be as some loadings

could be hijacked by golf shot correlate absolute data. We

provide a possibility to examine whether or not the provided

files exist inside the primary listing checked. Due to Ms

P.Swapna Shankar, IJECS Volume 4 Issue 7 July, 2015 Page No.13273-13278 Page 13275

Windows’s searches major inside the directory anywhere the

strategy is put in [7], the loadings for such 2 features square

determine unsafe if they can’t overcome inside the system

directory.

1. STATIC DETECTION ALGORITHM

In this section, we provide background in series on unsafe

element loadings as well as information of our evaluation.

3.1 Background

Dynamic component loading is usually established by JRE by

meticulous program calls that obtain as enter a full path or

document name for the estimated component. The instance of

determinant the focus on component by JRE as observe:

The target element is scrupulous by its complete path or its

type.

When complete passage is used, the JRE overtly establishes the

target exploitation the whole path.

Alternatively, if document name is used and identified by the

JRE, the whole path of the scrupulous type is predefined.

If the specific file name is anonymous to the JRE, it iterates

during the predefined class methods to find the basic file with

the conscientious file name.

To sanctify the component determination strategy, it's essential

to model the category route state, because of even the

equivalent part- loading code might results in distinct

resolutions here distinct category route states.

Component Resolution: A component resolution

function  gets a component necessity

*

,f a directory

explore order * *
1,...() ...

ndd d    a n d a c l a s s p a t h

state  also leads a determined full path *  , where

 shows the alphabet utilized to categorize files as well as

indexes.

If f is a full path, (, ,) {f d   f if ;f  or else where  is

the empty string

 If f is a file name,

(, ,)f d   {  if f is acknowledged to the JRE as ; or else,

where “+ ” shows string concatenation

We further observe part loading that we obtain a possibility to

require to consider about the actually loaded procedure. The

interest is that the JRE does not load a similar component

frequently. In our formalization, we provide a possibility to let

the set of burdened components L be the set of comprehensive

techniques of all the actually loaded components.

Component Loading: selected the loaded elements L, a

component loading function A requires a component condition
*,f a directory search order 1,...()

ndd d * *...   a file

system state a, also the position of loaded components L, and

continues an argument success or failure:

(, , ,) {f d L   Success if  (, ,)f d L     Failure

other wise

The sensible component loading system is consistently utilized

on significant JREs. However a full path completely defines the

target component, for a file name, the complete path of the

loading component frequently relies on the below file system

specify. This system can proceed to two kinds of vulnerable

loadings: declaration failure and resolution hijacking.

Resolution Failure: A declaration failure occurs if

(, ,)f d   . In this container, with a complete path

specification f, a capricious file using same full path f can

hijack the component loading. If f is file name, one be sensible

to hijack this loading by beginning a file with the scrupulous

name f in any listing id exacting by the explore

order 1,...()
ndd d .

Resolution Hijacking: A quality hijacking end up if the

subsequent situations hold: 1) f is the file name of the target

component also indefinite to the JRE; 2)

(, ,) \ 1kf d d f k       and 3) (, , ,)f d L  = success.

In this container, one may hijack the loading by setting up a file

with the conscientious name f in any type of directory id

where i < k.

Figure 1: Architecture of the proposed framework

To avoid vulnerable loadings, it is worthwhile for developers to

determine the target component in a secure manner. We

describe safe target component criteria as follows.

2. EMPIRICAL EVALUATION

In this segment, we assess our static strategy in regards to

consistency, scalability, also strategy coverage. We reveal that

our strategy scales to significant real-world conformity and is

appropriate. It offers good exposure, considerably better than

the obtainable dynamic strategy [12].

4.1 Implementation

The semi automated dynamic software update evaluation

estimated is considered under JRE. In this imagine the model

has been used to test the alert used on open source program

entitle GDOWNLOADER.

4.2 Evaluation Setup and Results

We project at finding vulnerable component loadings in

programs. As the detection of vulnerable loadings from the

APIs is operating by the JRE, we just determine the application

process in the extraction phase.

2.2.1 Precision and Scalability

Table 1 reveals our research outcomes on eight loved Windows

programs. Because of they are essential programs in America

these programs were most prominent by us as our evaluation

subjects. The results describe that our strategy could efficiently

discover, from system binaries, unsafe component loadings

definitely loaded at runtime. One desirable finding to notice is

that the outcomes of the extraction part are identical. This is

very possibly by every apps is a part of the Mozilla project and

utilize the precise similar set of program elements.

P.Swapna Shankar, IJECS Volume 4 Issue 7 July, 2015 Page No.13273-13278 Page 13276

As we obtain a possibility to gift eventually our evaluation time

is mastered by now. Such are giant code, also to boot we

provide a propensity to just need to destruct the code once for

most of the consequent analysis.

Based on our evaluation of context sensitive emulation, the

quantity of blocks is normally significant than that of the call

up sites. This signifies that variables for consignment catalogue

calls will have numerous values, verifying the necessity for

decision flow associated blocks. The day to day many

instructions for the blocks is very small, that by trial as well as

error approved our evaluation style choices.

We usually converse the evaluation of our tool’s measurability.

To the conclusion, we provide a possibility to live its

evaluation time and then the efficiency of its back-ward

segmenting phase. Table1 reveals the great outcomes, the

outcomes reveal that our evaluation is wise also may evaluate

inside moments. We get a possibility to evaluate our semi

automated DSU evaluation strategy with absolutely

mechanized as well as manual methods, to support perceives its

effectiveness. We obtain a possibility to thereby determine

what percentage pointers as well as functions you can find in

all application through these numbers represent the value of

this a priori development. Considering the table1, table2 also

table3 shows, we get a possibility to perform orders of size

reducing in regards to every variety of functions at the aspect

of the quantity of directions assessed.

Table 1: Component wise report generated by the proposed

architecture

Table 2: Sample Call tree analysis report generated

Table 3: Sample Coverage analysis report generated

4.2.2 Code Coverage

To value our tool's code protection, we obtain a possibility to

evaluate unsafe loadings comprehend by the static as well as

powerful examines. In particular, we obtain a possibility to

identified unsafe component loadings with this dynamic

strategy [12] also evaluate its results with our semi automated

detection. In this evaluation, we obtain a possibility to

emphasize on application-level runtime unsafe loadings as load

time based elements square determine loaded by JRE-level

code. We obtain a possibility to observe that our semi

automated model will determine not only in the significant of

the dynamically-detected vulnerable loadings besides

conjointly various different prospective ones conjointly. We

obtain a possibility to next result in a most in-depth assessment

of the outcomes.

Static-only Cases: Our static evaluation notice many extra

prospective unsafe loadings. It's relevant to understand whether

they reveal actual problems or not. We obtain a possibility to

literally examine these further identified unsafe loadings to

evaluate the precision of our analysis. Particularly, we obtain a

possibility to evaluated even if they square quantify

approachable from the access points of the applications, I.e.,

whether there endure techniques from the connection points to

the assess sites of the vulnerable loadings inside the strategies'

inter-method decision flow graphs (Inter-method summarize

flow graphs).

Remember that these loadings significant as "Unknown" should

remain obtainable by it's tough to determine circuitous

advances in code, thus definite organize flow edges is even

inadequate from the Inter-method decision flow graphs. Every

statically obtainable unsafe loadings result in component load

hijacking if the related decision sites square determine rise as

well as conjointly the target components are not loaded

nevertheless.

External Parameters: A target pattern can be separate by a

constraint of an export function, which is not invoked. One can

offset this problem by evaluating the data flow reliance among

the dependent components.

As the export functions are usually not use to the components,

anyhow, like an analysis does not ensure to obtain all the

objective specifications.

Unknown Semantics of System Calls: overall semantics of

category calls is frequently not reported, also at times usually

their names aren't revealed. We cannot examine nor copy them,

when we encounter such company calls. When information of

that way calls becomes obtainable, we can definitely add

evaluation assistance for them.

1. RELATED WORK

We analyze additional associated work excluding for the one

on identification of unsafe loadings [12], that we have obtained

already revealed. Our strategy carries out static evaluation of

P.Swapna Shankar, IJECS Volume 4 Issue 7 July, 2015 Page No.13273-13278 Page 13277

binaries. Concerning this option, evaluation Set Analysis

(VSA) [2, 18] is even the principally strongly connected to

ours. It integrates numeric as well as indicator examines to

determine a complete approximation of statistical values of

system variables. Value to VSA, our strategy centers on the

estimation of string variables. Furthermore, demand-driven also

utilizes context-sensitive emulation to level to real-world

significant programs.

Emblematic evaluation [11] might also be applied to determine

values of the system elements, when we obtain a possibility to

describe antecedently, instead of emulation. Anyhow, symbolic

strategies frequently sustain start poor measurability, also

further considerably, it is not appropriate to symbolically cause

about system calls, that square determine usually quite

challenging. Our newer usage of context prone emulation offers

a worthwhile alternative for dispensation the values of system

variables.

Beginning with Weiser's seminal perform [25], system

segmenting might substantially examined [23, 26]. Our perform

is associated with the significant system of focus on static

segmenting, particularly the SDG-established strategies.

Prevalent SDG-based static segmenting strategies [1, 5, 9, 16,

20, 21] establish the full SDGs upfront. In variation, we obtain

a possibility to establish management - and data - flow reliance

in pattern in an exceedingly manner, beginning with the

necessary segmenting standards. Our segmenting strategy is in

addition, accepted as a consequence of we obtain a possibility

to model all decision website using its callee's inferred

determine that abstracts away the inner dependency of the

callee. Particularly, we obtain a possibility to deal with a phone

as a non branching guidance and estimate its dependencies with

the callee's conceptual data. This optimization stands USA to

abstract absent clarify data flow dependencies of objective

exploitation its comparative decision instruction. We obtain a

possibility to develop AN effective trade-off among correct as

well as measurability. As revealed by our evaluation outcomes,

execute epitome information may be with performance

computed also delivers appropriate outcomes for our location.

Our segmenting guideline is demand driven, also is hence

further associated to demand-driven dataflow examines [10,

17], that are estimated to enhance analysis efficiency once

complete dataflow specifics aren't essential. These techniques

square determine similar to ours through the additionally

control caller association to eliminate unfeasible dataflow

techniques. The main variation is that we obtain a possibility to

utilize an easy epitome evaluation to create pithy work

summaries as an alternative of exclusively crossing the

functions' Intra proceeding dependency graphs, I.e., their

PDGs. The other variation is that the revealed concept that we

obtain a possibility to produce context sensitive conceivable

program prevent for emulation to hinder the situation in

brooding about system calls.

2. CONCLUSION AND FUTURE WORK

We Have bestowed a semi automated DSU evaluation strategy

to find vulnerable loadings. The center of our evaluation is

strategies to only as well as ascendible to acquire those

elements square determine loaded at a specific consignment

selection website. We obtain a possibility to expelling a java

stack log extraction as well as evaluation process, which

combines standard as well as progressive slice development

with the emulation of decision flow connected blocks. Our

evaluation on 9 loved Windows distribution reveals the

efficiency of our strategy. Due to its sensible measurability,

precision, also security, our strategy is an effective balance to

dynamic detection [12]. For prospective work, we'd have to

suppose 2 attention-grabbing instructions. Since unsafe loading

can be a basic issue furthermore as suitable to additional

runtime locations, subsequently we obtain a possibility to shall

prolong our strategy and evaluate unsafe half loadings in more

run time situations including CLR. Next, we obtain a

possibility to determine to explore although our strategy is

enhanced to chop back emulation problems.

References

[1] Martin Abadi and Cedric Fournet. Access control

based on execution history. In NDSS, 2003.

[2] . Andrew Baumann, Gernot Heiser, Jonathan Appavoo,

et al. Providing dynamic update in an operating

system. In USENIX, 2005

[3] .Andrew Baumann, Jonathan Appavoo, Robert W.

Wisniewski, et al. Rebootsare for hardware:

Challenges and solutions to updating an operating

system on the fly. In USENIX, 2007.

[4] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira,

Chuang-Hue Moh,and Steven Richman. Lazy modular

upgrades in persistent object stores. In OOPSLA,

2003.

[5] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang,

and Pen-ChungYew. Live updating operating systems

using virtualization. In VEE,2006.

[6] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-

Chung Yew. POLUS:A POwerful Live Updating

System. In ICSE, pages 271–281,2007.

[7] Dawson Engler and Ken Ashcraft. RacerX: effective,

static detection of race conditions and deadlocks. In

SOSP, 2003

[8] . Cormac Flanagan and Stephen N. Freund.Type-based

race detection for Java. In PLDI, 2000.

[9] Jeffrey S. Foster, Robert Johnson, John Kodumal, and

Alex Aiken.Flow-Insensitive Type Qualifiers.

TOPLAS, 28(6):1035–1087, November 2006.

[10] Stephen Gilmore, Dilsun Kirli, and Chris

Walton.Dynamic ML without dynamic types.

Technical Report ECS-LFCS-97-378, LFCS,

University of Edinburgh, 1997.

[11] Tim Harris and Keir Fraser. Language support for

lightweight transactions. In OOPSLA, 2003.

[12] M. Herlihy and J. E. B. Moss. Transactional memory:

Architectural support for lock-free data structures. In

ISCA, 1993.

[13] Michael Hicks, Jeffrey S. Foster, and Polyvios

Pratikakis. Lock Inference for Atomic Sections. In

TRANSACT, 2006.

[14] Atsushi Igarashi and Naoki Kobayashi. Resource

Usage Analysis. In POPL,Portland, Oregon, 2002.

[15] John Kodumal and Alexander Aiken. Banshee: A

scalable constraint-based analysis toolkit. In SAS,

2005.

[16] Leslie Lamport. Time, clocks, and the ordering of

events in a distributed system. CACM, 21(7):558–

565, 1978.

[17] Insup Lee. DYMOS: A Dynamic Modification

System. PhD thesis, Dept. of Computer Science,

University of Wisconsin, Madison, April 1983.

[18] John M. Lucassen. Types and Effects: Towards the

Integration of Functional and Imperative

Programming. PhD thesis, MIT Laboratory for

Computer Science, August 1987.MIT/LCS/TR-408.

P.Swapna Shankar, IJECS Volume 4 Issue 7 July, 2015 Page No.13273-13278 Page 13278

[19] Kristis Makris and Kyung Dong Ryu. Dynamic and

adaptive updates of non-quiescent sub systems in

commodity operating system kernels. In Proc. Euro

Sys, March 2007.

[20] Jeremy Manson, William Pugh, and Sarita V.

Adve.The Java Memory Model. In POPL, 2005.

[21] John C. Mitchell. Type inference with simple

subtypes. JFP, 1(3):245–285,July 1991.

[22] Mayur Naik and Alex Aiken. Conditional must not

aliasing for static race detection. In POPL, 2007.

[23] Mayur Naik, Alex Aiken, and John Whaley.Effective

static race detection for java. In PLDI, 2006.

[24] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks.

Understanding Source Code Evolution Using Abstract

Syntax Tree Matching. In MSR’05,2005. URL

http://www.cs.umd.edu/~mwh/papers/evolution.pdf.

[25] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and

Manuel Oriol. Practical dynamic software updating

for C. In PLDI, 2006.

[26] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and

Polyvios Pratikakis. Contextual Effects for Version-

Consistent Dynamic Software Updating and Safe

Concurrent Programming. Technical Report CS-TR-

4920,

 Author Profile

 P.Swapna Shankar is currently pursuing her

M.Tech Computer Science & Engineering

Department in Kakatiya Institute of Technology

and Science, Warangal. She received her B.Tech

in Computer Science and Engineering from Sree

chaitanya institute of technology and science,

Thimmapur, karimnagar. Her area of interests

includes Data mining and operating system.

Dr.Niranjan Polala is working as Professor and

HOD of CSE in KITS, Warangal. He received

Ph.D in CSE from Kakatiya University, Warangal

in the year 2013. He received M.Tech (Computer

Science and Engineering) from NIT, Warangal in

the year 2001 and B.E Computer Science from

Nagpur University in 1992. He authored three text

books in the field of computer science. He

published 30 research papers in various

International Journals and Conferences. He is a

member of the ISTE and CSI. His area of interests

includes Software Engineering.

Dr.Shireesha Pakala is working as Assistant

Professor in the Department of CSE, KITS,

Warangal. She received Ph.D in Computer Science

from Kakatiya University, Warangal in the year

2012. She received M.Sc. Computer Science from

Kakatiya University in 2001. She published 8

research papers in various International Journals

and International Conference. She is the member

of the ISTE and IETE. Her area of interests

includes Data mining and Software Engineering.

http://www.cs.umd.edu/~mwh/papers/evolution.pdf

