
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 4 April 2017, Page No. 21154-21157

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i4.62

k. vikram, IJECS Volume 6 Issue 4 April, 2017 Page No. 21154-21157 Page 21154

Flexible Data Processing Using Apache PIG

k. vikram 1, J. Sredevi2, J. Sindhu3, J. Shravya4, K. Akrutha5

Assistant Professor, Computer Science & Engineering, Guru Nanak Institution Technical Campus, Hyderabad, India
1

B.Tech Student, Computer Science & Engineering, Guru Nanak Institution Technical Campus, Hyderabad, India
2,3,4,5

Abstract: The World Wide Web has an estimated 2 billion users and contains anywhere from 15 to 45 billion web pages , with

around 10 million pages added each day with such large numbers , almost every website owner and developer who has a decent

presence on the internet faces a complex problem : how to make sense of their web pages and all the users who visit their

websites. Every web server worth its salt logs the user activities for the websites it supports and the web pages it serves up to the

virtual world. These web logs are mostly used for debugging issues or to get insight in to the details , which are interesting from a

business or performance point of view. Overtime , the size of the logs keeps increasing until it becomes very difficult to manually

extract any important information out of them , particularly for busy websites. The Hadoop framework does a good job at tackling

this challenge in a timely , reliable and cost-efficient manner. Web log analysis using the Hadoop framework and pig scripting

language , which are well suited to handle large amounts of unstructured data. We propose a solution based on the pig framework

that aggregates data at an hourly , daily or yearly granularity..
Index Terms: Apache Pig, Big Data, Hadoop, HDFS

I. INTRODUCTION

 For the past two decades most business analytics have been

created using structured data extracted from operational

systems and consolidated into a data warehouse. Big data

dramatically increases both the number of data sources and the

variety and volume of data that is useful for analysis. A high

percentage of this data is often described as multi-structured to

distinguish it from the structured operational data used to

populate a data warehouse. In most organizations, multi-

structured data is growing at a considerably faster rate than

structured data. Two important data management trends for

processing big data are relational DBMS products optimized

for analytical workloads (often called analytic RDBMSs, or

ADBMSs) and non-relational systems processing for multi-

structured data.

 Hadoop is an open-source data processing framework that

includes a scalable, fault-tolerant distributed file system,

HDFS. Although HDFS was designed to work in conjunction

with Hadoop’s job scheduler, we have re-purposed it to serve

as a grid storage element by adding GridFTP and SRM servers.

We have tested the system thoroughly in order to understand

its scalability and fault tolerance. The turn-on of the Large

Hadron Collider (LHC) in 2009 poses a significant data

management and storage challenge; we have been working to

introduce HDFS as a solution for data storage for one LHC

experiment, the Compact Muon Solenoid (CMS).

 The High Performance Computing (HPC) and MapReduce

have been doing large-scale and Parallel data processing for

years, using such APIs as Message Passing Interface. Broadly,

the approach in HPC is to distribute the work across a cluster

of machines, which access a shared filesystem, hosted by a

SAN. This works well for predominantly compute intensive

jobs, but becomes a problem when nodes need to access larger

data volumes (hundreds of gigabytes, the point at which

MapReduce really starts to shine), since the network

bandwidth is the bottleneck and compute nodes become idle.

In order to solve the scalability problem, we proposed a system

that exploits parallel database processing over the distributed

file system and the MapReduce framework [2]. The system

design was inspired by the recent achievements of Google and

Yahoo for handling petabyte scale Web data on the commodity

hardware clusters. The distributed file system proposed as

Google File System (GFS) [3] provides functionality to store a

large file over multiple storage nodes by dividing it to fixed-

size chunks, with fault-tolerance to node crashesusing the

chunk replica on other nodes. MapReduce [4] is a

programming model to compose a parallel job by defining sub-

tasks as an arbitrary map operation processing the chunk and a

reduce operation merging the outputs of the maps, and also an

efficient and fault-tolerant execution model allowing retries of

the sub-tasks on a distributed environment running GFS.

Hadoop [5] is based on GFS and MapReduce, and it is an

open-source software aimed at providing a similar

functionality. We use Hadoop as the basic infrastructure and

also use Pig [6], which provides a general data processing

platform on top of MapReduce and allows users to write a

script incorporating database operations (e.g. filter, join) in a

procedural programming style. Pig compiles the script and

generates the MapReduce code to run on the Hadoop installed

system. The scalability of this software stack is shown by other

works [7], [6].

 The main objective of this project is finding the business

insights of current user records data. And get the benefits for

business growth. The parameters to be considered for analysis

are Daily user count and bytes transmitted on a particular time

slot. Area wise business (usage) share in the total business.

Since every market owner will be depending on partners to get

the service where they does not have the service provider

II. EXISTING TECHNOLOGY

In the existing technology ,we have the datasets stored in the

local file system and the data is transferred into the HDFS by

using the Pig Latin commands. Here data is more sparse and

unclear to analyse them in an efficient way. Therefore there is

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i4.62

k. vikram, IJECS Volume 6 Issue 4 April, 2017 Page No. 21154-21157 Page 21155

a need to provide a solution to analyse the datasets easily. As

data sets have explosively increased, there have been proposed

big data platforms for processing huge data sets. Hadoop

MapReduce platform is a representative data processing

scheme for handling large data sets on distributed computing

nodes. The Hadoop platform can support highly scalable

distributed data processing capabilities, but it is difficult to

program and easy to make serious errors because it supports a

low-level interface. In order to solve these problems, the

apache Pig platform has been proposed. Then apache Pig

system provides a high-level interface language, called Pig

Latin. Pig system enables users to generate data processing

services with ease of development, high productivity by using

the high-level data flow Pig Latin language. Pig system

compiles Pig Latin programs, which are abstract data flow

expressions, into one or more physical data flow jobs, and then

orchestrates the execution of these jobs. And the compiled

service jobs are executed on the MapReduce engine. The

MapReduce platform is suitable for batch processing on large

data sets.

III. PROPOSED TECHNOLOGY

In the proposed technology, there is large amount of datasets

present in the Local file system is transferred into the HDFS

and there the group of data, that is essential for data processing

is dumped into the separate files and then we can query on the

existing data using the Pig Latin Commands. Where the

desired result are obtained without killing the users time. The

open source platform for analyzing enormous data sets that

consists of a high-level language for expressing data analysis

programs, coupled with infra-structure for evaluating these

programs. It supports the parallel programming model of

MapReduce jobs to be executed on a Hadoop cluster system.

The infrastructure layer of apache Pig is composed of a

complier that generates sequences of MapReduce programs,

for which large-scale parallel implementations already exist.

The language layer in Pig system currently consist of simple

scripting language, called Pig Latin. The Pig Latin is a

procedural language that explicitly defines the data flow, so we

can easily create the program for data processing . It supports

optimization opportunities, so users can focus on semantics

rather than efficiency. Also, users can create their own

functions, user-defined functions (UDFs), to do special-

purpose processing. Pig supports basic relational operators for

processing large data sets. The Pig Latin scripts as an input

source, Next, the Pig Latin programs will be compiled as one

or more Map-Reduce jobs. There are several stages of

compilation such as parsing, semantic checking, optimizations,

and translators. Next, a translated MapReduce jobs jar is

launched on.

 Fig. 1 Evolution of the Big data and usage

IV. SYSTEM ARCHITECTURE

 Fig. 2 System Architecture of Pig

The systems architect establishes the basic structure of the

system, defining the essential core design features and

elements that provide the framework for all that follows, and

are the hardest to change later. The systems architect provides

the architects view of the users' vision for what the system

needs to be and do, and the paths along which it must be able

to evolve, and strives to maintain the integrity of that vision as

it evolves during detailed design and implementation. The

system has three integrated faces; general data processing

interface provided as Pig Latin standard commands, RDF data

processing interface that we extend, and custom data

processing interface given by the users as UDF. Our extension

will be limited to the RDF data processing part. The storage

schema is defined at the bottom layer and the optimization

using the schema is implemented in Pig's query engine.

IV. RESULTS

 Apache Pig is an abstraction over MapReduce. It is a

tool/platform which is used to analyze larger sets of data

representing them as data flows. Pig is generally used with

Hadoop; we can perform all the data manipulation operations

in Hadoop using Apache Pig.

 To write data analysis programs, Pig provides a high-level

language known as Pig Latin. This language provides various

operators using which programmers can develop their own

functions for reading, writing, and processing data.

 To analyze data using Apache Pig, programmers need to

write scripts using Pig Latin language. All these scripts are

internally converted to Map and Reduce tasks. Apache Pig has

a component known as Pig Engine that accepts the Pig Latin

scripts as input and converts those scripts into MapReduce

jobs.

DOI: 10.18535/ijecs/v6i4.62

k. vikram, IJECS Volume 6 Issue 4 April, 2017 Page No. 21154-21157 Page 21156

 Fig. 3 Entry stage of the Hadoop

 Fig. 4 Hadoop local terminal

 Fig. 5 Entering into the Pig Terminal

 Fig. 6 Dumping the data from local to HDFS

 Fig. 7 Generating the desired result

V. CONCLUSION

Analysts can talk about data insights all day (and night), but

the reality is that 70% of all data analyst time goes into data

processing and not analysis. At Sigmoid Analytics, we want to

streamline this data processing pipeline so that analysts can

truly focus on value generation and not data preparation. We

focus our efforts on three simple initiatives. Make data

processing more powerful. Make data processing more simple.

Make data processing 100x faster than before Where ever you

using HDFS (Hadoop Distributed File System) data and

securely to access that data from anywhere. And also security

is provided by using Kerberos technique. We propose a data

flow language, which supports to deploy services that

continuously process huge streams of data in real-time. To

handle unbounded streams of data, we provide a data flow

stream processing extended from Pig Latin. Finally, the

generated stream processing service jobs are submitted and

executed to process large streams of data in real-time on a

highly scalable distributed stream processing system.

DOI: 10.18535/ijecs/v6i4.62

k. vikram, IJECS Volume 6 Issue 4 April, 2017 Page No. 21154-21157 Page 21157

VI. REFERENCE

[1] Liming Lu, Mun Choon Chan, Ee-Chien Chang, "A

General Model of Probabilistic Packet Marking for IP

Traceback", ASIACCS ’08, March 18-20, Tokyo,

Japan.

[2] Chao Gong, Kamil Sarac, "IP Traceback based on

Packet Marking and Logging", IEEE International

Conference on Communication (ICC), May 16-20,

2005., Seoul, Korea.

[3] Turgay Korkmaz, Chao Gong, Kamil Sarac, Sandra G.

Dykes, "Single packet IP traceback in AS-level partial

deployment scenario", Int. J. Security and Networks,

Vol. 2, Nos. 1/2, 2007

[4] Shui Yu, Wanlei Zhou, Song Guo, Minyi Guo, "A

Feasible IP Traceback Framework through Dynamic

Deterministic Packet Marking", DOI

10.1109/TC.2015.2439287, IEEE Transactions on

Computers

[5] T. K. T. Law, J. C. S. Lui, and D. K. Y. Yau, “You can

run, but you can’t hide: An effective statistical

methodology to trace back DDoS attackers,” IEEE

Transactions on Parallel and Distributed Systems, vol.

16, no. 9, pp. 799–813, 2005.

[6] S. Yu, W. Zhou, S. Guo, and M. Guo, “A dynamical

deterministic packet marking scheme for DDoS

traceback,” in IEEE International Conference on Global

Communication, 2013.

[7] Darshan Lal Meena, Dr. R. S. Jadon, "Distributed Denial

of Service Attacks and Their Suggested Defense

Remedial Approaches ", Volume 2, Issue 4, April

2014

 [8] World Wide Web Consortium (W3C)

 Recommendation, “Resource Description Framework

 (RDF),” http://www.w3.org/RDF/, 2004.

 [9] Y. Tanimura, A. Matono, I. Kojima, and S. Sekiguchi,

 “Storage Scheme for Parallel RDF Database Processing

Using Distributed File Ssytem and MapReduce,” in

Proceedings of HPC Asia, 2009, pp. 312–319.

 [10] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The

 Google File System,” in Proceedings of the 19th ACM

Symposium on Operating System

 Principles, 2003.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” in Proceedings of

the 6th Symposium on Operating System Design and

Implementation, 2004.

[12] “Hadoop,” http://hadoop.apache.org/.

[13] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.

 Tomkins, “Pig Latin: A Not-So-Foreign Language for

 Data Processing,” in Proceedings of ACM SIBMOD,

 2008, pp. 1099–1110.

[14] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.

 Narayanamurthy, C. Olston, B. Reed, S. Srinivasan,

 and U. Srivastava, “Building a High-Level Dataflow

 System on top of Map-Reduce: The Pig Experience,”

 in Proceedings of VLDB, 2009.

[15] O. O’Malley and A. C. Murthy, “Winning a 60 Second

 Dash with a Yellow Elephant,”

 http://sortbenchmark.org/Yahoo2009.pdf, 2009.

