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Abstract: Management of transportation systems has become increasingly important in many real applications such as location-based 

services, supply chain management, traffic control, and so on. These applications usually involve queries over spatial road networks with 

dynamically changing and complicated traffic conditions. When we consider road network, route search and optimal path queries are two 

important types of queries. A path query returns a path that is a set of points that connects the source and destination. The optimal path 

queries find the optimum path from set information. In the case of road network users give some specification about the travelling with or 

without constraints. The optimal path queries optimize the possible paths and give the optimal path that satisfies all the constraints. The 

road network mainly deals with time dependent parameters A spatial road network can be modeled by a large graph in a 2-dimensional 

geographical space, whose edges correspond to road segments, and are associated with weights related to the traffic information. This 

paper, mainly focus on finding one of the best path that has minimum travel time. User can select the query points and Candidate plans are 

generated based on the selected points. To reduce the search space time interval pruning and probabilistic pruning strategies are 

implemented. Finally the best plan is refined based on a probabilistic threshold. 
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1. Introduction 

Standard algorithms for finding shortest path in graph assume 

that costs are deterministic. The most commonly used 

algorithm to find the shortest path is Dijkstra’s algorithm [1]. 

The optimal route query processing is mainly used in the road 

network. A road networks is represented by a large graph in 2-

dimentional space. The edge is considered as a road segment. 

Various queries have been proposed to find the optimal path in 

road network. The optimal path queries find the optimal path 

from the given set of information. Various techniques are used 

for the processing of path queries .Some of the techniques use 

travelling constraints which are either total order or partial 

order. Optimal path query processing finds the entire possible 

path and then refines the best path. Different queries use 

different algorithms. This paper, mainly focus on finding one of 

the best path that has minimum travel time. Slightly 

modified versions of the standard algorithms will produce 

optimal results. Two pruning strategies are used to reduce the 

search space. User can select the query points. Candidate plans 

are generated for the selected points. To reduce the search 

space two pruning strategies are implemented. Finally the best 

plan is refined based on probabilistic threshold. 

 

The paper is organized as follows: section 2 presents various 

path query algorithms. Section 3 presents the  proposed system. 

Section 4 discuss about the framework of the proposed system . 

 

2. Various Path Query Algorithms. 

2.1 Fast Approximation Algorithm 

On Trip Planning Queries  are the efficient and exact solutions 

for the general optimal route queries. A set of query points are 

given, where each point belongs to a specific category, a 

starting point S and a destination E. TPQ retrieves best trip that 

starts at S and passes through at least one point from each 

category and ends at E[4]. Four algorithms with various 

approximation ratios are used in terms of m and ρ, where m is 

total number of categories and ρ is maximum category 

cardinality. Two greedy algorithms with tight approximation 

ratios with respect m are Nearest Neighbor Algorithm and 

Minimum Distance Algorithm. 

Nearest Neighbor Algorithm Iteratively visit the nearest 

neighbor of last vertex added to the trip from all vertices in 

categories that have not been visited yet. 

Minimum Distance Algorithm is better when compared with 

Nearest Neighbor Algorithm. Algorithm chooses set of 

vertices, one vertex per category and sum of cost per vertex is 

minimum cost among all vertices belong to respective category. 

Creates trip by traversing these vertices in nearest neighbor 

order. 

 

2.2 New Dijkstra Based Algorithm 

A new DIJKSTRA-based algorithm is used to find the optimal 

LTT with time complexity O((n log n + m)α(T)) and space 

complexity O((n + m)α(T)), where n is the number of nodes, m 

is the number of edges, and α(T) is the cost required for each 

function operation. Propose algorithm by decoupling path 

selection and time refinement.  DIJKSTRA-based algorithm is 

used for time-refinement and a linear-time algorithm for path 

selection. 

Dijkstra Based time refinement: time-refinement means to 

compute and refine the earliest arrival-time function gi(t) for 

every node vi in V The earliest arrival time function is 

calculated for every node. Then refine the arrival time function, 

incrementally in the given starting time interval. Incrementally 
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means refine the earliest arrival time function by extending the 

starting sub-interval to larger starting sub interval. 

 

2.3 P*-A Best First Search Algorithm 

P* algorithm, a best-first search algorithm for efficient 

probabilistic path query evaluation. P* carries the similar spirit 

as the A* algorithm. It iteratively visits the next vertex that is 

most likely to be an answer path using a heuristic evaluation 

function, and stops when the rest unexplored paths have no 

potential to satisfy the query. However, the two algorithms are 

critically different due to the different types of graphs and 

queries. A* is used to find the shortest path between two 

vertices u and v in a certain graph. Therefore, the heuristic 

evaluation function for each vertex vi is simply the sum of the 

actual distance between u and vi and the estimated distance 

between vi and v. P* aims to find the paths between two 

vertices u and v that satisfy the weight threshold l and 

probability threshold p in a probabilistic graph with complex 

correlations among 

edge weights. Therefore, the heuristic evaluation functions for 

each vertex vi is the joint distribution on a set of correlated 

random variables. This posts serious challenges in designing 

heuristic evaluation functions and calculation. Three heuristic 

evaluation functions that can be used in the P* algorithm are 

Constant Estimate, Min-Value Estimate and Stochastic 

Estimate.  

 

2.4 Priority First Search With Dominance Pruning 

This is a modified version of shortest path algorithm. Here all 

the undominated paths are maintained .If one path to a node 

dominates other then stochastic consistency condition ensures 

that the second cannot be part of overall shortest path. A 

method called priority first search with dominance pruning, a 

variant of priority first search is used. Two data structures are 

maintained Priority Queue and Closed list. Priority Queue 

consist of path and path cost. Closed list associates nodes with 

undominated paths found to that node.  

The general procedure is: 

Step1: Algorithm first add origin to priority queue with path 

cost 0. 

Step2: Then get highest-priority item from PQ. If this item has 

lower expected utility than a known path to the destination, 

then terminate and return the best path to the destination found 

so far.  

Step3: Then add item to closed list. If there is already another 

path to that node with dominating priority then, go to step 2. 

Otherwise, add the path and its cost to the closed-list associated 

with this node. 

4. Generate successors to this item. Construct new paths for 

each possible bus we could take from this node, and put the 

resulting items on PQ. Go to step 2. 

 

2.5 Route Traversal And Link Traversal Search With 

Transitions 

Route Traversal Search traverses nodes similar to DFS. When 

expanding the current search node, RTS consider all successor 

nodes for each route that includes this node. It employs a 

termination check, based on the reachability information within 

the routes. The principle depends on inverted file R-index on 

the route collection. Route Traversal Search with Transitions 

exploits information about the transitions among routes   stored 

in T-index. It employs a stronger termination check based on 

the transitions between routes. In Link Traversal Search the 

search stops as soon as LTS visits a node (link) that lies on the 

same route with the target. Algorithm employs an augmented 

inverted file on the route collections, termed R-Index+, which 

associates a node with the routes that contain it and the 

immediately following link. Link Traversal Search with 

Transitions enforces a stronger termination check than LTS 

using the transition graph of the route collection.Finishes when 

it reaches a node that is closer than two routes away from the 

target. It uses information from the T –Index. 

 

2.6 Backward Search And Forward Search Solution 

 

The backward search methodology computes the optimal 

routes in reverse order of its points. Two algorithms are 

developed based on BSS are Simple Backward Search (SBS) 

and Batch Backward Search [6] 

SBS computes an upper bound  of the optimal route length, 

using a greedy algorithm .Then, SBS retrieves the set CS of 

candidate points that may be part of the optimal route  which 

are those that 1) belong to any category contained in the visit 

order graph , 2) fall within distance to the query start point q. 

This can be performed efficiently, e.g., by executing a circular 

range query on each R-tree that indexes a category of points 

relevant to the query. 

The batch backward search (BBS) method, improves SBS by 

employing batch processing in the backward join operations. 

Specifically, both the candidate set CS and the route set is 

partitioned into clusters before participating in a backward join. 

The partitioning of CS first groups points by their category, and 

then for each group, the points are further partitioned into 

clusters based on their spatial proximity. The partitioning of 

route set follows a similar strategy, by first grouping routes 

based on the categories they cover, and then clustering each 

group according to the locations of their start points. The 

clustering module in BBS must be highly efficient, since it is 

called during query time. 

The forward search approach traverses the search space in a 

depth-first manner, and incrementally improves the bound for 

optimal route length. As an additional benefit, forward search 

methods report results progressively, i.e., they first quickly 

produce one solution to the query, and then incrementally 

update it, until reaching the optimal one or being terminated by 

the user. Two algorithms developed based on FSS are Simple 

forward Search (SFS) and Batch Forward Search (BFS) 

The simple forward search (SFS) method resembles Greedy in 

that it also extends the current path by adding the nearest point 

from an unvisited category. A major difference between the 

two is that SFS backtracks after it obtains a complete route. 

BFS follows the same depth-first search paradigm as SFS. 

However, instead of enumerating individual routes, BFS 

searches for sequences of clusters, which we call cluster paths. 

Specifically, in a preprocessing step, BFS partitions the 

candidate set into clusters as in BBS, i.e., the points in each 

cluster belong to the same category, and are close to each other 

in space. 

 

3. Proposed Method   
The proposed method TPQ(Trip Planner Query) retrieves trip 

plans that traverse a set of query points in PT-Graph having the 

minimum traveling time with high confidence. TPQ problem 

considers multiple (≥2) places, uses the PT-Graph with the 

probabilistic model (rather than a certain graph), and has a 

different goal of minimizing the traveling time on road 

networks only (instead of the total time that includes the 

staying time at vertices). 
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The spatial road network is modeled by a probabilistic time-

dependent graph (PT-Graph). Specifically, a PT-Graph G is a 

directed graph, in which two connected vertices, vi and vj, are 

linked by two bidirectional edges ei,j and ej,i. Any edge ei,j in 

PT-Graph G is associated with an uncertain 

edge-delay function (UDF). 

 

A trip planner can specify n places of interest to visit (i.e., 

query points) on the road network, which are denoted as q1, q2, 

. . . , and qn. For each place qi (1 i n), visitors can stay for some 

time st(qi) [ST(qi), ST+(qi)], where ST(qi) and ST+ (qi) are 

the minimum and maximum staying time of travelers at qi. 

Here, ST (qi) is a constraint, which allows travelers to have 

enough time to visit qi. Our goal is to find the best plans of the 

place-visiting order, as well as staying time at each place, such 

that the total traveling time on road networks (i.e., the total 

time on the way to targeted places qi) is the smallest with high 

confidence. 

 Due to the data uncertainty in the PT-Graph, TPQ problem can 

be solved by first conducting queries in each possible world of 

the PT-Graph, and then combining the query results from all 

the possible worlds, where each possible world is a 

materialized instance of road network (PT-Graph) with fixed 

traffic conditions that can appear in reality. However, since the 

number of possible worlds can be exponential, this method is 

inefficient, and thus challenging to obtain the best trip plans 

efficiently from a PT-Graph. Thus, to tackle the efficiency 

issue of TPQs, effective pruning techniques are used to filter 

out false alarms of trip plans. 

 

4.  Framework of Proposed Method 
 The main framework use in the proposed method is filter and 

refine framework. The method is divided into three phases: 

Candidate Generation, Filtering phase and Refinement phase. 

 

4.1 Candidate Generation  

 

Here candidate plans are generated for the selected query 

points. Depth First Search(DFS) approach is used to obtain the 

candidate plans. A tree is constructed with R as root and query 

points as tree nodes. From each node different paths are 

generated in different visiting order. A new tree class is created 

and traversed in the tree to get all paths that contain the 

selected query points. For each selected query points the 

adjacent node and the corresponding edge is generated. The 

resulting paths are the set of candidate plans. Each candidate 

plan will contain all the selected query points. 

 

4.2 Filtering Phase 

 

In the filtering phase, effective pruning strategies are utilized to 

filter out false alarms of trip plans. Two pruning strategies are, 

time interval pruning and probabilistic pruning. The 

probabilistic pruning considers probabilistic distributions to 

prune those trip plans with low confidence. 

Time interval pruning utilizes lower/upper bounds of the 

traveling times for trip plans to filter out false alarms . 

Probabilistic pruning with β score considers β score to prune 

those trip plans with low confidences. 

 

4.2.1 Time interval Pruning 

 

To enable the time interval pruning one critical issue is on how 

to obtain lower/upper bounds(LBT and UBT)of the traveling 

time quickly. The basic idea is to infer such time bounds from 

UDFs of edges, as well as the staying time intervals at vertices, 

in the PT-Graph. 

 

 Each point is associated with their staying time interval and 

each edge is associated with travel time interval.LBT is 

calculated based on the minimum stay time and travel time 

.UBT is calculated based on maximum stay time and travel 

time. LBT is calculated based on minimum stay time and 

minimum travel time.  

 

Assume that we have a path v1 -> v2 -> v3 (of length 2), where 

the visitor departs from v1 at timestamp dep(v1) within a 

time interval [dep(v1), dep+ (v1)]. Note that, if vertex v2 is one 

of the specified query points, the staying time at v2 is bounded 

by [st(v2), st+(v2)] = [ST(v2), ST+(v2)] otherwise, when vertex 

v2 is a normal vertex (other than query point) on road networks, 

the staying time st(v2) at v2 is 0, that is, st (v2) = st+ (v2) = 0. 

Similarly UBT is calculated based on maximum stay time and 

maximum travel time. 

 

Let threshold τ be the smallest time upper bound, UBT(best 

plan), among all the candidate plans that have seen so far. 

Then, the time interval pruning method is to rule out those 

plans, Plan, whose lower bounds of the traveling time, 

LBT(Plan), are greater than or equal to threshold 

(i.e=UBT(best plan)). Then insert the remaining plan to 

candidate set. In the next step retrieve all 

the points that have visited. If their exits other points in the 

graph, then replace plans with those query points in different 

orders and generate plan1. Update travelling time interval of 

finer plans, plan1 and .Then apply filtering to plan1 and insert 

remaining plans to candidate set. There are still some plans that 

we have not fully investigated, that is, those plans Plan2 with 

paths among query points dangling across different index 

nodes. Therefore, again utilize the time interval to rule out false 

alarms for these plans, and add those unpruned plans to 

candidate set. 

 

4.2.2 Probabilistic Pruning With β Score 

 

To enable probabilistic pruning the candidate set after time 

interval pruning is considered. 

Here user can select the day of travel to avoid the traffic jams. 

β is maximum velocity function. β score is calculated for each 

candidate plan based on distance, velocity and LBT. To enable 

probabilistic pruning remove those plans whose value is 

smaller than the probabilistic threshold. Probabilistic threshold 

is the average of LBT of all candidate plans. 

 

4.3 Refinement   

 

In refinement phase, the remaining candidates after the 

traversal are refined to return actual TPQ answers. Refining 

most promising plans from the set of plans in the candidate set. 

The β value and distance are relatively sorted to get most 

promising candidate plan. 

 

 

5. Conclusions 
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Path queries are used to find the optimal path in the road 

network. Various queries have been proposed. All methods 

give an optimal path. Some consider partial order constrains 

while others consider total order constraint. This paper made a 

detailed survey about various path query methods used in road 

networks and investigates an important problem, called Trip 

Planner Query, in the time dependent road network. This query 

helps travelers to find those trip plans, which visit several 

places of interest and have minimum traveling time on road 

network with high confidence. The proposed method takes 

travel time into consideration and helps the travelers to find trip 

plans, which visit several places of interest and have minimum 

travelling time on road network with high confidence. Initially 

the candidate plans are generated using DFS approach. This 

will not give an optimal result because there can be exponential 

number of plans. So to reduce the search space effective 

pruning strategies are used to prune the plans with less 

confidence. 
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