
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 6 June 2015, Page No. 12512-12515

Sithara M P, IJECS Volume 4 Issue 6 June, 2015 Page No.12512-12515 Page 12512

An Efficient Trip Planner for Time Dependent Road Networks

Sithara M P1, Varsha C2

1Department of CS, KMCT College Of Engineering,

Calicut University, Kerala, India

sithararajan@gmail.com

2Department of CS, KMCT College Of Engineering,

Calicut University, Kerala, India

Varshachandramohan@gmail.com

Abstract: Management of transportation systems has become increasingly important in many real applications such as location-based

services, supply chain management, traffic control, and so on. These applications usually involve queries over spatial road networks with

dynamically changing and complicated traffic conditions. When we consider road network, route search and optimal path queries are two

important types of queries. A path query returns a path that is a set of points that connects the source and destination. The optimal path

queries find the optimum path from set information. In the case of road network users give some specification about the travelling with or

without constraints. The optimal path queries optimize the possible paths and give the optimal path that satisfies all the constraints. The

road network mainly deals with time dependent parameters A spatial road network can be modeled by a large graph in a 2-dimensional

geographical space, whose edges correspond to road segments, and are associated with weights related to the traffic information. This

paper, mainly focus on finding one of the best path that has minimum travel time. User can select the query points and Candidate plans are

generated based on the selected points. To reduce the search space time interval pruning and probabilistic pruning strategies are

implemented. Finally the best plan is refined based on a probabilistic threshold.

Keywords: Path queries, Optimal Path, Shortest Distance, and Backward Search.

1. Introduction

Standard algorithms for finding shortest path in graph assume

that costs are deterministic. The most commonly used

algorithm to find the shortest path is Dijkstra’s algorithm [1].

The optimal route query processing is mainly used in the road

network. A road networks is represented by a large graph in 2-

dimentional space. The edge is considered as a road segment.

Various queries have been proposed to find the optimal path in

road network. The optimal path queries find the optimal path

from the given set of information. Various techniques are used

for the processing of path queries .Some of the techniques use

travelling constraints which are either total order or partial

order. Optimal path query processing finds the entire possible

path and then refines the best path. Different queries use

different algorithms. This paper, mainly focus on finding one of

the best path that has minimum travel time. Slightly

modified versions of the standard algorithms will produce

optimal results. Two pruning strategies are used to reduce the

search space. User can select the query points. Candidate plans

are generated for the selected points. To reduce the search

space two pruning strategies are implemented. Finally the best

plan is refined based on probabilistic threshold.

The paper is organized as follows: section 2 presents various

path query algorithms. Section 3 presents the proposed system.

Section 4 discuss about the framework of the proposed system .

2. Various Path Query Algorithms.

2.1 Fast Approximation Algorithm

On Trip Planning Queries are the efficient and exact solutions

for the general optimal route queries. A set of query points are

given, where each point belongs to a specific category, a

starting point S and a destination E. TPQ retrieves best trip that

starts at S and passes through at least one point from each

category and ends at E[4]. Four algorithms with various

approximation ratios are used in terms of m and ρ, where m is

total number of categories and ρ is maximum category

cardinality. Two greedy algorithms with tight approximation

ratios with respect m are Nearest Neighbor Algorithm and

Minimum Distance Algorithm.

Nearest Neighbor Algorithm Iteratively visit the nearest

neighbor of last vertex added to the trip from all vertices in

categories that have not been visited yet.

Minimum Distance Algorithm is better when compared with

Nearest Neighbor Algorithm. Algorithm chooses set of

vertices, one vertex per category and sum of cost per vertex is

minimum cost among all vertices belong to respective category.

Creates trip by traversing these vertices in nearest neighbor

order.

2.2 New Dijkstra Based Algorithm

A new DIJKSTRA-based algorithm is used to find the optimal

LTT with time complexity O((n log n + m)α(T)) and space

complexity O((n + m)α(T)), where n is the number of nodes, m

is the number of edges, and α(T) is the cost required for each

function operation. Propose algorithm by decoupling path

selection and time refinement. DIJKSTRA-based algorithm is

used for time-refinement and a linear-time algorithm for path

selection.

Dijkstra Based time refinement: time-refinement means to

compute and refine the earliest arrival-time function gi(t) for

every node vi in V The earliest arrival time function is

calculated for every node. Then refine the arrival time function,

incrementally in the given starting time interval. Incrementally

http://www.ijecs.in/

Sithara M P, IJECS Volume 4 Issue 6 June, 2015 Page No.12512-12515 Page 12513

means refine the earliest arrival time function by extending the

starting sub-interval to larger starting sub interval.

2.3 P*-A Best First Search Algorithm

P* algorithm, a best-first search algorithm for efficient

probabilistic path query evaluation. P* carries the similar spirit

as the A* algorithm. It iteratively visits the next vertex that is

most likely to be an answer path using a heuristic evaluation

function, and stops when the rest unexplored paths have no

potential to satisfy the query. However, the two algorithms are

critically different due to the different types of graphs and

queries. A* is used to find the shortest path between two

vertices u and v in a certain graph. Therefore, the heuristic

evaluation function for each vertex vi is simply the sum of the

actual distance between u and vi and the estimated distance

between vi and v. P* aims to find the paths between two

vertices u and v that satisfy the weight threshold l and

probability threshold p in a probabilistic graph with complex

correlations among

edge weights. Therefore, the heuristic evaluation functions for

each vertex vi is the joint distribution on a set of correlated

random variables. This posts serious challenges in designing

heuristic evaluation functions and calculation. Three heuristic

evaluation functions that can be used in the P* algorithm are

Constant Estimate, Min-Value Estimate and Stochastic

Estimate.

2.4 Priority First Search With Dominance Pruning

This is a modified version of shortest path algorithm. Here all

the undominated paths are maintained .If one path to a node

dominates other then stochastic consistency condition ensures

that the second cannot be part of overall shortest path. A

method called priority first search with dominance pruning, a

variant of priority first search is used. Two data structures are

maintained Priority Queue and Closed list. Priority Queue

consist of path and path cost. Closed list associates nodes with

undominated paths found to that node.

The general procedure is:

Step1: Algorithm first add origin to priority queue with path

cost 0.

Step2: Then get highest-priority item from PQ. If this item has

lower expected utility than a known path to the destination,

then terminate and return the best path to the destination found

so far.

Step3: Then add item to closed list. If there is already another

path to that node with dominating priority then, go to step 2.

Otherwise, add the path and its cost to the closed-list associated

with this node.

4. Generate successors to this item. Construct new paths for

each possible bus we could take from this node, and put the

resulting items on PQ. Go to step 2.

2.5 Route Traversal And Link Traversal Search With

Transitions

Route Traversal Search traverses nodes similar to DFS. When

expanding the current search node, RTS consider all successor

nodes for each route that includes this node. It employs a

termination check, based on the reachability information within

the routes. The principle depends on inverted file R-index on

the route collection. Route Traversal Search with Transitions

exploits information about the transitions among routes stored

in T-index. It employs a stronger termination check based on

the transitions between routes. In Link Traversal Search the

search stops as soon as LTS visits a node (link) that lies on the

same route with the target. Algorithm employs an augmented

inverted file on the route collections, termed R-Index+, which

associates a node with the routes that contain it and the

immediately following link. Link Traversal Search with

Transitions enforces a stronger termination check than LTS

using the transition graph of the route collection.Finishes when

it reaches a node that is closer than two routes away from the

target. It uses information from the T –Index.

2.6 Backward Search And Forward Search Solution

The backward search methodology computes the optimal

routes in reverse order of its points. Two algorithms are

developed based on BSS are Simple Backward Search (SBS)

and Batch Backward Search [6]

SBS computes an upper bound of the optimal route length,

using a greedy algorithm .Then, SBS retrieves the set CS of

candidate points that may be part of the optimal route which

are those that 1) belong to any category contained in the visit

order graph , 2) fall within distance to the query start point q.

This can be performed efficiently, e.g., by executing a circular

range query on each R-tree that indexes a category of points

relevant to the query.

The batch backward search (BBS) method, improves SBS by

employing batch processing in the backward join operations.

Specifically, both the candidate set CS and the route set is

partitioned into clusters before participating in a backward join.

The partitioning of CS first groups points by their category, and

then for each group, the points are further partitioned into

clusters based on their spatial proximity. The partitioning of

route set follows a similar strategy, by first grouping routes

based on the categories they cover, and then clustering each

group according to the locations of their start points. The

clustering module in BBS must be highly efficient, since it is

called during query time.

The forward search approach traverses the search space in a

depth-first manner, and incrementally improves the bound for

optimal route length. As an additional benefit, forward search

methods report results progressively, i.e., they first quickly

produce one solution to the query, and then incrementally

update it, until reaching the optimal one or being terminated by

the user. Two algorithms developed based on FSS are Simple

forward Search (SFS) and Batch Forward Search (BFS)

The simple forward search (SFS) method resembles Greedy in

that it also extends the current path by adding the nearest point

from an unvisited category. A major difference between the

two is that SFS backtracks after it obtains a complete route.

BFS follows the same depth-first search paradigm as SFS.

However, instead of enumerating individual routes, BFS

searches for sequences of clusters, which we call cluster paths.

Specifically, in a preprocessing step, BFS partitions the

candidate set into clusters as in BBS, i.e., the points in each

cluster belong to the same category, and are close to each other

in space.

3. Proposed Method
The proposed method TPQ(Trip Planner Query) retrieves trip

plans that traverse a set of query points in PT-Graph having the

minimum traveling time with high confidence. TPQ problem

considers multiple (≥2) places, uses the PT-Graph with the

probabilistic model (rather than a certain graph), and has a

different goal of minimizing the traveling time on road

networks only (instead of the total time that includes the

staying time at vertices).

Sithara M P, IJECS Volume 4 Issue 6 June, 2015 Page No.12512-12515 Page 12514

The spatial road network is modeled by a probabilistic time-

dependent graph (PT-Graph). Specifically, a PT-Graph G is a

directed graph, in which two connected vertices, vi and vj, are

linked by two bidirectional edges ei,j and ej,i. Any edge ei,j in

PT-Graph G is associated with an uncertain

edge-delay function (UDF).

A trip planner can specify n places of interest to visit (i.e.,

query points) on the road network, which are denoted as q1, q2,

. . . , and qn. For each place qi (1 i n), visitors can stay for some

time st(qi) [ST(qi), ST+(qi)], where ST(qi) and ST+ (qi) are

the minimum and maximum staying time of travelers at qi.

Here, ST (qi) is a constraint, which allows travelers to have

enough time to visit qi. Our goal is to find the best plans of the

place-visiting order, as well as staying time at each place, such

that the total traveling time on road networks (i.e., the total

time on the way to targeted places qi) is the smallest with high

confidence.

 Due to the data uncertainty in the PT-Graph, TPQ problem can

be solved by first conducting queries in each possible world of

the PT-Graph, and then combining the query results from all

the possible worlds, where each possible world is a

materialized instance of road network (PT-Graph) with fixed

traffic conditions that can appear in reality. However, since the

number of possible worlds can be exponential, this method is

inefficient, and thus challenging to obtain the best trip plans

efficiently from a PT-Graph. Thus, to tackle the efficiency

issue of TPQs, effective pruning techniques are used to filter

out false alarms of trip plans.

4. Framework of Proposed Method
 The main framework use in the proposed method is filter and

refine framework. The method is divided into three phases:

Candidate Generation, Filtering phase and Refinement phase.

4.1 Candidate Generation

Here candidate plans are generated for the selected query

points. Depth First Search(DFS) approach is used to obtain the

candidate plans. A tree is constructed with R as root and query

points as tree nodes. From each node different paths are

generated in different visiting order. A new tree class is created

and traversed in the tree to get all paths that contain the

selected query points. For each selected query points the

adjacent node and the corresponding edge is generated. The

resulting paths are the set of candidate plans. Each candidate

plan will contain all the selected query points.

4.2 Filtering Phase

In the filtering phase, effective pruning strategies are utilized to

filter out false alarms of trip plans. Two pruning strategies are,

time interval pruning and probabilistic pruning. The

probabilistic pruning considers probabilistic distributions to

prune those trip plans with low confidence.

Time interval pruning utilizes lower/upper bounds of the

traveling times for trip plans to filter out false alarms .

Probabilistic pruning with β score considers β score to prune

those trip plans with low confidences.

4.2.1 Time interval Pruning

To enable the time interval pruning one critical issue is on how

to obtain lower/upper bounds(LBT and UBT)of the traveling

time quickly. The basic idea is to infer such time bounds from

UDFs of edges, as well as the staying time intervals at vertices,

in the PT-Graph.

 Each point is associated with their staying time interval and

each edge is associated with travel time interval.LBT is

calculated based on the minimum stay time and travel time

.UBT is calculated based on maximum stay time and travel

time. LBT is calculated based on minimum stay time and

minimum travel time.

Assume that we have a path v1 -> v2 -> v3 (of length 2), where

the visitor departs from v1 at timestamp dep(v1) within a

time interval [dep(v1), dep+ (v1)]. Note that, if vertex v2 is one

of the specified query points, the staying time at v2 is bounded

by [st(v2), st+(v2)] = [ST(v2), ST+(v2)] otherwise, when vertex

v2 is a normal vertex (other than query point) on road networks,

the staying time st(v2) at v2 is 0, that is, st (v2) = st+ (v2) = 0.

Similarly UBT is calculated based on maximum stay time and

maximum travel time.

Let threshold τ be the smallest time upper bound, UBT(best

plan), among all the candidate plans that have seen so far.

Then, the time interval pruning method is to rule out those

plans, Plan, whose lower bounds of the traveling time,

LBT(Plan), are greater than or equal to threshold

(i.e=UBT(best plan)). Then insert the remaining plan to

candidate set. In the next step retrieve all

the points that have visited. If their exits other points in the

graph, then replace plans with those query points in different

orders and generate plan1. Update travelling time interval of

finer plans, plan1 and .Then apply filtering to plan1 and insert

remaining plans to candidate set. There are still some plans that

we have not fully investigated, that is, those plans Plan2 with

paths among query points dangling across different index

nodes. Therefore, again utilize the time interval to rule out false

alarms for these plans, and add those unpruned plans to

candidate set.

4.2.2 Probabilistic Pruning With β Score

To enable probabilistic pruning the candidate set after time

interval pruning is considered.

Here user can select the day of travel to avoid the traffic jams.

β is maximum velocity function. β score is calculated for each

candidate plan based on distance, velocity and LBT. To enable

probabilistic pruning remove those plans whose value is

smaller than the probabilistic threshold. Probabilistic threshold

is the average of LBT of all candidate plans.

4.3 Refinement

In refinement phase, the remaining candidates after the

traversal are refined to return actual TPQ answers. Refining

most promising plans from the set of plans in the candidate set.

The β value and distance are relatively sorted to get most

promising candidate plan.

5. Conclusions

Sithara M P, IJECS Volume 4 Issue 6 June, 2015 Page No.12512-12515 Page 12515

Path queries are used to find the optimal path in the road

network. Various queries have been proposed. All methods

give an optimal path. Some consider partial order constrains

while others consider total order constraint. This paper made a

detailed survey about various path query methods used in road

networks and investigates an important problem, called Trip

Planner Query, in the time dependent road network. This query

helps travelers to find those trip plans, which visit several

places of interest and have minimum traveling time on road

network with high confidence. The proposed method takes

travel time into consideration and helps the travelers to find trip

plans, which visit several places of interest and have minimum

travelling time on road network with high confidence. Initially

the candidate plans are generated using DFS approach. This

will not give an optimal result because there can be exponential

number of plans. So to reduce the search space effective

pruning strategies are used to prune the plans with less

confidence.

References

[1] E. W. Dijkstra, “A note on two problems in connexion with

graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271,

1959.

[2] M. Hua and J. Pei, “Probabilistic path queries in road

networks:Traffic uncertainty aware path selection,” in Proc.

13th EDBT,Lausanne, Switzerland, 2010, pp. 347–358.

[3] R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint

reachability computation in uncertain graphs,” in Proc. VLDB,

Jun. 2011,pp. 551–562.

[4] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H.

Teng, “On trip planning queries in spatial databases,” in Proc.

9th Int.Conf. SSTD, Angra dos Reis, Brazil, 2005.

[5] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-

nearest neighbors in uncertain graphs,” in Proc. VLDB,

Singapore, Sep.2010.

[6] Li J, Yang Y.D, Mamoulis N(2013), “Optimal Route

Queries with Arbitrary Order Constraints”, IEEE Trans.

Computers, vol. 25, no. 5, pp. 1097- 1110

[7] Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng

S.H(2005), “On Trip Planning Queries in Spatial Databases”,

Proc. Ninth Int’l Conf. Advances in Spatial and Temporal

Databases (SSTD)

[8]Bin Yang, Chenjuan Guo, Christian S. Jensen, Manohar

Kaul, Shuo Shang,” Multi-Cost Optimal Route Planning Under

Time-Varying Uncertainty”

[9]Xiang Lian and Lei Chen, Member,\Trip Planner Over

Probabilistic Time-Dependent Road Networks", IEEE

Transactions On Knowledge And Data Engineering, Vol. 26,

No. 8, August 2014.

[10] R. Cheng, D. V. Kalashnikov, and S. Prabhakar,

Evaluating probabilistic queries over imprecise data", in Proc.

SIGMOD, SanDiego, CA, USA, 2003, pp. 551562.

[11] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, \Query

processing in spatial network databases",in Proc. 29th VLDB,

Berlin, Germany, 2003.

[12] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic

skylines on uncertain data", in Proc. 33rd VLDB, 2007.

[13] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao,

“Reverse nearest neighbors in large graphs", in Proc. ICDE,

2005.

