
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 6 June 2015, Page No. 12453-12457

Biji.K.P.1, IJECS Volume 4 Issue 6 June, 2015 Page No.12453-12457 Page 12453

Data Dictionary Based Mechanism against SQL Injection Attacks

Biji.K.P.1

1ME CSE,

Dept. of CSE, PGI, Palladam, TN, India

bijikp@gmail.com

Abstract: “Data Dictionary Based Mechanism Against SQL Injection Attacks” which helps and manages the important private customer

data in a secured manner by mirroring the database structures into unique secure mirroring tables which is managed in a differently

managed secure data management system. This plays an effective medium in the prevention of SQL Injection, which is one of the main web

attack terminology which is effective utilized by various hackers to steal data from organizations which managed their transactions through

online transactions and databases. This is a unique type of intrusion that takes advantage of improperly managed coding in the web

applications. SQLIA allows intruders to inject SQL commands into access data’s from the web forms to allow them to gain access to the

data held within your database. In this paper we will discuss several types of SQLIAs, existing techniques and their drawbacks. Finally I

have proposed a solution for detection using data dictionary and prevention using the intrusion search along with ASCII values. I have

implemented it using ASP.net with VB.net and SQL server 2008, although this algorithm can be implemented in any language and for any

database platform with minimal modifications.

Keywords: Data dictionary; SQL IA; ASCII; intrusion search.

1. Introduction

A SQL injection attack defined as insertion or "injection" of a

SQL query through the input web data from the user to the

software/webpage. A proper SQL injection attack can read

customer data from the server database, modify database data

(Insert/Update/Delete), execute administration operations on

the database (such as shutdown the DBMS), recover the

content of a table stored on the database file and in some cases

issue commands to the operating system. SQL injection attacks

are a type of injection attack, in which SQL commands are

injected through the user data input in order to control the

execution of written SQL commands. SQL injection mainly

works as an injection technique that exploits a security

vulnerability occurred in the database layer of an application

through improper coding styles. SQL injection is one of the

oldest attacks against web applications. This type of

vulnerability may present when user input is either incorrectly

filtered for string literal escape characters coded and embedded

in SQL statements or user input is not strongly typed and

thereby unexpectedly executed. It is an instance of a most

generic class of vulnerabilities that may occur whenever one

program or script is embedded inside another.

2. SQL Injection Attacks

SQL Injections are attacks by which an attacker alters the

structure of the original SQL query by injecting SQL code in

the input fields of the web form in order to gain unauthorized

access to the database. Although the vulnerabilities that lead to

SQLIAs are well understood, they persist because of lack of

effective techniques for detecting and preventing them. Several

solutions have been proposed in literature to prevent SQLIAs

in the application layer. Although these solutions prevent

SQLIAs at the application layer, very little emphasis is laid on

securing objects residing in the database layer. A data

dictionary is a file or a set of files that contains a database's

metadata. The data dictionary contains records about other

objects in the database, such as data ownership, data

relationships to other objects, and other data.

3. Data Dictionary

A data dictionary is a file or a set of files that contains a

database's metadata. The data dictionary contains records about

other objects in the database, such as data ownership, data

relationships to other objects, and other data. The proposed

Data Dictionary based algorithm is a Combination of DDL &

DML Mapping along with the collection of SQL Queries

coming inside the webpages/application forms. In DDL &

DML Mapping we generate a Sparse Image of the Structure

and Data contents of the Database to a Mirror Database which

will be stored in parallel. Along with the Sparse Image the

Vectorization of the SQL Queries is also store in tables of the

Mirror Database, to include different syntax, we resolve the

parse tree of different generated queries. As a result of the

output of the different generated queries, we can monitor the

detection of abnormalities among the queries within our

database structure.

3.1 Types of Sql injection attacks

SQL injections can be implemented in the following ways:

 Tautology

 Illegal/logically incorrect queries

 End of line comment

 Timing attack

 Union queries

 Blind SQL injection attacks

 Piggy backed queries

 Tautology: This technique injects sql statements which

will be always true so that the queries must return

results upon evaluation of WHERE condition.

Injected query: select name from user_details where

http://www.ijecs.in/

Biji.K.P.1, IJECS Volume 4 Issue 6 June, 2015 Page No.12453-12457 Page 12454

username=’softech’ and password=’’or ‘1’=’1’.true so

that the queries always return results upon evaluation

of WHERE condition. Injected query: select name

from user_details where username=’softech’ and

password=’’or ‘1’=’1’.

Figure 2.1: Tautology

 Illegal/Logically incorrect queries: This method is

used by the hackers to retrieve related information

about the database. Attacker intentionally inputs

invalid SQL tokens or junk data input in the sql query

to generate logical errors, type mismatches or syntax

errors.

For example:

Original Query: sam/profile.aspx/?id=10

Injected Query: sam/profile.aspx/?id=10’

Error: select name from user_details where u_id=10\’

From this error the hacker can easily retrieve the stored

table name user_details and the attribute u_id.

 End of line comment: In this technique the values are

entered in the input field in such a way that rest of the

query is treated as a comment. For example if the

attacker knows the username but not the password

then he can use this technique easily as shown in the

Figure 2.2.

Figure 2.2: End of line comment

 Timing attack: In this type of attack, the attacker

guesses the information character by character,

depending on the output form of true/false. In time

based attacks, attacker introduces a delay by injecting

an additional SLEEP (n) call into the query and then

observing if the webpage was actually by n seconds.

 Union Query: Injected query is concatenated with the

original SQL query using the keyword UNION in

order to get information related to other tables from

the application. Original query: select acc-number

from user_details where u_id=’500’ Injected query:

select acc-number from user_details where u_id=’500’

union select pin from acc_details where u_id=’500’.

 Blind SQL injection attacks: Attackers typically test

for SQL injection vulnerabilities by sending the input

that would cause the server to generate an invalid SQL

query. If the server then returns an error message to

the client, the attacker will attempt to reverse-engineer

portions of the original SQL query using information

gained from these error messages. The typical

administrative safeguard is simply to prohibit the

display of database server error messages.

Unfortunately, that’s not sufficient. If your application

does not return error messages, it may still be

susceptible to “blind” SQL injection attacks.

 Piggy backed queries: Additional query is added to

the original query. This can be done by using a query

delimiter such as “;”, which deletes the table specified.

Injected Query: select name from user_details where

username =’softech’; drop table acc—

Figure 2.3: Piggy backed queries

4. RELATED WORK

 J.Nataraj and P.Muralikrishnan proposed a pattern based

query processing approach that can nullify the problem of web

vulnerability. In the SQL injection are insert into the user

requested queries and hack their authorized data without

knowing the user. The second order SQL injection attack is the

trickiest and emerging vulnerability to compromise the

database. It start the malicious activity by inject it with other

related queries that are already stored in the database whenever

the second order SQLIA is invoked. In this paper, describe the

three phases of input validation and also based the problem of

injection attack explain with validation algorithm for each

phases. From that, the injected queries are easily validated and

reduce the false rate. It provides more security and strong input

validation on the server. This induces to avoid the Second

order SQL injection attack completely from the database. Even

this framework is having more phases of validation[3].

 S.Anjugam and A.Murugan proposes how to detect and

prevent SQL injection attacks on web applications using

encryption and tokenization technique. The tokenization

process is applied on the input query by detecting spaces,

single quotes and double dashes etc. This process converts the

input query into fruitful tokens and that are stored in a dynamic

table at the client side. The table name, field name and data are

encrypted using AES algorithm .The encrypted the original

input query and the tokenized table are sending to the server

side. At the server side, input query is decrypted and in turn

converts into various token which are stored in to another

dynamic table. Both dynamic tables are compared and if both

are equal, it seems that there is no injection attacked in the

given query ,hence the query is proceed further to main

database for retrieving result .If they are different, query is

rejected and not forwarded to the database server[5]

Biji.K.P.1, IJECS Volume 4 Issue 6 June, 2015 Page No.12453-12457 Page 12455

4.1 PROPOSED SOLUTION

 The proposed system is a simple and effective method to

accurately detect and prevent SQLIAs by using a Combination

of DDL & DML Mapping along with insertion of SQLIA

detection snippets inside the web/application forms to detect

and search data insertions and sniff SQLIA. In DDL & DML

Mapping we generate a Sparse Image of the Schema Structure

and Data contents of the SQL Queries implemented in the

web/application forms from Database to a Mirror Database

which will be stored in parallel. Along with the Sparse Image

the Vectorization of the SQL Queries is also store in tables of

the Mirror Database, to include different syntax, we resolve the

parse tree of different generated queries. As a result of the

output of the different generated queries, we can monitor the

detection of abnormalities among the queries within our

database structure; we are in forward for a resemblance

monitoring for the space of controlled objects, i.e. the space of

valid SQL parse tree structure. Thus, we strive with the

problem of having to generate a comparison utility for

matching trees.

 The Formula we generate is a Combination of DDL & DML

Mapping along with Vectorization of SQL Queries.

In DDL & DML Mapping we generate a Sparse Image of the

Structure and Data contents of the Database to a Mirror

Database which will be stored in parallel.

 Along with the Sparse Image the Vectorization of the SQL

Queries is also store in tables of the Mirror Database, to

include different syntax, we resolve the parse tree of different

generated queries. As a result of the output of the different

generated queries, we can monitor the detection of

abnormalities among the queries within our database structure;

we are in forward for a resemblance monitoring for the space

of controlled objects, i.e. the space of valid SQL parse tree

structure. Thus, we strive with the problem of having to

generate a comparison utility for matching trees.

4.1.1 Data mirroring

 Database mirroring is the creation and maintenance of

redundant copies of a database. The purpose is to ensure

continuous data availability and minimize or

avoid downtime that might otherwise result from data

corruption or loss or from a situation when the operation of a

network is partially compromised. Redundancy also ensures

that at least one viable copy of a database will always

remain accessible during system upgrades. In DDL & DML

Mapping we generate a Sparse Image of the Structure and Data

contents of the Database to a Mirror Database which will be

maintained in parallel. Along with the Sparse Image the

Vectorization of the SQL Queries is also store in tables of the

Mirror Database, to include different syntax, we resolve the

parse tree of different generated queries. As a result of the

output of the different generated queries, we can monitor the

detection of abnormalities among the queries within our

database structure; we are in forward for a resemblance

monitoring for the space of controlled objects, i.e. the space of

valid SQL parse tree structure. Thus, we strive with the

problem of having to generate a comparison utility for

matching trees.

4.1.2 Sql injection detection

 There are two types of SQLIA Detection:

Static Approach: This approach is also known as pre-

generating approach. Programmers follow some guidelines for

SQLIA detection during web application development. An

effective validation checking mechanism for the input variable

data is also requires for the pre-generated method of detecting

SQLIA.

Dynamic Approach: This approach is also known as post-

generated approach. Post-generated technique are useful for

analysis of dynamic or runtime SQL query, generated with user

input data by a web application. Detection techniques under

this post-generated category executes before posting a query to

the database server [5]. Here I propose static approach to detect

SQLIA.

Algorithm for SQL Injection Detection

Step 1: Gathering the information about the Database Schema.

Step 2: Store the Schema values into the Sparse Tables.

Step 3: Gather the Output of Randomly generated SQL Queries

from various tables.

Step 4: Store the Queries and Output into Tables of Mirror

Database.

Step 5: Search for the different sql queries which is coded

inside the web forms.

Step 6: Store the SQL Query detected along with the position

information.

Step 7: Confirm the Gathered information.

Fig: SQL Injection detection

4.1.3 Runtime SQLIA prevention

Biji.K.P.1, IJECS Volume 4 Issue 6 June, 2015 Page No.12453-12457 Page 12456

 Researchers have proved that query injection can’t be

applied without using space, single quotes or double dashes (--

). Researchers have developed tools and techniques that could

prevent all SQLIAs by checking actual runtime against

legitimate queries.

Learning-based prevention. This type of approach uses a

runtime monitoring system deployed between the application

server and database server. It intercepts all queries and checks

SQL keywords to determine whether the queries’ syntactic

structures are legitimate (programmer-intended) before the

application sends them to the database. It also cross check the

queries with data dictionary and confirm that there is no

possibility for an SQLIA.

Static Analysis. AMNESIA (Analysis for Monitoring and

NEutralizing SQL Injection Attacks) uses static analysis to

deduce valid queries that might appear at each database access

point in Web programs via isolation of tainted and untainted

data. Another runtime SQLIA prevention technique uses a

query learning approach similar to AMNESIA, but, instead of

targeting query statements in a server program, it targets stored

procedures in a database and also crosscheck with the data

dictionary generated.

 Dynamic Analysis. Statically inferred legitimate query

structures might not be accurate, and attackers could exploit

this weakness to conduct SQLIAs. Researchers have thus

proposed dynamic-analysis-based approaches to provide more

accuracy. SQL Check tracks tainted data at runtime by marking

it with meta characters and store the sql queries inside the Data

dictionary. When a Web application invokes a query, SQL

Checker learns the query’s legitimate structure by verifying it

with the data dictionary.

4.1.4 Applications

This paper can be referenced at several crucial areas in which

the customer data security is important. Some of the Major

areas are given below.

 Online Banking

 Online Shopping

 Social Networking

 Security System

 Education

5. RESULT AND EVALUATION

 The proposed algorithm for the detection of SQL Injection

can be implemented on real web applications. It can store total

number of parameter in web applications and make a list to

compare with the real time generated value of parameter. Also,

it can profile legitimate dynamic query generated by normal

users between the web application and the database server and

compare it with the dynamically generated query to detect

attacks.

 This paper compares the detection rate of the proposed

method with other researches under the same conditions. It also

compares detection and prevention methods of particular attack

forms.

 It detects attacks by comparing the structure and the

grammar of the query. If the dynamically generated query has a

different structure or if it uses different grammar, it will be

detected. The algorithm proposed in this paper does not use

complex analysis methods such as Parse trees. It uses a very

simple method which compares the queries after the removal of

the attribute values. Therefore, it can be implemented into any

type of DBMS.

(1) Table 1

6. CONCLUSION

This paper proposes a new SQL injection attack detection

method that utilizes both Static and Dynamic Analysis along

with a data dictionary in parallel for data verification. SQL

injection is a common technique hackers employ to attack

underlying databases. These attacks reshape the SQL queries,

thus altering the behavior of the program for the benefit of the

hacker. In this paper, we present a fully automated technique

for detecting, preventing and reporting SQLIA incidents in

databases. In DDL & DML Mapping we generate a Sparse

Image of the Structure and Data contents of the Database to a

Mirror Database which will be stored in parallel. The proposed

algorithm for the detection of SQL Injection can be

implemented on real web applications. It can store total number

of parameters and queries in web applications and make a list

to compare with the real time generated value of parameter.

Also, it can profile legitimate dynamic query generated by

normal users between the web application and the database

server and compare it with the dynamically generated query to

detect attacks.

References

[1] Mahima Srivastava, “Algorithm to Prevent Back End

Database against SQL Injection Attacks”, Published in:

Computing for Sustainable Global Development

(INDIACom), 2014 International Conference. 978-93-

80544-12-0/14/$31.00_c 2014 IEEE, Date of Conference:

5-7 March 2014, Page(s): 754 - 757

[2] Lwin Khin Shar and Hee Beng Kuan Tan, Nanyang,

“Defeating SQL Injection”, 0018-9162/13/$31.00 © 2013

IEEE Published by the IEEE Computer Society March

2013

[3] J.Nataraj and P.Muralikrishnan, “DVGAR: Distraction of

Web Vulnerabilities to Provide Grasp Accessing

Capability of The Web Resources”, | ISSN: 2321-9939,

Biji.K.P.1, IJECS Volume 4 Issue 6 June, 2015 Page No.12453-12457 Page 12457

International Journal Of Engineering Development And

Research | IJEDR

[4] Rajesh M. Lomte1 , Prof. S. A. Bhura2 , “Survey of

Different Web Application Attacks & Its Preventive

Measures”, IOSR Journal of Computer Engineering

(IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-

8727Volume 14, Issue 5 (Sep. - Oct. 2013), PP 46-51

www.iosrjournals.org

[5] S.Anjugam A.Murugan, “Efficient Method for Preventing

SQL Injection Attacks on Web Applications Using

Encryption and Tokenization”, © 2014, IJARCSSE All

Rights Reserved Page | 173 Volume 4, Issue 4, April 2014

ISSN: 2277 128X, International Journal of Advanced

Research in Computer Science and Software Engineering.

[6] Debabrata Kar, Suvasini Panigrahi, “Prevention of SQL

Injection Attack Using Query Transformation and

Hashing”, 3rd IEEE International Advance Computing

Conference (IACC) pp. 1317-1323, 2013.

[7] Dr Amutha Prabakar, M.KarthiKeyan, Prof.K.

Marimuthu. “An efficient technique for preventing sql

injection attack using pattern Matching algorithm”. 2013

IEEE International Conference on.M. Emerging Trends in

Computing, Communication and Nanotechnology

(ICECCN 2013).

[8] Sadeghian, Zamani.M., Ibrahim, S. “SQL Injection Is Still

Alive: A Study on SQL Injection Signature Evasion

Techniques”, Date of Conference : 4-6 Sept. 2013,

Publisher : IEEE.

[9] Joshi, Geetha.V , “SQL Injection detection using machine

learning”, Date of Conference : 10-11 July 2014,

Publisher : IEEE.

[10] K. Beaver. Achieving sarbanes-oxley compliance for web

applications through security testing.

http://www.spidynamics.com/support/whitepapers/WI

SOX white paper.

[11] Shruti Bangre, Alka Jaiswal.SQL Injection Detection and

Prevention Using Input Filter Technique. International

Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-1, Issue-2, June 2012.

[12] Mihir Gandhi, Jwalant Baria, “SQL INJECTION Attacks

in Web Application”, International Journal of Soft

Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-2, Issue-6, January2013

Author Profile

Biji.K.P received the B.Tech in Computer Science from Calicut

University and undergoing Final Semester ME. Degrees in Computer

Science and Engineering at Professional Group of Institutions.

Worked as a Lecturer in Sreedevi Institute of Technology, Mangalore

and Jawaharlal College of Engineering and Technology, Lakkidi,

Kerala. Currently working as a consultant in Softech Infosystems,

Shoranur, Kerala.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Joshi,%20Anamika.QT.&newsearch=true

