
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 7 July 2015, Page No. 13230-13236

Rashi Saxena1 IJECS Volume 4 Issue 7 July, 2015 Page No.13230-13236 Page 13230

Enhance Distribution of Load in Cloud

Rashi Saxena1, Tarun Gupta2

1PG Scholar, Jayoti Vidyapeeth Women’s University,

Jaipur, Rajasthan, India

rashi.saxena@yahoo.co.in

2Associate Level 2, Sapient Nitro Corporation,

Bangalore, Karnatka, India

dtarun2009@gmail.com

Abstract: This paper proposes and evaluates an approach to the parallelization, deployment and management of applications that

integrates several emerging technologies for distributed computing. The proposed approach uses the Map Reduce paradigm to parallelize

tools and manage their execution, machine virtualization to encapsulate their execution environments and commonly used data sets into

flexibly deployable virtual machines. Multi node environment in which one node will act as a gateway client machine can access the cluster

through the gateway via REST API. Using this concept we propose a virtual infrastructure gateway that lifts this restriction. Through

gateway cloud consumers provide deployment hints on the possible mapping of VMs to physical nodes. Such hints include the collocation

and ant collocation of VMs, the existence of potential performance bottlenecks, the presence of underlying hardware features (e.g., high

availability), the proximity of certain VMs to data repositories, or any other information that would contribute in a more effective placement

of VMs to physical hosting nodes. Oozier will allow REST access for submitting and monitoring jobs. Cloud Computing allows cloud

consumers to scale up and down their resource usage based on demand using the Apache Hadoop, using this prototype we are analyzing

various techniques for scalability in cloud. It also demonstrates how power-aware policies may reduce the energy consumption of the

physical installation.

Keywords: IaaS Cloud, Cloud Computing, Resource management, Distributed Processing, virtualization, Map Reduce.

1. Introduction

When computer was just invented, data and computer resource

were centralized, computer users used terminal to access them,

and with the implementation of hardware, personal computer

comes into our life. But now it shows a trend that data and

computer resources are centralized again which called cloud

computing. Now a days, the most frequently used programs are

those Internet based services, such as engines, social network

services and electronic business, which have millions of users.

Every moment those services emit large amounts of data, which

brings a problem: how to deal with immense data set. Search

engine Google uses a programming model called Map Reduce

can process 20PB data per day. Hadoop is an open source

implantation of Map Reduce, which is sponsored by Yahoo. As

free and open source software, Hadoop is developing fast.

Meanwhile the majority of virtual machine technology. VM-

based computing infrastructure has coming up such as Amazon

EC2 (Elastic cloud computing).In this paper, we propose the

design, implementation and evaluation of a cloud gateway, that

performs intelligent placement of VMs onto physical node by

exploiting user provided deployment hints. Hint realize the

placement preference based on the knowledge only by the

cloud consumer has regarding the intended usage of the

requested VMs. by modeling workload as pattern of data flows

, computations, control/synchronizations points, and necessary

network connection , users can identify favorable VMs layouts

.these layouts translate to deployment hints, such hints

articulate:

1) Resource consumption pattern among VMs

2) VMs that may become a performance bottleneck

 And the portion of the requested virtual infrastructure that can

be assisted by the existence of special hardware support. For

instance, the fact that two VMs in a virtual infrastructure will

hold mirrors of a database is only known to cloud consumer.

This information should be communicated to the cloud as a

deployment hint so that the respective VMs will not be

deployed on the same host.

2. Background

2.1 Laod Balancing

Cloud computing is designed to provide on demand resources

or services over the Internet, usually at the scale and with the

reliability level of a data centre. MapReduce is a programming

model designed for processing large volumes of data in parallel

by dividing the work into a set of independent tasks. It is a style

of parallel programming that is supported by some capacity-on-

demand-style clouds such as Google's BigTable, Hadoop, and

Sector. In this paper, a load-balancing algorithm that follows

the approach of the Randomized Hydrodynamic Load

Balancing technique (more on that in the following sections) is

used. Virtualization is used to reduce the actual number of

physical servers and cost; more importantly, virtualization is

used to achieve efficient CPU utilization of a physical machine.

We have implemented MapReduce algorithm on a system

using:

 Hadoop 0.20.1.

http://www.ijecs.in/
mailto:rashi.saxena@yahoo.co.in
mailto:dtarun2009@gmail.com

Rashi Saxena1 IJECS Volume 4 Issue 7 July, 2015 Page No.13230-13236 Page 13231

 Eclipse IDE 3.0 or above (or Rational application Devel

oper 7.1).

 Ubuntu 8.2 or above.

Before diving into the MapReduce algorithm, we'll set up the

basics of the cloud architecture, load balancing, MapReduce,

and parallel programming.

2.1.1Cloud Architecture

The basic Figure 1 shows a detailed picture of the complete

system, platforms, software, and how they are used to achieve

the goal set.

Figure 1: Cloud Architecture

Ubuntu 9.04 and 8.2 is used for the operating systems. Hadoop

0.20.1, Eclipse 3.3.1, and Sun Java 6 for the platforms, the Java

language for programming; and HTML, JSP, and XML as the

scripting languages. This cloud architecture has both master

and slave nodes. In this implementation, a main server is

maintained that gets client requests and handles them

depending on the type of request. The master node is present in

main server and the slave nodes in secondary server. Search

requests are forwarded to the NameNode of Hadoop, present in

main server as you can see in Figure 2. The Hadoop

NameNode then takes care of the searching and indexing

operation by initiating a large number of Map and Reduce

processes. Once the MapReduce operation for a particular

search key is completed, the NameNode returns the output

value to the server and in turn to the client.

Figure 2: Map and Reduce functions do searching and indexing

If the request is for a particular software, authentication steps

are done based on the customer tenant ID, payment dues,

eligibility to use a particular software, and the lease period for

the software. The server then serves this request and allows the

user to consume a selected software combination. If the request

is for a particular software, authentication steps are done based

on the customer tenant ID, payment dues, eligibility to use a

particular software, and the lease period for the software. The

server then serves this request and allows the user to consume a

selected software combination. The multi tenancy feature of

SaaS is provided here, in which a single instance of the

software serves a number of tenants. For every tenant specific

request there will be a thin line of isolation generated based on

the tenant id. These requests are served by a single instance.

When a tenant specific client request wants to search files or

consume any other multi-tenant software the offerings use

Hadoop on the provisioned operating system instance (PaaS).

Also, in order to store his data -- perhaps a database or files-- in

the cloud, the client will have to take some memory space from

the data center (IaaS). All these moves are transparent to the

end user.

2.1.2Randomized Hydrodynamic Load balancing

Load balancing is used to make sure that none of your existing

resources are idle while others are being utilized. To balance

load distribution, it can migrate the load from the source nodes

(which have surplus workload) to the comparatively lightly

loaded destination nodes [5]. When it applies load balancing

during runtime, it is called dynamic load balancing— this can

be realized both in a direct or iterative manner according to the

execution node selection:

 In the iterative methods, the final destination node is

 determined through several iteration steps.

 In the direct methods, the final destination node is selected

 in one step.

For this article, the Randomized Hydrodynamic Load

Balancing method is used, a hybrid method that takes

advantage of both direct and iterative methods.

2.1.3Map Reduce

MapReduce programs are designed to compute large volumes

of data in a parallel fashion. This requires dividing the

workload across a large number of machines. Hadoop provides

a systematic way to implement this programming paradigm.

Rashi Saxena1 IJECS Volume 4 Issue 7 July, 2015 Page No.13230-13236 Page 13232

The computation takes a set of input key/value pairs and

produces a set of output key/value pairs. The computation

involves two basic operations: Map and Reduce. The Map

operation, written by the user, takes an input pair and produces

a set of intermediate key/value pairs. The MapReduce library

groups together all intermediate values associated with the

same intermediate Key #1 and passes them to the Reduce

function. The Reduce function, also written by the user, accepts

an intermediate Key #1 and a set of values for that key. It

merges together these values to form a possibly smaller set of

values. Typically just an output value of 0 or 1 is produced per

Reduce invocation. The intermediate values are supplied to the

user's Reduce function via an iterate (an object that allows a

programmer to traverse through all the elements of a collection

regardless of its specific implementation). This allows you to

handle lists of values that are too large to fit in memory. Take

the example of WordCount problem. This will count the

number of occurrences of each word in a large collection of

documents. The Mapper and Reducer function will look like

Listing 1. The Map function emits each word plus an

associated count of occurrences. The Reduce function sums

together all counts emitted for a particular word. This basic

functionality, when built over clusters, can easily turn into a

high-speed parallel processing system. Performing computation

on large volumes of data has been done before, usually in a

distributed setting. What makes Hadoop unique is its

simplified programming model — which allows the user to

quickly write and test distributed systems — and it’s efficient,

automatic distribution of data and work across machines and in

turn utilizing the underlying parallelism of the CPU cores.

In a Hadoop cluster you have the following nodes:

Listing1. Map and Reduce in a WordCount problem

 The NameNode (the cloud master).

 The DataNodes (or the slaves).

Nodes in the cluster have preloaded local input files. When the

MapReduce process is started, the NameNode uses the

JobTracker process to assign tasks which have to be carried out

by DataNodes, through the TaskTracker processes. Several

Map processes will run in each DataNode and the intermediate

results will be given to the combiner process which generates,

for instance, the count of words in file of one machine as(in

case of a WordCount problem). Values are shuffled and sent to

reduce processes which generate the final output for the

problem of interest.

2.1.4 How Load Balancing is used

Load balancing is helpful in spreading the load equally across

the free nodes when a node is loaded above its threshold level.

Though load balancing is not so significant in execution of a

MapReduce algorithm, it becomes essential when handling

large files for processing and when hardware resources use is

critical. As a highlight, it enhances hardware utilization in

resource-critical situations with a slight improvement in

performance. A module was implemented to balance the disk

space usage on a Hadoop Distributed File System cluster when

some data nodes became full or when new empty nodes joined

the cluster. The balancer (Class Balancer tool) was started with

a threshold value; this parameter is a fraction between 0 and

100 percent with a default value of 10 percent. This sets the

target for whether the cluster is balanced; the smaller the

threshold value, the more balanced a cluster will be. Also, the

longer it takes to run the balancer. (Note: A threshold value can

be so small that you cannot balance the state of the cluster

because applications may be writing and deleting files

concurrently.) A cluster is considered balanced if for each data

node, the ratio of used space at the node to the total capacity of

node (known as the utilization of the node) differs from the the

ratio of used space at the cluster to the total capacity of the

cluster (utilization of the cluster) by no more than the threshold

value. The module moves blocks from the data nodes that are

being utilized a lot to the poorly used ones in an iterative

fashion; in each iteration a node moves or receives no more

than the threshold fraction of its capacity and each iteration

runs no more than 20 minutes. In this implementation, nodes

are classified as highly- utilized, average-utilized, and under-

utilized. Depending upon the utilization rating of each node,

load was transferred between nodes and the cluster was

balanced. The module worked like this:

 First, it acquires neighborhood details:

1. When the load increases in a DataNode to the threshold

level, it sends a request to the NameNode.

2. The NameNode had information about the load levels of the

specific DataNode's nearest neighbors.

3. Loads are compared by the NameNode and then the details

about the freest neighbor nodes are sent to the specific

 Data Node.

 Next, the DataNodes go to work:

1. Each DataNode compares its own load amount with the sum

of the load amount of its nearest neighbors.

2. If a DataNode's load level is greater than the sum of its

neighbors, then load-destination nodes (direct neighbors AND

other nodes) will be chosen at random.

3. Load requests are then sent to the destination nodes.

 Last, the request is received:

1. Buffers are maintained at every node to received load

requests.

2. A message passing interface (MPI) manages this buffer.

3. A main thread will listen to the buffered queue will service

the requests it receives.

4. The nodes enter the load-balancing-execution phase.

2.1.5 Evaluating the Performance

Different sets of input files were provided, each of different

size, and executed the MapReduce tasks in both single- and

Rashi Saxena1 IJECS Volume 4 Issue 7 July, 2015 Page No.13230-13236 Page 13233

two-node clusters. The corresponding times of execution were

measured and we came to the conclusion that running

MapReduce in clusters is by far the more efficient for a large

volume of input file. The graphs in Figure 3 illustrate our

performance results from running on various nodes. Our

analysis with Hadoop MapReduce and load balancing lead to

two inescapable conclusions:

 In a cloud environment, the MapReduce structure

increases the efficiency of throughput for large data

sets. In contrast, you wouldn't necessarily see such an

increase in throughput in a non-cloud system.

 When the data set is small, MapReduce and load

balancing do not affect an appreciable increase in

throughput in a cloud system.

 Therefore, consider a combination of MapReduce style

parallel processing and load balancing when planning to

process a large amount of data on your cloud system.

Figure 3: MapReduce load balancing works more efficiently in

clusters

3. Vitalizing Technology

Virtualization is a kind of technologies which can make

computing element running on virtual machines rather than on

physical ones. There are a lot of virtualization technologies,

but we focus on the two technologies which are free and

open source software and have been widely used.

1) Xen - Xen is a virtual-machine monitor providing services

that allow multiple computer operating systems to execute on

the same computer hardware concurrently. .It is originally

developed by University of Cambridge Computer Laboratory

[8]. Xen is free software and licensed under the GNU General

Public License.

2) KVM - Kernel-based Virtual Machine (KVM) is a

virtualization infrastructure for the Linux kernel. KVM

supports native virtualization on processors with hardware

virtualization extensions [9] and also KVM is free and

open source software.

Virtualization is the process of converting from a purely

physical implementation to one using a hypervisor (examples

include VMware's ESXi and the Xen hypervisor) which

abstract the underlying physical hardware and provide an

idealized, or virtual, implementation upon which some higher-

level services and/or implementations can be designed and

built. Once a physical cluster is virtualized, then higher level

services, such as cloning a data node or providing high-

availability to a specific node, or providing user controlled

provisioning, can be built [2]. A Private Cloud is a collection

of virtualized physical hardware that has added services such as

catalogs of software or defined platforms that a customer can

control [6]. A private cloud differs from a public cloud in that

it is generally owned and or managed by the same company or

group as the customer.

4. Hint Based Workflow Execution

Apache Oozie [11] is a Java Web application used to schedule

Apache Hadoop jobs. It combines multiple jobs s quentially

into one logical unit of work. It is integrated with the Hadoop

stack and supports Hadoop jobs for Apache MapReduce,

Apache Pig, Apache Hive, and Apache Sqoop. It can also be

used to schedule jobs specific to a system, like Java programs

or shell scripts. There are two basic types of Oozie jobs:

 Oozie Workflow jobs are Directed Acyclical Graphs

(DAGs), specifying a sequence of actions to execute.

The Workflow job has to wait.

 Oozie Coordinator jobs are recurrent Oozie Workflow

jobs that are triggered by time and data availability.

 Oozie Bundle provides a way to package multiple

coordinator and workflow jobs and to manage the

lifecycle of those jobs.

Apache Oozie [11] allows Hadoop administrators to build

complex data transformations out of multiple component tasks.

This allows for greater control over complex jobs and also

makes it easier to repeat those jobs at predetermined intervals.

It helps administrators derive more value from their Hadoop

investment. Oozie Workflow is a collection of actions arranged

in a Directed Acyclic Graph (DAG). Control nodes define job

chronology, setting rules for beginning and ending a workflow,

which controls the workflow execution path with decision, fork

and join nodes. Action nodes trigger the execution of

tasks.Oozie triggers workflow actions, but Hadoop MapReduce

executes them. This allows Oozie to leverage other capabilities

within the Hadoop stack to balance loads and handle failures.

Oozie detects completion of tasks through callback and polling.

When Oozie starts a task, it provides a unique call back HTTP

URL to the task, thereby notifying that URL when it’s

complete. If the task fails to invoke the callback URL, Oozie

can poll the task for completion. Often it is necessary to run

Oozie workflows on regular time intervals, but in coordination

with unpredictable levels of data availability or events. In these

circumstances, Oozie Coordinator allows you to model

workflow execution triggers in the form of the data, time or

event predicates. The workflow job is started after those

predicates are satisfied. Oozie Coordinator can also manage

multiple workflows that are dependent on the outcome of

subsequent workflows. The outputs of subsequent workflows

become the input to the next workflow. This chain is called a

“data application pipeline”. In Hadoop implementation one

node which will act as a gateway as shown in fig 4. Client

machines can access the cluster through the gateway via the

REST API. HttpFS will be used to allow REST access to

HDFS, and Oozie will allow REST access for submitting

and monitoring jobs. Hints are expressed as sets of conditions

Rashi Saxena1 IJECS Volume 4 Issue 7 July, 2015 Page No.13230-13236 Page 13234

or constraints pointing out a deployment favoring specific task-

flows within the virtual infrastructure.

Figure4. Oozie structured layout and interaction model

Each constraint can also be coupled with a weight value

indicating its importance relative to the other hints provided.

Deployment Profile can be termed as VM-to-host mapping

With V being all the VMs to be deployed and H the set of

physical nodes, a profile M is a function from V to H it can be

represented as (M : V → H). As illustrated in fig. 5.

Figure5. Operational Model

Through the Gateway as shown in fig 4, cloud consumers

provide deployment hints on the possible mapping of VMs to

physical nodes. Such hints include the collocation and

anticollocation of VMs, the existence of potential performance

bottlenecks, the presence of underlying hardware features (e.g.,

high availability), the proximity of certain VMs to data

repositories, or any other information that would contribute in a

more effective placement of VMs to physical hosting nodes.

Consumers designate only properties of their virtual

infrastructure and remain at all times agnostic to the cloud

internal physical characteristics [3]. The set of consumer-

provided hints is augmented with high level placement policies

specified by the cloud administration. It adds a layer between

the user and the infrastructure providing IaaS-cloud services,

shown in Fig .this Gateway interfaces with the lower level

cloud services that handle the VM lifecycle and perform

fundamental administrative tasks. This interface, denoted as a

cloud API, allows us to query for specific aspects of the

hardware resources as well as manage the VM deployment and

migration. During operation, it has to obtain the following

information:

Physical node properties: These properties include free

memory, total memory, CPU utilization, the name/ID of each

hosting node, the amount of free disk space, and redundant

hardware enhancing the node’s availability.

Physical infrastructure properties: It takes into account the

network topology of the physical substrate, the cloud’s

gateways toward the Internet and any data repositories

available through the network.

 The current status of each VM: In our approach, each VM

may find itself in either STAGING or RUNNING state. A VM

is considered to be STAGING when management operations

such as disk. image copying during a VM migration do not

permit the VM to run.

VM properties: These are similar to the properties acquired

for physical hosting nodes. VM properties include the memory

usage and the disk space reserved for each VM. It also acquires

the IP address of each VM through the cloud API and forwards

it to the user. Some commonly used constraints are listed in

Table1.

5. Scalability

Hadoop includes a Java implementation of the MapReduce

framework, its underlying components and the necessary large

scale data storage solutions. Although application

programming is mostly done in Java, it provides APIs in

different languages such as Ruby and Python, allowing

developers to integrate Hadoop to diverse existing applications.

It was first inspired by Google's implementation of MapReduce

and the GFS distributed file system, absorbing new features as

the community proposed new specific sub projects and

improvements. Currently, Yahoo is one of the main

contributors to this project, making public the modifications

carried out by their internal developers. The basis of Hadoop

and its several sub projects is the Core, which provides

components and interfaces for distributed I/O and file systems.

The Avro data serialization system is also an important

building block, providing cross-language RPC and persistent

data storage. On top of the Core, there's the actual

implementation of MapReduce and its APIs, including the

Hadoop Streaming, which allows flexible development of Map

and Reduce functions in any desired language. A MapReduce

cluster is composed by a master node and a cloud of several

worker nodes. The nodes in this cluster may be any Java

enabled platform, but large Hadoop installations are mostly run

on Linux due to its flexibility, reliability and lower TCO. The

master node manages the worker nodes, receiving jobs and

distributing the workload across the nodes. In Hadoop

terminology, the master node runs the JobTracker, responsible

for handling incoming jobs and allocating nodes for performing

separate tasks. Worker nodes run TaskTrackers, which offer

virtual task slots that are allocated to specific map or reduce

tasks depending on their access to the necessary input data and

overall availability. Hadoop offers a web management

Rashi Saxena1 IJECS Volume 4 Issue 7 July, 2015 Page No.13230-13236 Page 13235

Table1. Commonly used Constraints

which allows administrators to obtain information on the status

of jobs and individual nodes in the cloud. It also allows fast

and easy scalability through the addition of cheap worker nodes

without disrupting regular operations [12]. another approach is

by using CloudStack that is an open source software platform

that pools computing resources to build public, private, and

hybrid Infrastructure as a Service (IaaS) clouds. CloudStack

manages the network, storage, and compute nodes that make up

a cloud infrastructure. CloudStack can be used to deploy,

manage, and configure cloud computing environments. [10]

With CloudStack, you can do things below:

 service.

service provider can sell self-service virtual machine instances,

storage volumes, and networking configurations over the

internet.

 employees,

rather than managing virtual machine in the same way as

physical machine. With CloudStack an enterprise can offer

self-service virtual machines to users without involving IT

departments. but a problem comes: CloudStack use template to

create virtual machines, which makes that all the virtual

machines has the same hostname, it will bring conflict to

Hadoop. To solve, we introduce Auto Change Hostname

Service (ACHS) [10]. When a virtual starts, it firstly run a

program, we name it Auto Change Hostname Client

(ACHC), ACHC ask ACHS whether this machine is

registered, if not, register and request a hostname, then

change hostname and write in into OS configuration and run

Hadoop services. If ACHC find that this machine has been

registered, run Hadoop services immediately.

Conclusion

In this paper we proposed, a hint-based VM scheduler in

Hadoop multi node environment that serves as a gateway to

IaaS-clouds. Users are aware of the flow of tasks executed in

their virtual infrastructures and the role each VM plays. This

information is passed to the cloud provider, as hints, and helps

drive the placement of VMs to hosts. Hints are also employed

by the cloud administration to express its own deployment

preferences. Gateway combines consumer and administrative

hints to handle peak performance, address performance

bottlenecks, and effectively implement high-level cloud

policies such as load balancing and energy savings as well as

also provides the mechanism to monitor and schedule job in a

scalable cloud environment using CloudStack, Our future work

is Securing an Apache Hadoop Cluster through a Gateway.

References

[1] Konstantinos Tsakalozos, Mema Roussopoulos, and

Alex Delis, “Hint-Based Execution of workload in

Clouds with Nefeli” Proc. IEEE Transactions ON

Parallel And Distributed System, VOL, 24, NO.7, July

2013.

[2] M. Rosenblum and T. Garfinkel, “Virtual Machine

Monitors: Current Technology and Future

Trends,”Computer, vol. 38, no. 5, pp. 39-47, May 2005.

[3] H.N. Van, F.D. Tran, and J.-M. Menaud, “Autonomic

Virtual Resource Management for Service Hosting

Platforms,”Proc. ICSE Workshop Software Eng.

Challenges of Cloud Computing, pp. 1-8, 2009.

[4] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen,

and Q.Q.B. Wang, “Appliance-Based Autonomic

Provisioning Framework for Virtualized Outsourcing

Data Center,”Proc. FourthInt’l Conf. Autonomic

Computing, p. 29, 2007.

[5] M. Zaharia, et al., “Improving MapReduce

performance inheterogeneous environments,” Proc.

Proceedings of the 8th USENIX conference on

Operating systems design and implementation,

USENIX Association, 2008, pp. 29-42.S. Ibrahim, et al.,

“Evaluating MapReduce on Virtual Machines: The

Hadoop Case,” Book Evaluating MapReduce on Virtual

Machines: The Hadoop Case, Series Evaluating

MapReduce on Virtual Machines: The Hadoop Case

5931,ed., Editor ed. Springer Berlin / Heidelberg,

2009, pp. 519-528

[6] http://www.ibm.com/developerworks/cloud/library/cl-

mapreduce/

[7] Xen, http://en.wikipedia.org/wiki/Xen

[8] KVM, http://en.wikipedia.org/wiki/Kernel

basedVirtual_Machine.

[9] CloudStack 3.0 InstallGuide.

[10] http://hortonworks.com/hadoop/Oozie

[11] https://www.cloudera.com

https://www.cloudera.com/

Rashi Saxena1 IJECS Volume 4 Issue 7 July, 2015 Page No.13230-13236 Page 13236

Author Profile

 RASHI SAXENA received the B.Tech. Degree in Computer

Science & Engineering from the Uttar Pradesh Technical

University, Lucknow, UttarPradesh, in 2011, and pursuing the

M.Tech. Degree in Computer Science & Engineering from the

Jayoti Vidyapeeth Women’s University, Jaipur, Rajasthan,

respectively. Currently, She is an associate Professor of

Computer Science & Engineering at Bhaavya Technical

Institute, Agra. Her teaching and research areas include cloud

computing, load balancing, virtualization, Hadoop framework

etc.

Ms. Rashi Saxena may be reached at

rashi.saxena@yahoo.co.in

 TARUN GUPTA received the B.Tech. Degree in Computer

Science & Engineering from the Uttar Pradesh Technical

University, Lucknow, UttarPradesh, in 2011. Currently, he is

an associate level 2 at Sapient Corporation Pvt Ltd. His area of

interest are cloud computing, J2EE, Spring, Hibernate, Adobe

CQ, virtualization etc.

Mr. Tarun Gupta may be reached at

dtarun2009@gmail.com

