

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 5 May 2015, Page No. 12188-12193

Sanjeev Kumar Singh Kushwaha, IJECS Volume 4 Issue 5 May, 2015 Page No.12188-12193 Page 12188

Extended Two Phase Commit Protocal In Real Time Distributed

Database System
Sanjeev Kumar Singh Kushwaha

Babu Banarasi Das University, BBD City, Faizabad road, Lucknow, U.P

Sanjeevkushwaha30@gmail.com

ABSTRACT: The two phase commit (2pc) protocol is widely used for commit processing in distributed data base system (DDBSs). The blocking

problem in 2pc reduces the availability of the system as the blocked transaction keeps all the resources until receive the final command from the

coordinator after its recovery. To remove the blocking in 2pc, three phase commit (3pc) protocol was proposed. Although 3pc protocol eliminates

the blocking problem, it involves an extra round of message transmission, which degrades system performance in DDBSs. Both 2pc and 3pc

having problem which degrades system efficiency .In order to remove this problem in 2pc and 3pc ,E2PCP protocol was introduce to enhance

system performances as compare to 2pc and 3pc.

To reduce blocking, we propose an extended two phase commit protocol (E2PCP) by attaching multiple participant sites to the coordinator sites

work as a backup sites or as substitute sites for coordinator sites. In this protocol, after receiving responses from all participant sites in the first

phase, the coordinator communicates the final decision to the backup sites in the back phase. Afterward, it send final decision to the participants.

When blocking occur due to failure of coordinator site, the participant site can terminate the transaction by consulting backup sites of the

coordinator. In this way E2PCP protocol achieving non-blocking in most of coordinator sites failures.

Keyword: distributed database, commit protocol, 2phase commit, 3

phase commit, extended two phase commit protocol (E2PCP),

distributed algorithm

INTRODUCTION: In distributed database system transaction

is of important element in distributed system like airline

reservation systems, banking applications, credit-card systems,

and stock-market transactions, widely use these protocols for

their transactions over the network. So, undoubtedly, it is

essential to improve transaction processes and to verify their

correctness. So that process get completed in given time period

and can increases system performance. Basically transaction are

associated with deadlines. Meeting deadlines is one of the

important objectives.

Real time database system operating on distributed data have to

contend with complexities of transaction ACID semantics in

distributed data. Every transaction process system must ensure

this ACID property for successful transaction process. ACID

property stand for:

Atomicity guarantees that many operations are bundled together

and appear as one contiguous unit of work, operating under an

all-or-nothing paradigm—either all of the data updates are

executed, or nothing happens if an error occurs at any time. In

other words, in the event of failure in any part of the transaction,

all data will remain in its former state as if the transaction was

never attempted. In transactional terminology, this is referred to

as rolling back the transaction.

Consistency guarantees that a transaction will leave the system

in a consistent state after the transaction is completed. The

meaning of consistency varies depending on the logic of the

system; it is somewhat up to the application developer to enforce

the specific rules governing the consistent state.

Within a transaction, it is possible for some pieces to be in an

inconsistent state. However, once the transaction is completed—

either successfully or unsuccessfully—the system must return to

a consistent state. An example most of us can relate to is a

software application installer. Installers write and update files

on your hard drive. If you should turn off your computer in the

middle of an installation you may be unable to continue the

installation or uninstall the program without some manual

manipulation of your file system and/or system registry. The

installation of the software was left in an inconsistent state.

Atomicity helps enforce that the system always appear in a

consistent state.

Isolation protects concurrently executing transactions from

seeing each other’s incomplete results. Isolation allows multiple

transactions to read or modify data without knowing about each

other because each transaction is isolated from the others. This

is achieved by using low level synchronization protocols

(locking) on the underlying data. There are several levels of

isolation available, each with benefits and drawbacks. For

example, at the lowest level of isolation, as the data is being

changed in the transaction, other users of the data will be

exposed to the changes. Thus, if the transaction is rolled back,

the other users of the data may see data that will not be accurate

a few moments later after the roll back occurs. At higher levels

of isolation, other users of the data will not be able to read the

data until the transaction is successfully completed or is rolled

back.

http://www.ijecs.in/

Sanjeev Kumar Singh Kushwaha, IJECS Volume 4 Issue 5 May, 2015 Page No.12188-12193 Page 12189

Durability guarantees that updates to managed resources

survive failures. Failures include machine crashes, network

crashes, hard disk crashes, and power failures. Recoverable

resources keep a transactional log so that the permanent data can

be reconstructed by reapplying the steps in the log.

The lifetime of a transaction is divided into two stages: the

execution stage and another one is the commitment stage. In

execution stage, the operation of transaction are processed a

different sites of the system, while in the commitment stage, a

commit protocol is executed to ensure failure atomicity. The

transactions in the stage are called executing transactions and

the transactions in the commitment stage are called committing

transactions. There are several important factors contributing to

the difficulty in meeting the transaction deadlines in a DRTDBS.

In two phase commit protocol blocking transaction may

seriously affect the performance of a DRTDBS, especially when

failure occur during the commitment phase. Due to the delay

caused by the failures, the blocked transaction may have a high

probability of missing their deadlines. In the 2PC, the process of

a transactions at different sites are divided into two groups. One

of the processes is the coordinator and the other are the

participants. The following factors can causes a long delay in the

execution of 2PC:

1-Unpredictable communication delays. Since the 2pc requires

at least two rounds of message communications between the

coordinator and the participants, its performance is highly

dependent on the performance of the underlying network, the

communication delays are still unpredictable due to loss of

messages or failures of communication links.

2-Failure of coordinator and participants. Different kinds of

failures may occur in the coordinator and in the participants

during the execution of the commit protocol. Although the 2pc

is resilient to these failures, the resolution methods are usually

based on time –out. However, it is not easy to determine a

suitable time-out period for resolving the failures. A well-

chosen time-out interval is important to the performance of a

real-time system. Otherwise, an executing transaction, which is

blocked by a committing transaction, can be blocked for a very

long time before the system detects the failure. The above

factors not only affect the performance of the transactions in the

execution stage, but also they have a serious impact on the

performance of committing transactions because these

transaction are close to their completions and some of their

participants might be committing.

I. TWO PHASE COMMIT PROTOCOL (2PC)

The 2-phase commit (2PC) protocol is a distributed algorithm to

ensure the consistent termination of a transaction in a distributed

environment. Thus, via 2PC a unanimous decision is reached

and enforced among multiple participating servers whether to

commit or abort a given transaction, thereby guaranteeing

atomicity. The protocol proceeds in two phases, namely the

prepare (or voting) and the commit (or decision) phase, which

explains the protocol’s name. The protocol is executed by a

coordinator process, while the participating servers are called

participants. When the transaction’s initiator issues a request to

commit the transaction, the coordinator starts the first phase of

the 2PC protocol by querying—via prepare messages—all

participants whether to abort or to commit the transaction.

If all participants vote to commit then in the second phase the

coordinator informs all participants to commit their share of the

transaction by sending a commit message. Otherwise, the

coordinator instructs all participants to abort their share of the

transaction by sending an abort message. Appropriate log entries

are written by coordinator as well as participants to enable

restart procedures in case of failures.

Problems with 2PC

There are two problems with the above-described Two-Phase

Commit Protocol.

1) Blocking: The Two-Phase Commit Protocol goes to a

blocking state by the failure of the coordinator when the

participants are in uncertain state. The participants keep locks

on resources until they receive the next message from the

coordinator after its recovery.

2) State Inconsistency: Global state vector in commit protocols

works as a container of states for every participating node

regarding a single transaction. When its global state vector

contains both the commit and abort states. This inconsistency

can be observed using a state vector, particularly when the

participant is at its pre-commit state (p2) and fails. The

coordinator shows the committed state after sending commit

message but for the failed participant the protocol is declared

non resilient for assigning new state. It involves a great deal of

message complexity.

• Greater communication overheads as compared to simple

optimistic protocols.

• Blocking of site nodes in case of failure of coordinator.

• Multiple forced writes of log, which increase latency.

• Its performance is again a tradeoff, especially for short lived

transactions, like Internet applications.

II. THE THREE-PHASE COMMIT PROTOCOL (3PC)

Three-Phase Commit Protocol (3PC) is a non-blocking

Protocol, contrary to the 2PC. Here a new state called

“precommit” is introduced for the coordinator in [2]. The

coordinator gets to this “pre-commit” state only if all other

participants have voted to commit, i.e., yes. In case this state is

Sanjeev Kumar Singh Kushwaha, IJECS Volume 4 Issue 5 May, 2015 Page No.12188-12193 Page 12190

not reached, the participant will abort and release the blocked

resources after a specific time. When the coordinator gets the

“pre-commit” state then there is only one option to abort the

transaction and that is a timeout, which corresponds to a failure

of a participant, otherwise the transaction gets completed with

an acknowledgement from the participants. It is also possible

that the coordinator fails at this state, even then it will proceed

for global commit as shown in Figure 3PC with failure and

timeout transitions [2]

B. Problems with 3PC

Three-Phase Commit Protocol is problematic only when there

are multiple sites failures (proved in section VI-B).

For example, let’s consider a case where the coordinator is in

“pre-commit” state and fails just after sending a commit message

and the slave also fails just before or after receiving this message

as shown in Figure 5. So by its failure, the slave moves to the

aborted state but according to the protocol specifications given

in [3], the coordinator goes to the committed state, either it fails

or receives acknowledgement. Hence, the coordinator moves to

the committed state without receiving acknowledgement and the

failed slave moves to the aborted state without sending the

acknowledgement. In this way, coordinator and participant

show different final states due to their failures.

III. DISTRIBUTED TRANSACTION:

Transaction may access data at several sites.

• Each site has a local transaction manager responsible for:

 – Maintaining a log for recovery purposes

 – Participating in coordinating the concurrent execution

of the transactions executing at that site.

• Each site has a transaction coordinator, which is

responsible for:

 – Starting the execution of transactions that originate at the site.

 –Distributing sub transactions at appropriate sites for

execution.

 –Coordinating the termination of each transaction that

originates at the site, which may result in the transaction being

committed at all sites or aborted at all sites.

Distributed transaction processing systems are designed to

facilitate transactions that span heterogeneous, transaction-

aware resource managers in a distributed environment. The

execution of a distributed transaction requires coordination

between a global transaction management system and all the

local resource managers of all the involved systems. The

resource manager and transaction processing monitor (or TPM

as used herein) are the two primary elements of any distributed

transactional system. The TPM is responsible for managing

distributed transactions by coordinating with different resource

managers to access data from several different systems. Since

multiple application components and resources participate in a

transaction, it is necessary for the TPM to establish and maintain

the state of the transaction as it occurs. Resource managers

inform the TPM of their participation in a transaction by means

of a process called resource enlistment. The TPM keeps track of

all the resources participating in a transaction and uses this

information to coordinate transactional work. The TPM has to

monitor the execution of the transaction and determine whether

to commit or roll back the changes made to ensure atomicity of

the transaction.

Elements of an Extended Two-Phase Commit Protocol in Real

Time Distributed Database System Definitions for the various

elements of an E2PCP system are provided below:

• Application Software can be defined as a program or group of

programs designed for end users. Software can be divided into

two general classes: systems software and applications software.

Systems software consists of low-level programs that interact

with the computer at a very basic level. This includes operating

systems, compilers, and utilities for managing computer

resources. In contrast, application software (also called end-user

programs) includes database programs, word processors, and

spreadsheets. Figuratively speaking, application software sits on

top of systems software because it is unable to run without the

operating system and system utilities.

• Resource Manager (RM) The resource manager is usually a

database management system, such as Oracle, DB2, or SQL

Server. A resource manager is responsible for maintaining and

recovering its own resources. From the perspective of the

application, the resource manager is a single attachment to the

resource (e.g., a database). Note that resource managers are not

limited to databases. Any software program that manages

persistent data is a resource manager.

• Transaction Manager (TM) The transaction manager

coordinates the actions of the resource managers that are located

on the same node (local resource managers) as the transaction

manager. (A transaction manager may also act as the coordinator

under specific circumstances.)

The transaction manager should implement this interface so that

the code for the commit protocol can be plugged in the Simputer

DB without any modification. The transaction manager that we

have assumed is capable of handling multiple transactions. We

maintain a Link List of Transaction states modified atomically.

This is ensured using semaphores. For each transaction we

assign a transaction Id.

The functions that the interface contains are:

1. Void Start Transaction (Transaction ID) This method is used

to initialize the transaction. While implementing the actual

transaction manager you may need to change the prototype to

initialize the transaction.

Sanjeev Kumar Singh Kushwaha, IJECS Volume 4 Issue 5 May, 2015 Page No.12188-12193 Page 12191

2. Void Acquire Resources (Transaction ID)

We have provided this dummy function so that the functions to

be called for initializing the transaction, to acquire locks on the

resources etc. can be called within this function. And this

function can be called from the Start Transaction Method as we

currently do.

3. Void Release Resources (Transaction ID)

We have provided this function as an interface to all the steps

required to be executed while ending the transaction, like

releasing the locks, freeing the memory, deleting or force

Writing the remaining logs etc. Currently we delete the

remaining logs.

4. In getTransactionId () the implementation of this method can

be modified to meet the requirement of the transaction Manager.

It returns the integer value for the transaction id of the new

transaction.

5. int tiggerDefferedConstraints (Transaction ID This function

is invoked during the precommit phase. It can be used for

invoking the code for checking the deferred constraints.

6. int Create Log (Transaction Id ,log Type , message ,

coordinator ID)This function has been provided to be invoked

from the functions for commit protocol.

This has been done keeping in mind that the structure of log

records may change with the actual implementation of the log

manager. To avoid any modification in the code of the commit

protocol, this method acts as an interface for creating and

inserting the log records. With the change in the log structure

only this function has to be changed.

• Transaction Coordinator (TC) The transaction coordinator

is the transaction manager on the node where the application

started the transaction. The coordinator orchestrates the

distributed transaction by communicating with transaction

managers on other nodes (remote transaction managers) and

with resource managers on the same node (local resource

managers).

• Transaction Processing Monitor (TPM) The transaction

processing monitor consists of the transaction coordinator and

all the transaction managers composing the distributed E2PCP

system.

IV. LOG MANAGER:

The log manager has been implemented keeping in mind the

requirement of the actual log manager. The code for the log

manager can be reused as far as the insert, flush and delete are

the requirements. The logs are maintained as a link list in the

memory. The pointer to the last record inserted is maintained for

the fast insertion of the log record. The records contain a pointer

to the next log record for the same transaction. Thus the log

records for all the transactions are in the same list, still tracing

through the log records for a particular transaction is optimal and

Direct. It do not require traversing through the log records of

other transaction. This makes flushing optimal. We have

implemented three functions for log manager.

1. Void insert Log (Log Record) This function takes in the log

Record and inserts it into the log. Even if the structure of the log

Record changes you need not change the implementation of the

function.

2. Void flush Log (Transaction ID) This function flushes all

the log records for a given transaction Id on to the stable storage

and frees the memory.

3. Void delete Log (Transaction ID) This function deletes all

the log records in the memory for a transaction with the given

transaction id.

3.6 Languages Tools and Libraries

V. ALGORITHM:

The protocol involves all the local sites at which the transaction

executed. Let T be a transaction initiated at site Sj and let the

transaction coordinator at Sj be Cj.

Phase 1:

 Cj adds <query to commit> record to the log.

 Cj sends <query to commit> message to all sites.

 When a site receives a <query to commit> message,

the Transaction manager determines if it can

commit the transaction.

 If no: Add <no T> record to the log and respond to Cj

with <abort T>.

 If yes: Add <ready T> record to the log, force all

Log records for T onto stable storage and transaction manager

sends <ready T> message to Cj.

 The Coordinator collects responses from all sites. If all

respond “ready”, the final decision is commit. If at

least one response is “abort”, the final decision is abort.

If at least one participant fails to respond within a time

out period, the final decision is abort.

Phase 2: The following are the actions performed during

this phase:

 The coordinator adds a decision record <abort T>or

<commit T> to its log and forces the record onto stable

storage.

 Once that record reaches stable storage it is

irrevocable (even if failures occur).

 Cj communicates the final decision to the backup sites

in the backup phase

 The coordinator sends a message to each participant

informing it of the decision (commit or abort).

 If Cj failed

{

 blocking occur

}

 Cohorts/participant sites <terminate T> consulting

multiple backup site of Cj

Site failure in E2PC is handled in the following manner:

 If the log contains a <commit T> record, the site

executes redo (T).

 If the log contains an <abort T> record, the site

executes undo (T).

Sanjeev Kumar Singh Kushwaha, IJECS Volume 4 Issue 5 May, 2015 Page No.12188-12193 Page 12192

 If the log contains a <ready T> record, consult Cj. If

Cj is down, site sends query-status T message to the

other sites.

If the log contains no control records concerning T, the site

executes undo (T).

VI. PROBLEM EVALUATION AND ANALYSIS:

Simulation was done for both the main memory resident and

disk resident databases at communication delay of 0ms and

100ms .we compare E2PCP with 2pc and 3pc in this experiment.

Following figure show the miss percent behavior under normal

and heavy load conditions with/without communication delay

and figure deal with main memory based database system while

rest of the figure deal with disk resident database system.

Figure 1: Miss% with (RC+DC) at communication delay 0ms

normal and heavy load.

Figure 2: Miss% with (RC+DC) at communication delay 100ms

normal and heavy load.

Figure 3: Miss% with (RC+DC) at communication delay 0ms

normal load.

Figure 4: Miss% with (RC+DC) at communication delay 0ms

and heavy load.

Figure 5: Miss% with (RC+DC) at communication delay 100ms

normal and heavy load.

0

10

20

30

40

0 1 0 2 0 3 0 4 0 5 0 6 0

M
IS

S%

TRANSACTION ARRIVAL RATE (NO. OF
TRANSACTION)

M A I N M E M O R Y R E S I D E N T D A T A B A S E

2PC 3PC E2PC

0

20

40

60

80

100

0 1 0 2 0 3 0 4 0 5 0 6 0

M
IS

S%

TRANSACTION ARRIVAL RATE (NO. OF
TRANSACTION)

M A I N M E M O R Y R E S I D E N T D A T A B A S E

2PC 3PC E2PC

0

20

40

60

80

0 1 0 2 0 3 0 4 0 5 0 6 0

M
IS

S%

TRANSACTION ARRIVAL RATE (NO. OF
TRANSACTION)

D I S K R E S I D E N T D A T A B A S E S Y S T E M

2PC 3PC E2PC

0

20

40

60

80

100

0 1 0 2 0 3 0 4 0 5 0 6 0

M
IS

S%

TRANSACTION ARRIVAL RATE (NO. OF
TRANSACTION)

2PC 3PC E2PC

0

20

40

60

80

100

0 1 0 2 0 3 0 4 0 5 0 6 0

M
IS

S%

TRANSACTION ARRIVAL RATE (NO. OF
TRANSACTION)

D I S K R E S I D E N T D A T A B A S E S Y S T E M

2PC 3PC E2PC

Sanjeev Kumar Singh Kushwaha, IJECS Volume 4 Issue 5 May, 2015 Page No.12188-12193 Page 12193

Figure 6: success ratio

VII. CONCLUSION:

In this paper we have proposed new protocol E2PCP.This

protocol basically solve the problem of blocking in 2 phase

commit and also solve the problem of 3pc in which extra round

of transaction get increases which reduces system efficiency and

performance. This protocol eliminate both the problem of 2pc

and 3pc which reduce transaction failure and solve the problem

of miss transaction in distributed transaction system. This

protocol increases efficiency of transaction system .The

performance of E2PCP is compared with other protocol for both

main memory resident and disk resident databases without

communication delay.

VIII. REFERENCES:

 [1] Udai Shankar, Nikhil, Shalabh, Praveen, Praphul

Srivastava, “ACTIVE-Areal Time Commit Protocol”.

[2] “The PROMT -Real Time Commit Protocol”, Jayant R.

Haritsa, Krithi Ramamritham, Ramesh Gupta

[3] “Active Real Time Protocol”, Udai Shanker, Nikhil

Agarwal, Shalabh Kumar Tiwari, Praveen Srivastava

[4] Udai Shanker, Manoj Misra, Anil K. Scare and Rahul

Shisondia “Dependency Sensitive Shadow

[5] SWIFT”, 10thInternational Database Engineering and

Application Symposium IEEE 2006.

[6] Poonam Singh, Parul Yadav, Sanchit Lohia “An Extended 3

phase commit protocol for concurrency control in distributed

system” IJCA 2011 volume 21-No.10.

[7] S. Agrawal, Udai Shanker, Abhay N. Singh, A. Anand,

“©2010 International Journal of Computer Applications (0975

– 8887) Volume 1 – No. 3.

[8] J. R. Haritsa, K. Ramamritham, and R. Gupta, “The

PROMPT real time commit protocol,” IEEE Transaction on

parallel and distributed systems, 11(2), 2000, pp. 160-181

Author Profile:

Sanjeev Kumar Singh Kushwaha received the BTech degrees

in computer science and engineering from Uttar Pradesh

Technical University in 2011 and pursing MTech(final year)

from Babu Banarasi Das University..

0

20

40

60

80

100

120

0 1 0 2 0 3 0 4 0 5 0 6 0

M
IS

S%

TRANSACTION ARRIVAL RATE (NO. OF
TRANSACTION)

2PC 3PC E2PC

Sanjeev Kumar Singh Kushwaha, IJECS Volume 4 Issue 5 May, 2015 Page No.12188-12193 Page 12194

