
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 4 April 2017, Page No. 20931-20937

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i4.24

1
Shirley Kotian, IJECS Volume 6 Issue 4 April, 2017 Page No. 20931-20937 Page 20931

Improving performance of Virtual Machines by Virtio bridge Bypass for

PCI devices
1
Shirley Kotian,

2
Kirti Menon,

3
Kirti Menon,

4
Utsav Mundada,

5
Neeraj Vilas Auti

1234
PICT,

5
PICT [CS]

ABSTRACT

Inspired by the Virtio module of virtualization, we propose an alternate method to directly communicate

with PCI devices such as NIC without the use of any kernel modules. This method uses a specialized

module written by us which will avoid the mechanism of bridges like the ones used in Virtio that increase

latency. This module will be present in the userspace of the guest OS and we are specifically targeting

the e1000 device for this purpose and later plan to make it generic for all PCI devices. Our motivation is

to avoid unnecessary communication with the kernel which slows down the system. For the first step. we

do resource mapping to map the PCI device memory into userspace. Then, we expose PCI configuration

space through a userspace module using ACPI cables. Thus, we create a userspace PCI driver which will

decrease the latency in access time and increase speed of execution. The applications in the Guest OS that

request communication with the PCI devices will be redirected to our application. This will take some load

off the kernel and reduce its overhead. Finally, we boot a VM that actually talks to our PCI device

emulator.

GENERAL TERMS Virtio, UPCI, e1000, QEMU, virt-manager, UIO.

KEYWORDS : Emulation, Linux, QEMU
.

I. INTRODUCTION

Virtio is a virtualization standard for network and disk device drivers. In a paravirtualized hypervisor, it is

an abstraction for a set of common emulated devices. The hypervisor can then export a set of commonly

emulated devices and use a common application programming interface (API) to make them available.

Latency inducing bridges are used which also increase access time for execution.

Eight different virtualization systems are supported by the Linux Kernel at the moment: IBM’s System p,

VMware’s VMI, KVM, Xen, IBM’s System z, lguest, User Mode Linux and IBMs legacy iSeries. Each

of these had it’s own network, console, block and other drivers with various optimizations and features

until recently; and it seems likely that more such systems will appear. This is addressed by Virtio which

is a series of Linux drivers which provide efficiency and can be adapted for various implementations of the

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i4.24

1
Shirley Kotian, IJECS Volume 6 Issue 4 April, 2017 Page No. 20931-20937 Page 20932

hypervisor by using a shim layer. There is an extensible feature mechanism for each driver which simply

provides a least resistance path for the new hypervisors: and by providing supoort to this efficient

mechanism for transport will reduce the amount of work that has to be done.

The Quick Emulator(QEMU) is an open source machine emulator as well as virtualizer and is generic in

nature. If it is used as an emulator for a machine, it can run operating systems and programs made for a

particular machine on a different machine by using binary dynamic translation. Thus, this mechanism

renders it very efficient.If QEMU is used as a virtualizer, it achieves near native performance by executing

the guest code directly on the host CPU. QEMU can virtualize server and embedded PowerPC, x86, s390,

64-bit POWER, 32-bit and 64-bit ARM, and MIPS guests and when running under two hypervisors: Xen

amd KVM kernel module, it supports virtualization. We will be using the System emulation operating

mode. In this particular mode, QEMU can boost various guest operating systems: Linux, Microsoft

Windows, Solaris, BSD and DOS and it emulates a full computer system which includes all the peripherals.

Virtual hosting is provided for several virtual computers on an individual computer. It supports emulation

of many instruction sets, including MIPs, x86,ARMv8, 32-bit ARMv7, SPARC, PowerPC, MicroBlaze

and ETRAX CRIS.

Inspired by this Virtio module of virtualization, we propose an alternate method to directly communicate

with PCI devices such as NIC without the use of any kernel modules. This method uses a specialized

module written by us which will avoid the mechanism of bridges like the ones used in Virtio that increase

latency. This module will be present in the userspace of the guest OS and we are specifically targeting

the e1000 device for this purpose and later plan to make it generic for all PCI devices.

II. MOTIVATION

We have found a few issues with the virtio module used currently:

1. For the KVM and QEMU guests using virtio networking, the networking breaks after a while. Contin-

uous flow of networking constructs can be made possible by addressing this issue using direct memory

mapping.

2. Virtio bridges are slow Ref:https://www.redhat.com/archives/libvirt-users/2012-June/msg00041.html

3. And, we found that while testing the throughput and latency of the network using Fedora 17 for both

guest and host, using kernel 3.5.23.fc17.86 64. Pinging an external server on the LAN from the host(as

shown in Fig. 1), using a gigabit interface, the results showed less RTT time. This can be seen from the

following diagrams:

Fig. 1

Pinging the same external host on the LAN from the guest, the latency seems to be much higher(as

http://www.redhat.com/archives/libvirt-users/2012-June/msg00041.html
http://www.redhat.com/archives/libvirt-users/2012-June/msg00041.html

DOI: 10.18535/ijecs/v6i4.24

1
Shirley Kotian, IJECS Volume 6 Issue 4 April, 2017 Page No. 20931-20937 Page 20933

shown in Fig. 2).

Fig. 2

III. ARCHITECTURE

As of now, if an application in the guest OS wants to access a PCI device, then it sends out a request

to the hypervisor(in this case QEMU). The QEMU with the help of vhost driver in virtio emulates the

device needed. This vhost model makes use of many virtio bridges, virtio queues, PCI bus and structures

like Vring and VIRT QUEUE to perform this emulation. This results in high latency and overhead on the

host kernel. For multiple VMs the performance of the host machine will be significantly compromised.

A. PROPOSED ARCHITECTURE

We propose a new model to go about this problem. We write our own module(UIO DRIVER) which

is placed in the host userspace. This module will map the device memory into userspace allowing the

applicaiton to directly access the device. The mapping of device memory allows us to directly make

changes in the device memory. This technique is a lot faster than accessing the PCI address space to

handle the device. We modify QEMU to redirect all virtio calls towards our UIO DRIVER. The UIO

DRIVER also has PCI code implementaion to access the device via device driver. Now, UIO DRIVER

gives us an advantage of DMA and speeds up the processing. This driver will also have all the respective

functionalities to handle various calls targeted towards the device.

DOI: 10.18535/ijecs/v6i4.24

1
Shirley Kotian, IJECS Volume 6 Issue 4 April, 2017 Page No. 20931-20937 Page 20934

Fig. 3: Current Architecture

Fig. 4: Proposed

Architecture

IV. IMPLEMENTATION

A. MEMORY MAPPING

Mapping into PCI memory region in the userspace :-

1. Run the lspci command and check if the device id which is of the format 0x:00.0(We tried

specific to the network controller for the E1000 device)

DOI: 10.18535/ijecs/v6i4.24

1
Shirley Kotian, IJECS Volume 6 Issue 4 April, 2017 Page No. 20931-20937 Page 20935

2. check the given device on sysfs : ls -l /sys/bus/pci/devices/0000\:00 1c.4/0000\:09\:00.0/

starting from /sys/bus/pci/devices/

3. After compiling the code we can run it as ./a.out

/sys/bus/pci/devices/0000\:00\:1c.4/0000\:09\:00.0/resource0 0x100 w 0x00 which is explained as:-

resource0 is the file which should be mapped for pci devices, 0x100 is the

offset‘ The command parameters are:-

./a.out sys file offset [type [data]]

sys file: sysfs file for the pci resource to act on

offset : offset into pci memory region to be acted

upon type : the type of access operation which

are:

b: byte

h: halfword

w: word

data: data to be written

== mmap() ==

The sysfs resource can be used along with mmap() to map the PCI memory into a userspace

applications memory space. The application can then read/write values directly by placing a pointer to the

start of the PCI memory region. Some more operations are associated with the memory pointers but are

executed by the kernel.

fd = open$"/$sys/devices/pci0001\:00/0001\:00\:07.0/resource0",

O_RDWR); ptr = mmap(0, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, fd,

0);

printf("PCI BAR0 0x0000 = 0x%4x\n", *((unsigned short *) ptr);

B. TRACING

Tracing E1000 system calls:

QEMU’s tracing structure and how to use it for profiling, debugging and observing execution is

explained as follows:-

1. first, building with the ’simple’ trace backend:

./configure –enable-trace-backend=simple make

2. Creating one file with all the events that you wish to trace. Eg: readv, writev

3. A trace file is produced by running the virtual machine:

qemu -trace events=/tmp/events ... # your normal QEMU invocation

4. Finally, pretty-print the binary trace file:

DOI: 10.18535/ijecs/v6i4.24

1
Shirley Kotian, IJECS Volume 6 Issue 4 April, 2017 Page No. 20931-20937 Page 20936

./simpletrace.py trace-events trace-*

Using the software emulation(”TCG”), when the QEMU executes a guest, it translates many blocks of

guest code into native code and then executes the code.

Initially, QEMU needs to be compiled from source. Before that, docs/tracing.txt needs to be

understood thoroughly and also edit the trace-events and remove a particular keyword-’disable’- from the

following lines in that file.

The next step is to add these trace events into the /tmp/events file. It is also useful to put the entire

qemu command line into a script alongwith the -trace events=/tmp/events parameter in case we have to

rerun the trace.

Using the scripts/simpletrace.py script one can then analyze the log as it is describe in the tracing

documentation of the QEMU. The output will be huge. The output can be aligned to make it easier to

read:

./scripts/simpletrace.py trace-events trace-4491 — head

V. PRACTICAL APPLICATION

Our module will be integrated in the PCI codes. Thus, presumably decreasing latency in access time

of commands and kernel overhead.

VI. SUMMARY AND CONCLUSION

Thus, we will be able to map the PCI memory in userspace, expose the PCI configuration space through

our module and create a userspace PCI driver. Finally, we boot a VM that actually talks to our PCI device

emulator.

VII. REFERENCES

[1] Jiuxing Liu, Wei Huang, Bulent Abali, Dhabaleswar K. Panda et al., High Performance VMM-

Bypass I/O in Virtual Machines

[2] J. Liu, J.Wu, S. P. Kini, P.Wyckoff, and D. K. Panda et. al. High Performance RDMA-Based

MPI Implementation over InfiniBand

[3] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. Merritt, E. Gronke,

and C. Dodd et.al. The Virtual Interface Architecture., IEEE Micro, pages 66-76, March/April 1998.

[4] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and R.

Neugebauer Xen and the Art of Virtualization, October 2003.

[5]P. M. Chen and B. D. Noble et. al. When virtual is better than real, 2001

DOI: 10.18535/ijecs/v6i4.24

1
Shirley Kotian, IJECS Volume 6 Issue 4 April, 2017 Page No. 20931-20937 Page 20937

[6]K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson. et. al. Safe hardware

access with the xen virtual machine monitor, OASIS ASPLOS Workshop, 2004

[7]I. Pratt. Et. al.Xen Virtualization, Linux World 2005 Virtualization BOF Presentation

[8]M. Rosenblum and T. Garfinkel. Et. al. Virtual Machine Monitors: Current Technology and Future

Trends, May 2005.

 [9]J. Sugerman, G. Venkitachalam and B. H. Lim. et.al. Virtualizing I/O Devices on VMware Work-

stations Hosted Virtual Machine Monitor, 2001

[10]C. Waldspurger et. al.Memory resource management in vmware esx server, In Proceedings of the

Fifth Symposium on Operating Systems Design and Implementation, 2002.

