
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 5 May 2017, Page No. 21496-21501

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i5.51

Prof. Ashok Kumar Kalal, IJECS Volume 6 Issue 5 May, 2017 Page No. 21496-21501 Page 21496

DeyPoS: Deduplicatable Dynamic Proof of Storage for Multi-User

Environment
Prof. Ashok Kumar Kalal, Kunal Jondhalekar , Piyush Kumar, Pavan Kumar Pandey, Himanshu

Thakur
Jha hodcomp.acem@gmail.com

kunal.jondhalekar@gmail.com

piyushjha81@gmail.com

Pandeypavan03@gmail.com

hthakur5789@gmail.com

Abstract – DeyPos is a useful cryptographic primitive that permits a user to check the integrity and

systematically update the files in a cloud server. There has been many solutions proposed for Dynamic

Proof of Storage in singleuser environment but for multi user problems is still unsolvable. A multi-user

cloud storage system needs the secure client side cross user deduplication technique, which allows a user to

stop the uploading process and gain the ownership of the files immediately, when other owners of the same

files have uploaded them to the cloud server.As we know, none of the existing dynamic PoSs can support this

technique. In this paper, we elaborate the concept of deduplicatable dynamic proof of storage and propose

an efficient construction called DeyPoS, to achieve dynamic Proof of Storage and secure cross-user

deduplication, simultaneously.To build a novel tool called Homomorphic Authenticated Tree (HAT) to

address challenges such as structure diversity and private tag generation.Hence we prove the security of our

construction, and the theoretical analysis and experimental results show that our research is practically

valid and applicable.

KEYWORDS: Cloud storage, dynamic proof of storage, deduplication.

1. INTRODUCTION

Deduplicatable Dynamic proof of storage is a part

of data outsourcing which is widely used by

organisations such as Amazon, Google and

Microsoft.Researchers introduced Proof of

Storage to check the truthfullness of the files

without downloading them from the cloud

server.In this scheme a tag which is associated

with block verifies the integrity of that block.

When a user uploads a file then he/she becomes

the uploader of the file but, if uploading same file

is attempted by any other user then the system

stops the upload of that file and gives the access

of the file which has already been uploaded by

the other user.This process is done by key value

matching. It solves major problems such as

private tag generation.This scheme reduces

unnecessary computation and provides efficient

storage for cloud server.

STORAGE outsourcing is becoming more and

more attractive to both industry and academia due

to the advantages of low cost, high accessibility,

and easy sharing. As one of the storage

outsourcing forms, cloud storage gains wide

attention in recent years [1] [2]. Many companies,

such as Amazon, Google, and Microsoft, provide

their own cloud storage services, where users can

upload their files to the servers, access them from

various devices, and share them with the others.

Although cloud storage services are widely

adopted in current days, there still remain many

security issues and potential threats

Data integrity is one of the most important

properties when a user outsources its files to cloud

storage. Users should be convinced that the files

stored in the server are not tampered. Traditional

http://www.ijecs.in/
mailto:hthakur5789@gmail.com

DOI: 10.18535/ijecs/v6i5.51

Prof. Ashok Kumar Kalal, IJECS Volume 6 Issue 5 May, 2017 Page No. 21496-21501 Page 21497

techniques for protecting data integrity, such as

message authentication codes (MACs) and digital

signatures, require users to download all of the

files from the cloud server for verification, which

incurs a heavy communication cost [5]. These

techniques are not suitable for cloud storage

services where users may check the integrity

frequently, such as every hour [6]. Thus,

researchers introduced Proof of Storage (PoS) [7]

for checking the integrity without downloading

files from the cloud server. Furthermore, users

may also require several dynamic operations, such

as modification, insertion, and deletion, to update

their files, while maintaining the capability of

PoS. Deypos is proposed for such dynamic

operations.

To understand the following contents, we present

details about PoS and dynamic PoS. In these

schemes each block of a file is attached a

(cryptographic) tag which is used for verifying the

integrity of that block. When a verifier wants to

check the integrity of a file, it randomly selects

some block indexes of the file, and sends them to

the cloud server. According to these challenged

indexes, the cloud server returns the

corresponding blocks along with their tags. The

verifier checks the block integrity and index

correctness. The former can be directly guaranteed

by cryptographic tags. In this schemes , the block

index is encoded into its tag.. However, dynamic

PoS cannot encode the block indexes into tags,

since the dynamic operations may change many

indexes of non-updated blocks, which incurs

unnecessary computation and communication

cost. For example, there is a file consisting of

1000 blocks, and a new block is inserted behind

the second block of the file. Then, 998 block

indexes of the original file are changed, which

means the user has to generate and send 999 tags

for this update. Authenticated structures are

introduced in dynamic PoSs to solve this

challenge.

2. Related work

The main idea of PoS is to randomly choose a few

data blocks as the challenge. Then, the cloud

server returns the challenged data blocks and their

tags as the response. Since the data blocks and the

tags can be combined via homomorphic functions,

the communication costs are reduced. The

subsequent works extended the research of PoS,

but those works did not take dynamic operations

into account. Erway et al. and later works focused

on the dynamic data. Among them, the scheme in

is the most efficient solution in practice. However,

the scheme is stateful, which requires users to

maintain some state information of their own files

locally. Hence, it is not appropriate for a multiuser

environment.The Merkle tree without the help

from the cloud server, which is a big challenge in

dynamic PoS. The scheme employs a

deterministic proof algorithm which indicates that

every file has a deterministic short proof. Thus,

anyone who obtains this proof can pass the

verification without possessing the file locally.

Other deduplication schemes for encrypted data

were proposed for enhancing the security and

efficiency. Note that, all existing techniques for

cross-user deduplication on the client-side were

designed for static files. Once the files are

updated, the cloud server has to regenerate the

complete authenticated structures for these files,

which causes heavy computation cost on the

server-side.

DOI: 10.18535/ijecs/v6i5.51

Prof. Ashok Kumar Kalal, IJECS Volume 6 Issue 5 May, 2017 Page No. 21496-21501 Page 21498

Deduplication in these scenarios is to deduplicate

files among different groups. Unfortunately, these

schemes cannot support deduplication due to

structure diversity and private tag generation. In

this paper, we consider a more general situation

that every user has its own files separately. Hence,

we focus on a deduplicatable dynamic PoS

scheme in multiuser environments. The major

techniques used in PoS and dynamic PoS schemes

are homomorphic Message Authentication Codes

[40] and homomorphic signatures [41] [42]. With

the help of homomorphism, the messages and

MACs/signatures in these schemes can be

compressed into a single message and a single

MAC/signature. Therefore, the communication

cost can be dramatically reduced. A brief survey

of homomorphic MACs and signatures could be

referred.

1.1 Contributions

To the best of our knowledge, this is the first work

to introduce a primitive called deduplicatable

dynamic Proof of Storage which solves the

structure diversity and private tag generation

challenges. In contrast to the existing

authenticated structures, such as skip list and

Merkle tree we design a novel authenticated

structure called Homomorphic Authenticated Tree

(HAT), to reduce the communication cost in both

the proof of storage phase and the deduplication

phase with similar computation cost. Note that

HAT can support integrity verification, dynamic

operations, and cross-user deduplication with

good consistency. We propose and implement the

first efficient construction of deduplicatable

dynamic PoS called DeyPoS, which supports

unlimited number of verification and update

operations.

3 DEDUPLICATABLE DYNAMIC POS

3.1 System Model

Our system model considers two types of entities:

the cloud server and users, as shown in Fig. 2. For

each file, original user is the user who uploaded

the file to the cloud server, while subsequent user

is the user who proved the ownership of the file

but did not actually upload the file to the cloud

server. There are five phases in a deduplicatable

dynamic PoS system: pre-process, upload,

deduplication, update, and proof of storage. In the

pre-process phase, users intend to upload their

local files. The cloud server decides whether these

files should be uploaded. If the upload process is

granted, go into the upload phase; otherwise, go

into the deduplication phase. In the upload phase,

the files to be uploaded do not exist in the cloud

server. The original users encodes the local files

and upload them to the cloud server. In the

deduplication phase, the files to be uploaded

already exist in the cloud server. The subsequent

users possess the files locally and the cloud server

stores the authenticated structures of the files.

Subsequent users need to convince the cloud

server that they own the files without uploading

them to the cloud server. Note that, these three

phases (pre-process, upload, and deduplication)

are executed only once in the life cycle of a file

from the perspective of users. That is, these three

phases appear only when users intend to upload

files. If these phases terminate normally, i.e., users

finish uploading in the upload phase, or they pass

the verification in the deduplication phase, we say

that the users have the ownerships of the files.

Note that, these three phases (pre-process, upload,

and deduplication) are executed only once in the

life cycle of a file from the perspective of users.

That is, these three phases appear only when users

intend to upload files. If these phases terminate

i.e., users done with the uploading in the

uploading of file, or they pass the validation in the

deduplication phase, we assume that users have

the ownership of the files. In the update phase,

users may modify, insert, or delete some blocks of

the files. Then, they update the corresponding

parts of the encoded files and the authenticated

structures in the cloud server, even the original

files were not uploaded by themselves. Note that,

users can update the files only if they have the

ownerships of the files, which means that the users

should upload the files in the upload phase or pass

the verification in the deduplicationphase. For

each update, the cloud server has to reserve the

original file and the authenticated structure if there

exist other owners, and record the updated part of

the file and the authenticated structure. This

enables users to update a file concurrently in our

model, since each update is only “attached” to the

original file and authenticated structure. In the

DOI: 10.18535/ijecs/v6i5.51

Prof. Ashok Kumar Kalal, IJECS Volume 6 Issue 5 May, 2017 Page No. 21496-21501 Page 21499

proof of storage phase, user can check the

integrity of metadata locally. The files may not be

uploaded by these users, but they pass the

deduplication phase and prove that they have the

ownerships of the files.

3.2 Threat Model

We present the threat model briefly as follows.

The cloud server and users do not fully trust each

other. A malicious user may cheat the cloud server

by claiming that it has a certain file, but it actually

does not have it or only possesses parts of the file.

A malicious cloud server may try to convince

users that it faithfully stores files and updates

them, whereas the files are damaged or not up-to-

date. The goal of deduplicatable dynamic PoS is

to detect these misbehaviors with overwhelming

probability. The formal threat model is described

in Section 2.4 via various security definitions.

4. HOMOMORPHIC AUTHENTICATED

TREE

To implement an efficient deduplicatable dynamic

PoS scheme, we design a novel authenticated

structure called homomorphic authenticated tree

(HAT). A HAT is a binary tree in which each leaf

node corresponds to a data block. Though HAT

does not have any limitation on the number of

data blocks, for the sake of description simplicity,

we assume that the number of data blocks n is

equal to the number of leaf nodes in a full binary

tree. Thus, for a file F = (m1,m2,m3,m4) where mι

represents the ι-th block of the file, we can

construct a tree as shown in Fig. 1a. Each node in

HAT consists of a four-tuple νi = (i,li,vi,ti). i is the

unique index of the node. The index of the root

node is 1, and the indexes increases from top to

bottom and from left to right. li denotes the

number of leaf nodes that can be reached from the

i-th node. vi is the version number of the i-th

node. ti represents the tag of the i-th node. When a

HAT is initialized, the version number of each

leaf is 1, and the version number of each non-leaf

node is the sum of that of its two children. For the

i-th node, mi denotes the combination of the

blocks corresponding to its leaves. We require that

for any node νi and its children ν2i and ν2i+1,

F(mi) = F(m2i ⊙ m2i+1) = F(m2i) ⊗ F(m2i+1)

holds, where ⊙ denotes the combination of m2i

and m2i+1, and ⊗ indicates the combination of

F(m2i) and F(m2i+1), which is why we call it a

“homomorphic” tree.

5. Algorithm
Cloud computing gives boundless virtualized plan

of action to client as administra- tions over the

entire web while concealing the stage and

executing subtle elements. Distributed storage

administration is the administration of evergreen

expanding mass of information. To make

information administration adaptable in

distributed com- puting, deduplication has been a

customary method. Information pressure strategy

is utilized for dispensing with the copy duplicates

of rehashed information in dis- tributed storage to

decrease the information duplication. This method

is utilized to speedup stockpiling use furthermore

be connected to network information exchanges to

lessen the quantity of bytes that must be sent.

DOI: 10.18535/ijecs/v6i5.51

Prof. Ashok Kumar Kalal, IJECS Volume 6 Issue 5 May, 2017 Page No. 21496-21501 Page 21500

6. Result & Analysis
We first evaluate the cost in the upload phase. The

initialization time is similar in all schemes. For

example, the initialization time for constructing

Merkle tree and HAT is 6.7s and 7.9s,

respectively, for a 1GB file of 4kB block size. The

storage cost of the client is O(1), and the storage

cost of the server is shown in Fig. 4. The

authenticator size of HAT is lager than that of the

Merkle tree. However, when Merkle tree is

employed in PoS scheme, it requires more space

for storing tags of file blocks. As a result, the

storage cost of our scheme is similar to other

Merkle tree based PoS schemes. When the block

size is 4kB, the authenticator size is less than 3%

of the file size in our scheme.

Next, we evaluate the cost in the deduplication

phase. Fig. 5 presents the communication cost

when the file size is 1GB. The communication

cost considers the data sent from users and the

data sent from the cloud server.The

communication cost in our scheme is more

efficient than the cost of Merkle tree based

schemes, since users has to send all challenged file

blocks to the cloud server for generating leaf

nodes of Merkle tree in those schemes. When the

block size is 4kB and the number of the

challenged blocks is 480, the communication cost

of Merkle tree based solution [15] is almost 2MB,

while the cost of DeyPoS is 104kB. Fig. 6 shows

the communication cost of different file sizes,

where the block size is fixed on 4kB. When the

number of challenged file blocks are fixed, the

communication cost stays at a steady level in

Merkle tree based schemes since the major cost is

to transmit the corresponding file blocks.

However, the communication cost grows

logarithmically with respect to the file size

because the number of nodes in the sibling set

grows logarithmically.

Finally, we show the experimental results in the

proof of storage phase. Since the challenge size

which is the size of data sent from users is

constant and negligible (less than 100B) in both

DeyPoS and Merkle tree based solutions, Fig. 10

only depicts the proof size which is the amount of

data sent from the cloud server. DeyPoS requires a

lower cost than Merkle tree based scheme because

the tags in HAT are homomorphic. When we

challenge 480 blocks , the proof size is less than

80kB, which is negligible small in practice. Fig.

11 presents the proof size of different file sizes,

where the block size is fixed on 4kB. Obviously,

DeyPoS requires less bandwidths in all situations.

When the block size is 4kB [5] [14], the block size

is less than 10kB.

As a consequence, our scheme, DeyPoS, which is

based on a HAT, reduces the communication cost

in both the deduplication phase and the proof of

storage phase. The computation cost is as efficient

as the one in Merkle tree based dynamic PoSs.

DOI: 10.18535/ijecs/v6i5.51

Prof. Ashok Kumar Kalal, IJECS Volume 6 Issue 5 May, 2017 Page No. 21496-21501 Page 21501

7. Conclusion & Future Work
We proposed the comprehensive requirements in

multi-user cloud storage systems and introduced

the model of deduplicatable dynamic PoS. We

designed a novel tool called HAT which is an

efficient authenticated structure. Based on HAT,

we proposed the first practical deduplicatable

dynamic PoS scheme called DeyPoS and proved

its security in the random oracle model. The

theoretical and experimental results show that

ourDeyPoS implementationis efficient, especially

when the file size and the number of the

challenged blocks are large.

8. References

 [1] S. Kamara and K. Lauter, “Cryptographic

cloud storage,” in Proc. of FC, pp. 136–149, 2010.

[2] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A

Secure and Dynamic Multi-Keyword Ranked

Search Scheme over Encrypted Cloud Data,”

IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 2, pp. 340–352, 2016.

[3] Z. Xiao and Y. Xiao, “Security and privacy in

cloud computing,” IEEE Communications

Surveys Tutorials, vol. 15, no. 2, pp. 843–859,

2013.

[4] C. A. Ardagna, R. Asal, E. Damiani, and Q. H.

Vu, “From Security to Assurance in the Cloud: A

Survey,” ACM Comput. Surv., vol. 48, no. 1, pp.

2:1–2:50, 2015.

[5] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, and D. Song,

“Provable data possession at untrusted stores,” in

Proc. of CCS, pp. 598–609, 2007. [6] G. Ateniese,

R. Di Pietro, L. V. Mancini, and G. Tsudik,

“Scalable and Efficient Provable Data

Possession,” in Proc. of SecureComm, pp. 1–10,

2008.

[7] G. Ateniese, S. Kamara, and J. Katz, “Proofs

of storage from homomorphic identification

protocols,” in Proc. of ASIACRYPT, pp. 319–

333, 2009.

[8] C. Erway, A. Ku¨pcu¨, C. Papamanthou, and

R. Tamassia, “Dynamic provable data

possession,” in Proc. of CCS, pp. 213–222, 2009.

[9] R. Tamassia, “Authenticated Data Structures,”

in Proc. of ESA, pp. 2–5, 2003. [10] Q. Wang, C.

Wang, J. Li, K. Ren, and W. Lou, “Enabling

public verifiability and data dynamics for storage

security in cloud computing,” in Proc. of

ESORICS, pp. 355–370, 2009.

