
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 12 Dec. 2016, Page No. 19789-19792

Dr. Madhavi Karanam, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19789-19792 Page 19789

An Efficient Usage of APIs in Software Code Reuse
Dr. Madhavi Karanam

Gokaraju Rangaraju Institute of Engineering and Technology,

 Department of CSE,

Hyderabad, India

madhaviranjan@griet.ac.in

Abstract: Web search tools have been produced to address this issue by coordinating catchphrases in questions to words in the portrayals of

utilizations, remarks in their source code, and the names of program factors and sorts.. On the off chance that code sections are recovered

with regards to executable applications, it makes it simpler for developers to see how to reuse these code fragments. In request to address

this issue an application seek framework called Application Program Interface (API) for anticipating pertinent applications as a portion of

Searching, Selecting, and Synthesizing (S3) design. This web index helps clients find very significant executable applications for reuse. It

consolidates diverse wellsprings of data about applications keeping in mind the end goal to find important programming: the printed

depictions of utilizations, the API calls utilized inside every application, and the dataflow among those API calls such as Class relations,

circling requirements, and remarks on code. By including more semantic portrayal of venture this aides in recovering unimportant

outcomes i.e., more than at least one number of result identified with current programming improvement assignment identified with client

query. This can be valuable to the client keeping in mind the end goal to get various significant programming applications related current

advancement undertaking for reusability of venture.

Keywords: API, code reuse, searching, relevant extractor, fragments.

1. Introduction

Programming reuse or source code reusability is one of

principle part of programming building which helps in reuse of

programming segment or code scraps which are as of now

created and very much tried. It helps in decreasing the cost and

time being developed of programming which are one of

principle impacting elements in programming advancement life

cycle But a central of discovering pertinent programming

applications that are being created in programming

improvement undertaking is because of an exceptionally

expected errand connected with the improvement of

programming and low level executions points of interest of use

in storehouses. To diminish the confusion in the middle of the

abnormal state goal connected with programming improvement

and low level points of interest of the venture. With a specific

end goal to address this issue utilizes an Application Program

Interface (API) based code web index for foreseeing pertinent

application. Fundamentally the web index works by taking two

rankings of use. In the first place consider the depiction of use

and second look at the API being utilized as a part of

utilization. The execution has been assessed by consolidating

the both positions of use with semantic pursuit from so it can

recover more-pertinent applications.

An immediate approach for finding profoundly significant

applications is to seek through the depictions and source code

of utilizations to match catchphrases from inquiries to the

names of program factors and sorts. This approach expect that

developers pick significant names when making source code,

which is regularly not the situation .This issue, is somewhat

tended to by software engineers who make important

depictions of the applications in programming archives.

Nonetheless, cutting edge web search tools utilize correct

matches between the catchphrases from inquiries, the words in

the portrayals, and the source code of utilizations. Shockingly,

it is troublesome for clients to figure correct watchwords in

light of the fact that no single word can be depicted a

programming idea in the most ideal way. The vocabulary

picked by a software engineer is likewise identified with the

idea task issue in light of the fact that the terms in abnormal

state portrayals of uses may not coordinate terms from the low-

level usage (e.g. Identifier names and remarks).

2. Literature Survey

Writing study is essentially done keeping in mind the end goal

to dissect the foundation of the present venture which discovers

blemishes in the current framework and aides on which

unsolved issues that can work out. Along these lines, the

accompanying themes show the foundation of the venture as

well as reveal the issues and imperfections which reused to

propose arrangements and work on this venture. An assortment

of research has been done on learning of aggregate conduct.

Taking after segment investigates diverse references that talk

about around a few points identified with aggregate conduct.

Today Programmers confront many difficulties when attempt

to discover source code to reuse in current programming

advancement assignment [2].The major issue of finding

pertinent code is the bungle between the abnormal state aim

identified with the portrayals of programming and low level

execution points of interest of programming undertaking. The

above issue is depicted as the idea task issue [3]. Source code

web indexes are created to recover important source code by

coordinating watchwords in questions to words in the

depictions of utilizations, remarks in their source code, and the

names of program factors and sorts. Source code web indexes

dive into programming stores to discover significant source

code which contain a great many programming ventures. Yet,

many source code archives are dirtied with ineffectively

working activities [4], by essentially utilizing a match between

catchphrases from the question of client with the depiction of

programming venture in the vault and it doesn't ensure that the

recovered venture or source code is important to the inquiry of

client. Today many source code web crawlers return just scraps

or bit of code that are important to client inquiries. For

software engineers this make perplexity [5] how to reuse these

code bits or bit of code. Be that as it may, the issue of reuse is

the code pieces recovered look fundamentally the same as [6].

On the off chance that internet searchers recover code scraps in

DOI: 10.18535/ijecs/v5i12.78

Dr. Madhavi Karanam, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19789-19792 Page 19790

the conditions of executable applications; it makes simple for

developers to see how to reuse these code pieces.

The Present day code web indexes like e.g., Google Code

Search, Source Forge for the most part regard code as an

ordinary content where the source code doesn't have semantics

Software applications contain API calls which contain work

deliberation of programming tasks and the semantics of API

calls are all around characterized which helps in recovering the

significant source code. The idea of utilizing API calls was

proposed however not executed somewhere else [7], [8]. In any

case, this was assessed over large databases of source code by

utilizing standard data recovery strategies [9].

Keeping in mind the end goal to recover the product

application by utilizing API calls this paper addresses a pursuit

framework called API code web search tool for anticipating

significant application as a piece of Searching, Selecting, and

Synthesizing (S3) engineering [10].This source code internet

searcher recover very pertinent applications with a specific end

goal to reuse in web and flow programming advancement

assignment. It considers fundamentally three things keeping in

mind the end goal to find programming applications.

Miner is a device that incorporates parts of code in light of

client questions that contain input sorts and fancied yield sorts

[15]. Miner is a compelling instrument to help software

engineers in composing confused code; in any case, it doesn't

give support to an undeniable code web crawler. Catchphrase

writing computer programs is a strategy which interprets a few

user-gave watchwords into a substantial source code

explanation. Watchword programming matches the

catchphrases to API calls and the parameters of those calls. At

that point, it connects those parameters to factors or different

capacities additionally said in the watchwords. Model is like

watchword programming in that Exemplar matches client

inquiries to API calls, and can suggest utilization of those calls.

Dissimilar to catchphrase programming, Exemplar indicate

cases of past use of those APIs, and does not endeavor to

incorporate those calls into the client's own source code.

The Hipikat apparatus [16] suggests pertinent improvement

artifacts(i.e., source updates connected with a past change

errand) from a venture's history to a designer. Dissimilar to

Exemplar, Hipikat is a programming errand arranged device

that does not suggest applications whose functionalities

coordinate abnormal state prerequisites.

Strathcona is an instrument that heuristically matches the

structure of the code a work in progress to the case code.

Strathcona is valuable while helping software engineers while

working with existing code [17],[18], in any case, its utility is

not pertinent when hunting down important tasks given a

question containing abnormal state ideas with no source code.

FRAN is a system which helps software engineers to find

capacities like given capacities [19], [20]. At long last,

XSnippet [21] is a setting delicate instrument that permits

engineers to inquiry a specimen archive for code pieces that are

important to the programming job needing to be done.

Model is like these calculations in that it utilizes relations

between API calls as a part of the recovered tasks to process

the level of enthusiasm (positioning) of the extend. Dissimilar

to these methodologies, Exemplar requires only a normal

dialect question depicting a programming assignment. They

found in [22] considering the dataflow among API calls does

not enhance the pertinence of results for our situation.

3. Proposed Implementations

Theoretical background highlighting some topics related to this

paper. The description contains several topics which are worth

to discuss and also highlight some of their limitation that

encourage going on finding solution as well as highlights some

of their advantages for which reason these topics and their

features are used in this paper.

3.1 Predicting Relevant Applications

Suppose that a programmer needs to encrypt and compress

data. A programmer will naturally turn to a search engine such

as SourceForge and enter keywords such as encrypt and

compress. The programmer then looks at the source code of the

programs returned by these search engines to check to see if

some API calls are used to encrypt and compress data. The

presence of these API calls is a good starting point for deciding

whether to check these applications further.

Code search engine include help documentations of widely

used libraries, such as the standard Java Development Kit

(JDK). Existing engines allow users to search for specific API

calls, but knowing in advance what calls to search for is hard.

Our idea is to match keywords from queries to words in help

documentation for API calls. These help documents are

descriptions of the functionality of API calls as well as the

usage of those calls.

In Exemplar, they extract the help documents that come in

the form of Java Docs. Programmer’s trust these documents

because the documents come from known and respected

vendors, were written by different people, reviewed multiple

times, and has been used by other programmers who report

their experience at different forums.

Figure 1: Brief description about working of a search engine.

In this search engine relations between concepts entered in

queries are often reflected as dataflow links between API calls

that implement these concepts in the program code. This

observation is closely related to the concept of the software

reflection models formulated by Murphy, Notkin, and Sullivan.

In these models, relations between elements of high-level

models (e.g., processing elements of software architectures) are

DOI: 10.18535/ijecs/v5i12.78

Dr. Madhavi Karanam, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19789-19792 Page 19791

preserved in their implementations in source code. For

example, if the user enters keywords secure and send the

corresponding API calls encrypt and email are connected via

some dataflow, then an application with these connected API

calls are more relevant to the query than applications where

these calls are not connected.

Consider two API calls string encrypt() and void

email(string). After the call encrypt is invoked, it returns a

string that is stored in some variable. At some later point a call

to the function email is made and the variable is passed as the

input parameter. In this case these functions are connected

using a dataflow link which reflects the implicit logical

connection between keywords in queries. Specifically, the data

should be encrypted and then sent to some destination.

3.1.1 Example

API search engine returns applications that implement the tasks

described in by the keywords in user queries. Consider the

following task: find an application for sharing, viewing, and

exploring large data sets that are encoded using MIME, and the

data can be stored using key value pairs. Using the following

keywords MIME, type, data, an unlikely candidate application

called BIOLAP is retrieved using Exemplar with a high ranking

score. The description of this application matches only the

keyword data, and yet this application made it to the top ten of

the list.

BIOLAP uses the class MimeType, specifically its method

getParameterMap, because it deals with MIME-encoded data.

The descriptions of this class and this method contain the

desired keywords, and these implementation details are highly-

relevant to the given task. BIOLAP does not show on the top

300 list of retrieved applications when the search is performed

with the SourceForge search engine.

3.2 Ranking Schema

Ranking mechanisms for retrieving source code are centered on

locating components of source code that match other

components. Quality of match (QOM) ranking measures the

overall goodness of match between two given components,

which is different from this search engine which retrieves

applications based on high-level concepts that users specify in

queries. Component rank model (CRM) is based on analyzing

actual usage relations of the components and propagating the

significance through the usage relations.

The RAS component is responsible for ranking applications

based on the API calls made in those applications. This

component first locates a number of descriptions of API calls

which match the keywords provided in the user’s query. It then

matches those API calls to applications which use those calls.

3.3 Executing the User Query

This section describes the way of finding the results retrieved

by search engine. User provides query in terms of semantic

description and the query evaluator does semantic query

execution to provide the matching results. This helps in

retrieving more number of results related to the search of user

query. The results retrieved are categorized based on semantic

description provided to the retrieved results.The user provides

his query in the form of semantic description and executes the

query for predicting the relevant application.

(a) Semantic Description

(b) Query Execution

(a) Semantic description

User expresses the query in terms of semantics of the

application to be searched. This contains the description

application user want to search and the domain, related names

of classes or a name of variables.

Semantic information is expressed in the form of Resource

Description Framework(RDF). RDF is defined as the Resource

Description Framework (RDF) is a family of World Wide Web

Consortium (W3C) specifications originally designed as a

metadata data model.

It has come to be used as a general method for conceptual

description or modeling of information that is implemented in

web resources, using a variety of syntax notations and data

serialization formats. This information is directly given to the

search engine for finding relevant applications.

(b) Query Execution

User semantic queries are executed to find the match in the

repository of applications. Based on the number of matches the

score is given and by using a variable scoring strategy.

Different semantic relations are given different score.

The score are given from highest to lowest in order of

API call – 25

API data flow - 20

Classes - 15

Class relations - 10

Comment texts - 5

Iterations times -5.

The number of times matched is multiplied by its

corresponding score and all semantic score are summed up to

give the matching score. Applications are sorted in terms of

their score from highest to lowest and result is provided.

Performance Graph:-

Fig 2: Comparison between APIs and overlap.

This graph comparison between the performances of Exemplar

code search with API based code search engine.

4. Conclusion

DOI: 10.18535/ijecs/v5i12.78

Dr. Madhavi Karanam, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19789-19792 Page 19792

The Exemplar system suggests that for finding relevant

application it consider three things and rank the relevant

applications in following way. Description of applications, API

calls used by applications and analyse the dataflow in API

calls. And this will not provide more results for the search of

the user query.

By considering more semantic information of the software

application it helps in retrieving more number of results for a

query of user. It helps user in order to get more relevant

software applications and helps in increasing the scope of

reusability. Class relation and looping conditions are also

evaluated. This search engine helps in retrieving trivial result

for the query of a user.

The future work scope of this project is displaying the API

calls description on the result page of search engine. This helps

user in order to identify more required results regarding his/her

query and it helps user to select more results related to his/her

project.

And another scope of future work is a way of sorting and

filtering the API calls user by application because some time

the code search engine retrieve results with same type check

method many times this retrieve some irrelevant result of user

query.

5. References

[1] Exemplar: A Source Code Search Engine ForFinding

Highly Relevant Applications Collin McMillan, Member,

IEEE, Mark Grechanik, Member, IEEE, Denys

Poshyvanyk, Member, IEEE,Chen Fu, Member, IEEE,

Qing Xie, Member, IEEE

[2] Susan Elliott Sim, MedhaUmarji, SukanyaRatanotayanon,

and Cristina V Lopes. How well do internet code search

engines supportopen source reuse strategies? TOSEM,

2009.

[3] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E.

Webster.Program understanding and the concept

assigment problem. Commun. ACM,37(5):72–82, 1994.

[4] JamesHowison and Kevin Crowston. The perils and

pitfalls of mining Sourceforge.In MSR, 2004.

[5] Charles W. Krueger. Software reuse.ACM Comput.Surv.,

24(2):131–183, 1992.

[6] Mark Gabel and Zhendong Su.A study of the uniqueness

of source code. In Foundations of software engineering,

FSE ’10, pages 147–156,New York, NY, USA,

2010.ACM.

[7] Mark Grechanik, Kevin M. Conroy, and Katharina Probst.

Finding relevant applications for prototyping. In MSR,

page 12, 2007.

[8] ShaunakChatterjee, SudeepJuvekar, and Koushik Sen.

Sniff: A search engine for java using free-form queries. In

FASE, pages 385–400, 2009.

[9] Christopher D. Manning, PrabhakarRaghavan, and

HinrichSchtzeIntroduction to Information

Retrieval.Cambridge University Press, NewYork, NY,

USA, 2008.

[10] Denys Poshyvanyk and Mark Grechanik. Creating and

evolving software by searching, selecting and

synthesizing relevant source code. In ICSECompanion,

pages 283–286, 2009.

[11] Scott Henninger. Supporting the construction and

evolution of component reposit repositories. In ICSE,

pages 279–288, 1996.

[12] Yunwen Ye and Gerhard Fischer. Supporting reuse by

delivering task relevant and personalized information. In

ICSE, pages 513–523, 2002.

[13] Jeffrey Stylos and Brad A. Myers. A web-search tool for

finding API component and examples. In IEEE

Symposium on VL and HCC, pages 195–202, 2006.

[14] Sushil K. Bajracharya, Joel Ossher, and Cristina V.

Lopes. Leveraging usage similarity for effective

retrieval of examples in code repositories. In

Foundations of software engineering, FSE ’10, pages

157–166, NewYork, NY, USA, 2010.

[15] David Mandelin, Lin Xu, RastislavBod´ik, and Doug

Kimelman.Jgloid mining: helping to navigate the API

jungle. In PLDI, pages 48–2005.

[16] DavorCubranic, Gail C. Murphy, Janice Singer, and

Kellogg S. Booth.Hipikat: A project memory for

software development.IEEE Trans.Software Eng.,

31(6):446–465, 2005.

[17] Reid Holmes and Gail C. Murphy. Using structural

context to recommend source code examples. In ICSE,

pages 117–125, 2005.

[18] Reid Holmes, Robert J. Walker, and Gail C. Murphy.

Strathcona examplar recommendation tool. In

ESEC/FSE, pages 237–240, 2005.

[19] Martin P. Robillard. Automatic generation of

suggestions for program investigation. In ESEC/FSE,

pages 11–20, 2005.

[20] Martin P. Robillard. Topology analysis of software

dependencies.ACM Trans. Softw. Eng. Methodol.,

17(4):1–36, 2008.

[21] Zachary M. Saul, Vladimir Filkov, PremkumarDevanbu,

and Christian Bird. Recommending random walks. In

Proceedings of the the 6
th

 joint meeting of theEuropean

software engineering conference and the ACM

SIGSOFT symposiumon The foundations of software

engineering, ESEC-FSE ’07, pages 15–24, New York,

NY, USA, 2007. ACM.

[22] NaiyanaSahavechaphan and KajalT.Claypool.XSnippet:

mining for sample code. In OOPSLA, pages 413–430,

2006.

[23] Steven P. Reiss. Semantics-based code search. In ICSE,

pages 243–253, 2009.

Author Profile

Dr. K. Madhavi, working as a Professor in Computer Scince and

Engineering Department, Gokaraju

Rangaraju Instittute of Engineering and

Technology. She has completed her B.E in

1997, M.Tech from JNTUA in 2003 and

awarded Ph.D from JNTUA in 2013. She

has 19 years of teaching experience. She

has published several papers in reputed

international journals and international

conference. Her research interest include

sofware engineering , Model Driven

Engineering, Data Mining, and other areas.

