
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 5 May 2015, Page No. 11733-11742

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11733

An Efficient Sdmpc Metric Based Approach For Refactoring

Software Code
B Ramalkshmi1, D Gayathri Devi2

1 Bharathiyar University, Sri Ramakrishna College of Arts and Science for Women,

Coimbatore, Tamilnadu, India

ramyabalu.mdu@gmail.com

2 Bharathiyar University, Sri Ramakrishna College of Arts and Science for Women,

 Coimbatore, Tamilnadu, India

dgayadevi@gmail.com

Abstract

 Software Engineering is an about development, design operation and maintenance of software. But there are some factors that

make software maintenance difficult. A code clone is nothing a similar or duplicate code in a source code or created either by

replication or some modification. Code clone is one of the factors that increase software maintenance and also cause code

bloating. Thus the clone has to be removed. To remove clone, refactoring has to be determined and applied. Refactoring is

done to improve the quality of a software systems’ structure, which tends to degrade as the system evolves. While manually

determining useful refactoring is a challenging, search-based techniques can automatically discover useful refactoring.

Refactoring approach uses the concept of Pareto optimality which naturally applies to search-based refactoring. Before

refactoring is done, the test case should be generated. A formal written test-case is characterized by a known input and by an

expected output, which is worked out before the test is executed

This paper proposes a method for removing clone through refactoring. In order to do refactor the clone, first the concept of Pareto

optimality and a Pareto front is defined. Jsync refactor tool is used to refactor the programs. The coupling between object

classes (CBO) metric represents the number of classes coupled to a given class. The second metric LSCC is represents the

classes. Meaningful class coupling and cohesion metric helps object-oriented software developers detect class design weaknesses

and refactor classes accordingly. CBO, LSCC and SDMPC metrics are used to check the accuracy of the refactored programs.

The advantage of this system is helps the developers to program faster and it takes less time for clone removal. It improve the

design of the software and it makes softer easier to understand. Overall performance of the system is highly improved by the

proposed system.

Keywords: Refactoring, Metrics, Parato optimality

1. Introduction

Different kinds of redundancy and replication in the

code is called clone. Software systems often contain sections of

code that are very similar, called code clones. Reusing code

fragments by copying and pasting with or without minor

adaptation is a common activity in software development. One

of the major shortcomings of such duplicated fragments is that

if a bug is detected in a code fragment; all the other fragments

similar to it should be investigated to check the possible

existence of the same bug in the similar fragments.

Code clone detection is one of the important fields of

software engineering that helps in reducing or eliminating

unnecessary duplication of code segment. It should be noted

that almost every software industry is suffering from code

cloning problem. The cloning problem normally arises in the

areas where large and complex software projects are being

http://www.ijecs.in/

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11734

developed. However, it is also widely agreed that clones should

be detected. Therefore, Code clones are generally considered

harmful in software development, and the predominant

approach is to try to eliminate them through refactoring.

2 Refactoring

Code refactoring is a "disciplined technique for

restructuring an existing body of code, altering its internal

structure without changing its external behaviour", undertaken

in order to improve some of the non-functional attributes of the

software. Code Refactoring are used for code readability and to

reduce complexity that improves the maintainability of the

source code.

2.1 Overview of Refactoring

Refactoring is usually motivated by noticing a code

smell. For example the method at hand is very long, or it is a

near duplicate of another nearby method. Once recognized,

such problems are addressed by refactoring the source code, or

transforming it into a new form that behaves the same as before

but that no longer "smells".

There are two general categories of refactoring.

1. Maintainability - It is easier to fix bugs because the

source code is easy to read and the intent of its author

is easy to grasp. This might be achieved by reducing

large monolithic routines into a set of individually

concise, well-named, single-purpose methods. It might

be achieved by moving a method to a more

appropriate class, or by removing misleading

comments.

2. Extensibility - It is easier to extend the capabilities of

the application if it uses recognizable design patterns,

and it provides some flexibility.

2.2 Basic Procedure of Refactoring

One of the basic procedures of refactoring (besides

eliminating duplication) is adding indirection. Indirection

means defining structures (e.g. classes and methods) and giving

them names. Using named structures makes code easy to read

because it gives a way to explain intention (class and method

names) and implementation (class structures and method

bodies) separately. The same technique enables sharing of logic

(e.g., methods invoked in different places or a method in super

class shared by all subclasses). Sharing of logic, in turn, helps

to manage change in systems. Finally, polymorphism (another

form of indirection) provides a flexible, yet clear way to

express conditional logic.

2.3 Benefits of Refactoring

Refactoring is used for several purposes. It helps the

code to retain its shape. Without refactoring the design of the

program will decay. As people change code (usually without

fully understanding the design objectives behind the

implementation) it gradually begins to lose its structure. Once

the structure gets cluttered, the code becomes harder to

understand and so the chances of cluttering the design further

increase.

Refactoring makes the code more readable. This is

essential for conveying the intention of the code to others. It

also makes the code easier to read. That is equally important

since it’s unrealistic to assume that it to be remembering the

intentions for more than few weeks.

Refactoring is used to grasp the intention of unfamiliar

code. When looking at a fragment of code try to understand. To

find out how the code works, first refactor it to better reflect to

understanding of its purpose. If everything goes well, that have

understood and processed a part of the system correctly. If not,

need to get a better understanding of the code fragment at hand.

2.4 Automated Refactoring

Despite the enormous success that manual and

automated refactoring has enjoyed during the last decade, the

software developers know little about the practice of

refactoring. Understanding the refactoring practice is important

for developers, refactoring tool builders, and researchers. Many

previous approaches to study refactoring are based on

comparing code snapshots, which is imprecise, incomplete, and

does not allow answering research questions that involve time

or compare manual and automated refactoring.

Refactoring is an important part of software

development. Development processes like extreme

Programming treat refactoring as a key practice. Refactoring

has revolutionized how programmers design software: it has

enabled programmers to continuously explore the design space

of large codebases, while preserving the existing behaviour.

It is widely believed that refactoring improves

software quality and developer productivity by making it easier

to maintain and understand software systems. Many believe

https://en.wikipedia.org/wiki/Code_smell
https://en.wikipedia.org/wiki/Code_smell
https://en.wikipedia.org/wiki/Code_smell
https://en.wikipedia.org/wiki/Design_patterns

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11735

that a lack of refactoring incurs technical debt to be repaid in

the form of increased maintenance cost.

3 JSync: Architecture Overview

Fig. 3.1 shows JSync’s architectural overview. The

main data structure of JSync is the Clone Management

Database, storing the information about software projects, code

fragments, clone relationship, clone changes, and consistency

information.

Other modules access and store their working

information in the Clone Database. Module IO has the

responsibility of maintaining this database in the SVN

Management repository of the project. It also accesses the

Eclipse workbench, the SVN repository, and the file system to

collect information about the project and source code and to

store it in the Clone Management Database, thus providing

working information for other modules.

 Module GUI is associated with Eclipse and has

various responsibilities, such as interacting with users to

receive user requests, displaying the clone groups and

corresponding inconsistency changes (e.g., groups having

inconsistent changes are noted with red colour), and presenting

the clone pairs, their matched and inconsistent code elements.

Two modules, Fragment Detector and Change

Detector, working directly with source code, analyse and detect

the code fragments and the code changes. The detected

fragments and changes are stored in the Clone Management

Database for further analysis.

One of the key functionality in JSync, incremental

clone detection, is provided by module Incremental Clone

Detector. This module reads the fragments, code changes

information in the Clone Management Database and detects/

updates the clone groups of the project.

Clone consistency analysis and synchronization is

provided by module Clone Consistency Manager. This module

also accesses the clone information from the Clone

Management Database, detects inconsistencies of clone pairs,

and provides synchronization on user requests.

During the clone management process, the developer

may not want to refactor/remove those clones, and may want to

mark those to indicate such decisions so that they will not have

to encounter those same sets of clones over and over.

Moreover, the decision needs to be documented and shared

among different programmers, and there should be facilities for

the developers to review those clones at a later time, in case

they want to re-evaluate their management decision.

Figure 3.1: Architecture Overview of JSync.

4 Metrics

The proposed work combines coupling metrics with

cohesion metric to produce a useful result. Therefore it is

common to combine more than one metric when designing an

appropriate fitness function, with the intuitive idea that the

combination of metrics should prevent any one metric being

unduly favoured. Number of metrics is calculating the clone

refactoring technique.

WMC - Weighted methods per class

A class's weighted methods per class WMC metric is

simply the sum of the complexities of its methods. As a

measure of complexity we can use the cyclomatic complexity,

or we can arbitrarily assign a complexity value of 1 to each

method.

DIT - Depth of Inheritance Tree

The depth of inheritance tree (DIT) metric provides

for each class a measure of the inheritance levels from the

object hierarchy top. In Java where all classes inherit Object

the minimum value of DIT is 1.

NOC - Number of Children

A class's number of children (NOC) metric simply

measures the number of immediate descendants of the class.

CBO - Coupling between object classes

The coupling between object classes (CBO) metric

represents the number of classes coupled to a given class

(efferent couplings, Ce). This coupling can occur through

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11736

method calls, field accesses, inheritance, arguments, return

types, and exceptions.

RFC - Response for a Class

The metric called the response for a class (RFC)

measures the number of different methods that can be executed

when an object of that class receives a message (when a

method is invoked for that object). Ideally, we would want to

find for each method of the class, the methods that class will

call, and repeat this for each called method, calculating what is

called the transitive closure of the method's call graph. This

process can however be both expensive and quite inaccurate.

LCOM - Lack of cohesion in methods

A class's lack of cohesion in methods (LCOM) metric

counts the sets of methods in a class that are not related through

the sharing of some of the class's fields. The original definition

of this metric (which is the one used in ckjm) considers all

pairs of a class's methods.

SDMPC- Standard Deviation of Methods Per Class

This metric is used the standard deviation of methods

per class in the system which the user write as SDMPC(C)

(note that the number of methods in the system stays constant

no matter how many move method refactoring is use).

Ca - Afferent couplings

A class's afferent couplings are a measure of how

many other classes use the specific class. Ca is calculated using

the same definition as that used for calculating CBO (Ce).

LSCC- Low Level Class Cohesion Metric

Low Level Class Cohesion Metric is represents the

classes. Meaningful class coupling and cohesion metric helps

object-oriented software developers detect class design

weaknesses and refactor classes accordingly.

NPM - Number of Public Methods

The NPM metric simply counts all the methods in a

class that are declared as public. It can be used to measure the

size of an API provided by a package.

 In this proposed work, is combining LSCC with a

simple ‘counter metric’ to CBO’s tendency to expand a small

number of classes with large numbers of methods. The third

metric is the standard deviation of methods per class in the

system which it write as SDMPC(C) (note that the number of

methods in the system stays constant no matter how many

move method refactoring is use).

5. An Efficient SDMPC Metric Based Approach for

Refactoring Software Code

5.1 JSync: Refactoring

 In JSync, a software system is considered as a

collection of source files. Each source file corresponds to a

logical entity called compilation unit. A fragment corresponds

to one or a collection of program entities for example,

statement, method, class that is of user interest in clone

management. Users are able to exclude the generated source

files or annotate the portions of code that are generated or

boilerplate code (e.g., getter/setter). JSync would totally ignore

them in building fragments (i.e., similar handling for comments

and Javadoc) or skip building the corresponding fragment(s)

but still use the features extracted from them in building other

fragments. Fragments are copied, pasted, and sometimes

modified, thus producing code clones. Detected clones of

object, class, method are refactored by JSync refactoring tool.

In this type of clones, the cloned fragment is not necessarily

copied from the original. JSync refactoring tool considers

cloned code to have similar structures. It defines a pair of two

fragments as a clone pair if their structural similarity, measured

by a similarity measurement, exceeds a predefined threshold.

Those fragments are called cloned fragments (or clones for

short).

JSync provides several techniques to deal with the

analysis and consistent updating of clones and their changes.

Clone consistency analysis of JSync finds the matched and

different entities between two cloned fragments and then

validates them against the aforementioned clone consistency

rules. Clone Synchronizing is the operation designed for two

clone change scenarios, cloning and one-side change, that is,

when there is only one clone that was changed. For the two side

change, JSync uses Clone Merging.

Before refactoring is done, the test case should be

generated. A formal written test-case is characterized by a

known input and by an expected output, which is worked out

before the test is executed. The known input should test

a precondition and the expected output should test a post

condition.

A test case has components that describe an input,

action or event and an expected response, to determine if a

http://en.wikipedia.org/wiki/Precondition

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11737

feature of an application is working correctly. The basic

objective of writing test cases is to validate the refactoring

coverage of the application. A set of test inputs, execution

conditions, and expected results developed for a particular

objective, such as to exercise a particular program path or to

verify compliance with a specific requirement.

Test cases tend to have a high rate of code

duplication, which is typically the result of a sequence of copy,

paste and modify actions. The clone detection and refactoring

capabilities of JSync would be used to remove a number of

testing ‘bad smells’ and also to introduce common testing

patterns.

5.2 Metrics for Refactoring

The first, metric (CBO) Coupling Between Object

classes represents the number of classes coupled to a given

class. This coupling can occur through method calls, field

accesses, inheritance, arguments, return types, and

exceptions.

This metric provides the average number of classes

used per class in the package.

The variable number of links represents the number of

classes used (associations, use links) for all the package's

classes. A class used several times by another class is only

counted once.

The variable number of classes represents the number

of classes of the package, by recursively processing sub-

packages and classes. For the UML modelling project, this

variable represents, therefore, the total number of classes of

the UML modelling project.

The second metric (LSCC) Low Level Class Cohesion

Metric is represents the classes. Meaningful class coupling

and cohesion metric helps object-oriented software

developers detect class design weaknesses and refactor

classes accordingly. The results show that LSCC is better

than CBO metric.

LSCC=

The formula that precisely measures the degree of

interaction between each pair of methods, and it used as a

basic to introduce low level design class cohesion metric.

Where is the number of attributes, is the number of

methods, and is the numbers of methods that reference

attribute .

The similarity between two methods is the collection of

their direct and indirect shared attributes. It is an important

objective in object oriented design. Class cohesion refers to the

relatedness of the class members, and it indicates one important

aspect of the class design quality.

Third, metric is used the standard deviation of

methods per class in the system which the user write as

SDMPC(C) (note that the number of methods in the system

stays constant no matter how many move method refactoring

is use).

The result shows that one of three metrics that

explains more accurately the presence of faults in methods.

SDMPC(C) is the only one among the three metrics to

comply with important mathematical properties, and

statistical analysis shows it captures a measurement

dimension of its own. This suggests that SDMPC is a better

alternative, when taking into account both theoretical and

empirical results, as a measure to guide the refactoring of

methods.

5.3 Search-Based Refactoring Approach Using Combining

Metrics

More obvious ways to combine the CBO and SDMPC

metrics into a fitness function

are and

. Thus far in this project

used the former of these two fitness functions to guide the

search-based refactoring system. Using the latter fitness

function on any of the systems under examination in this

project, the programmer quickly find that it is non-inferior i.e.

it produces distinct Pareto optimal values.

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11738

Using a single metric to guide search-based

refactoring has obvious problems: optimizing only one aspect

of the system can make other important measures of quality un-

acceptably worse. Therefore it is common to combine more

than one metric when designing an appropriate fitness function,

with the intuitive idea that the combination of metrics should

prevent any one metric being unduly favoured. In the case of

the previous example, statistical theory provides a simple

‘counter metric’ to CBO’s tendency to bloat a small number of

classes with large numbers of methods. The second metric use

is the standard deviation of methods per class in the system

which is written as SDMPC(C) (note that the number of

methods in the system stays constant no matter how many

move method refactoring use). It now comes up against an

immediate problem: how should it combine these two metrics

into one fitness function? Initial candidates include

 or

, possibly with weightings

attached to the individual metrics. Previous search-based

refactoring approaches combine metrics together in often

complex fashions, and with the choice of weightings for

various metrics often unclear. In similar fashion it initially

arbitrarily defines in new fitness function to

be .

6 Result

6.1 Pareto Optimality

The optimized refactoring approach uses the concept

of Pareto optimality naturally applies to search-based

refactoring. In order to do that, first define the concept of

Pareto optimality and a Pareto front. In economics a value is

effectively a tuple of various metrics which would be made

better or worse. A value is Pareto optimal if moving from it to

any other value makes any of the constituent metrics better or

worse; it is said to be a value which is not dominated by any

other value. For any given set of values there will be one or

more Pareto optimal values. The sub-set of values which are all

Pareto optimal is termed the Pareto front. It also uses multiple

fitness function to guide the search-based refactoring system. It

will be more efficient than the refactoring system with simple

or two fitness functions.

6.1.1 Test Case Performance of Pareto Optimality

In this proposed system, it builds search-based system

in the Converge language which reads in arbitrary Java

systems, performs search-based refactoring upon them, and

returns a sequence of refactoring as its output. In this work

first, develop a small Java application that has severe cohesion

problems. Refractor of these programs are using JSync tool. It

improves its design according to the combined CBO, LSCC

and SDMPC metric.

The refractor is optimized with Pareto based approach

and has multiple fitness function. Then generate test cases for

the both versions of the program, before and after refactoring,

and to compare the difficulty in generating the test cases. If

generating test cases for the refactored version of the program

proves significantly easier, then there is indicative evidence

that automated refactoring indeed improve testability.

The advantage of the proposed system is to improve the

code readability. Computational cost/complexity is reduced by

using the proposed methods. It also improves the performance

of the system.

Table 6.1

Average Performance for Code Clone Before and

After Refactoring

Projects
Before

Refactoring

After

Refactoring

CFIS 10 5

PMCS 15 10

IE 10 5.5

OCMS
20 10

CLMS 5.5 5

Table 6.1 shows before and after refactoring of cloned

code. Traditionally, automated refactoring inference relies on

comparing five different versions of source code and

describing the changes between versions of code using higher-

level characteristic properties.

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11739

 A refactoring is detected based on how well it

matches a set of characteristic properties.

Figure 6.1: Accuracy for Code Clone Before and

After Refactoring

The figure 6.1 shows accuracy for code clone of

before and after refactoring. The clone level is decrease from

after refactoring.

The Table 6.1 shows the average performance of test

case of above said novel approaches. It illustrates the complete

comparison among the enhanced clone detection through

average.

Table 6.2

AVERAGE PERFORMANCE OF CBO And LSCC

Projects CBO LSCC

CFIS 7.9 5.45

PMCS 8.8 3.8

IE 5.4 7.3

OCMS 3.5 3.02

CLMS 3.5 1.7

Table 6.2 shows average performance of test case.

The LSCC metric is better to the CBO metric.

A visual inspection of the performance of these

metrics in fig 6.2 evidence that their results from one metric to

another.

Figure 6.2: Average Performance of CBO and

LSCC

The complexity of these metrics is occurring to during

software development. LSCC metric is better than the CBO

metric for calculate the quality of the product.

Table 6.3

AVERAGE PERFORMANCE OF CBO And SDMPC

Projects CBO SDMPC

CFIS 7.9 1.15

PMCS 8.8 0.15

IE 5.4 1.2

OCMS 3.5 0.16

CLMS 3.5 0.18

Table 6.3 shows average performance of test case.

The CBO metric is better to the SDMPC metric.

Figure 6.3: Average Performance of CBO and

SDMPC

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11740

The test case performance of automated refactoring of

quality is calculated by CBO and SDMPC metric. Fig 6.3

shows the SDMPC is better than the CBO metric for test case.

Table 6.4

AVERAGE PERFORMANCE OF LSCC AND SDMPC

Projects LSCC SDMPC

CFIS 5.45 1.15

PMCS 3.8 0.15

IE 7.3 1.2

OCMS 3.02 0.16

CLMS 1.7 0.18

Table 6.4 shows average performance of test case.

The LSCC metric is better to the SDMPC metric.

Figure 6.4: Average Performance of LSCC and

SDMPC

Finally, LSCC and SDMPC metrics are calculated the

performance of the test case. The fig 6.4 shows SDMPC metric

is better for the deliberate the quality of the test case.

The figures 6.2 to 6.5 show the average performance

of refactoring test case.

This experimental investigation includes five different

kinds of java programs, namely Criminal Face Identification

System (CFIS), Personal Mobile Crime System (PMCS), Image

Encryption (IE), Online Courier Management System (OCMS),

and College Library Management System (CLMS).

Table 6.5

AVERAGE PERFORMANCE OF CBO, LSCC AND

ADMPC

Projects CBO LSCC SDMPC

CFIS 7.9 5.45 1.15

PMCS 8.8 3.8 0.15

IE 5.4 7.3 1.2

OCMS 3.5 3.02 0.16

CLMS 3.5 1.7 0.18

Figure 6.5: Test Case Performance for Various

Files

7 Conclusion

The main objective of this paper is to achieve refactor

the clone. In this proposed system is build search-based system

in the Converge language which reads in arbitrary Java

systems, performs search-based refactoring upon them, and

returns a sequence of refactoring as its output. In this proposed

work first, develop a small Java application that has severe

cohesion problems. Refactor this program using JSync refactor

tool in order to improve its design according to the combined

CBO, LSCC and SDMPC metric.

The CBO metric represents the number of links and

number of classes used for the package classes. The LSCC is

detecting the refactored classes and metrics. And the SDMPC

metric is represents the methods per class. These metrics are

overcome the "good" refactoring solution as the combination

of refactoring operations that should maximize as much as

possible the number of corrected defects with minimal code

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11741

modification/adaptation effort (i.e., the cost of applying the

refactoring sequence).

 The refractor was optimized with Pareto based

approach and has multiple fitness function. Then generate test

cases for the both versions of the program, before and after

refactoring, and to compare the difficulty in generating the test

cases. If generating test cases for the refactored version of the

program proves significantly easier, then there is indicative

evidence that automated refactoring can indeed improve

testability.

Rather than asking experiment participants to judge

the difficulty in writing test cases for the original and

refactored versions of a program, and it would be used an

automated test cases generation tool to create the test cases.

This would be applied to the original and refactored versions of

the program and the resulting test suites compared on the basis

of metrics such as code coverage, lines of test code and number

of assert statements. The feasibility of this would need to be

assessed in further research, but it has the advantage that it

eschews the need for a costly experiment to assess the result.

By taking three simple metrics, are able to show how

the concept of Pareto optimality can be usefully applied to

search-based refactoring, and how it allows multiple fitness

functions to present different Pareto optimal values to the user.

As an end result, SDMPC performances of the

proposed approaches are evaluated through refactoring. The

performance evaluation shows that the proposed SDMPC

approach performs all the parametric standards than existing

approach. The proposed SDMPC approach takes less time for

clone removal. And it helps the developers to program to

faster. It improves the design of the code. And it also makes

software easier to understand.

8 Acknowledgements

 Thanks to my college, department, lab which has been

used to class room, and lab. Special thanks go to my guide Dr.

D Gayathri Devi M.CA., M.Phil., P.hD., for encourage and

help to develop my journal.

9 References

[1] Duala-Ekoko.E and Robillard.M.P, “Tracking Code

Clones in Evolving Software,” Proc. IEEE 29th Int’l Conf.

Software Eng., pp. 158-167, 2007.

[2] Ekwa Duala-Ekoko and Martin P. Robillard “Tracking

Code Clones in Evolving Software”, 2007.

[3] Ekwa Duala-Ekoko and Martin P. Robillard

“CloneTracker: Tool Support for Code Clone

Management”, 2008.

[4] Estublier.J, Leblang.D, van der Hoek.A, Conradi.R,

Clemm.G, Tichy.W, and Weber.D, “Impact of SE

Research on the Practice of SCM,” ACM Trans. Software

Eng. and Methodology, vol. 14, no. 4, pp. 383-430, 2005.

[5] Gatrell.M, Counsell.S and Hall.T “Empirical Support

for Two Refactoring Studies Using Commercial C#

Software”.

[6] Gode.N and Koschke.R, “Incremental Clone

Detection,” Proc. 13th European Conf. Software

Maintenance and Reeng., pp. 219-228, 2009.

[7] Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H.

Pham, Jafar M. Al-Kofahi, and Tien N. Nguyen “Accurate

and Efficient Structural Characteristic Feature Extraction

for Clone Detection” 2009.

[8] Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H.

Pham, Jafar Al-Kofahi, and Tien N. Nguyen, Member

“Clone Management for Evolving Software”, IEEE 2012.

[9] Lingxiao Jiang, Zhendong Su and Edwin Chiu

“Context-Based Detection of Clone-Related Bugs”, 2007.

[10] Mark Gabel, Lingxiao Jiang and Zhendong Su

“Scalable Detection of Semantic Clones”, 2008.

[11] Miryung Kim, Thomas Zimmermann, Nachiappan

Nagappan “A Field Study of Refactoring Challenges and

Benefits” 2012.

[12] Nguyen.T.T, Nguyen.H.A, Pham.N.H, Al-

Kofahi.J.M, and Nguyen.T.N, “Scalable and Incremental

Clone Detection for Evolving Software,” Proc. IEEE Int’l

Conf. Software Maintenance, 2009.

[13] Nils Gode “Incremental Clone Detection”, 2008.

[14] Patricia Jablonski and Daqing Hou “CReN: A Tool

for Tracking Copy-and-Paste Code Clones and Renaming

Identifiers Consistently in the IDE”, 2007.

[15] Raimund Moser, Pekka Abrahamsson, Witold

Pedrycz, Alberto Sillitti, Giancarlo Succi and agile team

B Ramalakshmi, IJECS Volume 4 Issue 5 May, 2015 Page No.11733-11742 Page 11742

“A case study on the impact of refactoring on quality and

productivity”.

[16] Ratzinger.J, Sigmund.T, and Gall.H.G “On the

relation of refactorings and software defect prediction”. In

MSR ’08: Proceedings of the 2008 international working

conference on Mining software repositories, New York,

NY, USA, 2008.

[17] Roy C.K, CordyJ.R, and Koschke.R, “Comparison

and Evaluation of Code Clone Detection Techniques and

Tools: A Qualitative Approach,” Science of Computer

Programming, vol. 74, no. 7, pp. 470-495, 2009.

[18] Stefan Bellon, Rainer Koschke, Giuliano Antoniol,

Jens Krinke, and Ettore Merlo “Comparison and

Evaluation of Code Clone Detection Techniques and

Tools”, 2007.

[19] Yoshiki Higo, Yasushi Ueda, Shinji Kusumoto and

Katsuro Inoue “Simultaneous Modification Support based

on Code Clone Analysis” 2007.

[20] Zhenmin Li, Shan Lu, Suvda Myagmar, and

Yuanyuan Zhou “CP-Miner: Finding Copy-Paste and

Related Bugs in Large-Scale Software Code”, 2006.

Author Profile

B Ramalakshmi received the degrees B.sc. Computer

Science from Madurai Kamaraj University in 2008 and

2011. M.sc.from Annamalai University in 2011 and 2013

and M.phil. Computer Science from Bharathiyar University

in 2014 and 2015.

