
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 12 Dec. 2016, Page No. 19648-19652

Ms. Pooja A. Baleghate, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19648-19652 Page 19648

Multi-threaded QoS Architecture for Multimedia Services over Software

Defined Networks
Ms. Pooja A. Baleghate

1
, Prof. Sachin B. Takmare

2
, Prof. Pramod A. Kharade

3

1Department of Computer Science and Engg., Bharati Vidyapeeth‟s College of Engineering,

Kolhapur, Maharashtra, India

poojabaleghate@gmail.com
2Department of Computer Science and Engg., Bharati Vidyapeeth‟s College of Engineering,

Kolhapur, Maharashtra, India

sachintakmare@gmail.com
3Department of Computer Science and Engg., Bharati Vidyapeeth‟s College of Engineering,

Kolhapur, Maharashtra, India

pramodkharade@gmail.com

Abstract: This paper presents novel multi threaded controller-forwarder architecture to support QoS for multimedia streaming over SDN.

We foresee that, large network is partitioned into domains; each domain is managed by a controller, where each controller performs

optimal QoS routing and shares the routing information with other domain controllers. To this effect, this paper proposes (i) an algorithm

for super controller managing inter domain routing, (ii) an algorithm for controller managing intra domain routing, to find out an

optimized QoS routes. We apply these extensions to streaming videos and compare the performance of proposed architecture with single

threaded controller-forwarder architecture. Our experimental result shows that the proposed architecture performs faster than the single

threaded controller-forwarder architecture.

Keywords: Software Defined Network (SDN), quality-of-service (QoS), multimedia streaming, OpenFlow.

1. Introduction

Media streaming attempts to overcome the problems associated

with file download, and also provides a significant amount of

additional capabilities. Typically when you download a file,

you must wait for the entire file to finish downloading before

you can open and view it. It can be very frustrating for large

media files. Streaming media improves the download process

by downloading a portion of the media file (say, the first few

seconds of a video) and then allow the user to view that bit

while it's downloading the next couple of seconds. As the

process continues, the user watches a little while the next piece

is downloading in the background until the user has seen the

entire video. Since the user doesn't have to wait for the entire

video to download before viewing it, streaming can produce a

less frustrating viewing experience. In current

Internet architecture, there are number of basic problems that

afflict media streaming [1]. Media streaming over the Internet

is difficult because the Internet only offers best effort service.

That is, it gives no assurances on bandwidth, loss rate, or delay

jitter. Specifically, these characteristics are dynamic and

unknown. Therefore, a key goal of media streaming is to

design a system that supports some level of QoS to reliably

deliver high-quality video over the Internet when dealing with

unknown and dynamic Bandwidth, Delay jitter and Loss rate.

Many architectures [2], [3], [4], [5], [6], [7] have been

proposed in the literature to provide QoS for media streaming,

yet none of them is truly successful and globally implemented.

 OpenFlow is a

successful Software Defined Network (SDN) paradigm that

decouples the control and forwarding layers in routing [8], [9].

SDN is an emerging and its uniqueness comes by the fact that it

provides programmability through decoupling of control and

data planes, and ensures simple programmable network

devices, instead of making them more complex. With SDN, the

control of the network can be done separately on the control

plane without impact on the data flows. The intelligence of the

network can be removed from the switching devices and placed

on the controller. Meanwhile, the switches can be controlled

externally by software without need of onboard intelligence.

The separation of control from data planes provides not only a

simpler programmable environment. Numerous network device

merchants have effectively begun to deliver OpenFlow-

empowered switches or routers. Therefore, SDN or OpenFlow

will incrementally spread all through the world sooner rather

than later as new OpenFlow empowered switches are sent.

OpenFlow has also attracted the attention of numerous

organizations offering cloud administrations, and it will further

permit system administration suppliers to offer inventive

multimedia administrations with progressively reconfigurable

QoS. This is the primary inspiration behind employing

OpenFlow architecture in this work. Yet, current OpenFlow

specification [10] does not provision communication between

different controllers managing separate network domains. It is

vital to implement a distributed control plane with multi-

threaded controllers and forwarders to manage multi-domain,

multi-operator SDNs. This paper presents, a multi threaded

controller-forwarder architecture which supports QoS for

media streaming over SDN and performs faster than single

threaded controller-forwarder architecture.

 The remainder of the paper is organized as follows. We

discuss the literature review in section II. Section III proposes

schematics of multi-threaded controller-forwarder mechanism.

Section IV presents simulation results comparing the multi-

threaded and single threaded mechanisms. Section V draws the

conclusion. Future work is described in section VI.

Ms. Pooja A. Baleghate, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19648-19652 Page 19649

2. Literature Review

Many non-standard distributed control plane structures have

been proposed in the literature.

R. Ramanathan, S. Shenker, T. Koponen et al. [2]

introduced Onix - a distributed platform that defines a general

arrengment of APIs actualize a control plane. In this model, a

network-wide control stage, running on at least one server in

the network, manages an arrangement of simple switches. The

control platform handles state distribution gathering data from

the switches and conveying the appropriate control state to

them, and in addition planning the state among the different

platform servers and gives an automatic interface upon which

developers can manufacture a wide variety of management

applications.

A. Tootoonchian and Y. Ganjali [3] proposed an event-

based appropriated control plane structure, named HyperFlow,

permitting proficient distribution of the network events among

controllers.

D. Levin, J. Rexford, Feamster et al. [4] presented a

software defined Internet exchange (SDX) design whose

expansions will permit multi-site arrangements of SDN. The

single-node SDX architecture looks to some extent like a

traditional route server, however its design makes a couple

significant takeoffs from a route server. In the first place, the

SDX controller permits each AS to apply a custom route choice

procedure to choose at least one best route to each Internet

destination. This feature appears differently in relation to

existing inter domain routing rehearses, whereby each AS must

apply the traditional BGP route determination procedure to

choose a single best route to each destination. Second, the SDX

controller can straightforwardly influence sending by upgrading

switch-table entries, instead of indirectly influencing route

control by means of BGP policy mechanisms.

X. Dimitropoulos, Kotronis et al. [5] proposed a control

plane design concentrating on advancing inter-domain routing

so that the legacy BGP stays good. The paper presents SDN

ideas to enhance inter-domain routing. The paper proposes to

outsource the routing control plane of an ISP to an external

trusted supplier, i.e., the service contractor. The contractor

represents considerable authority in routing management.

T. Koponen, S. Shenker Raghavan et al. [6] introduced

Software Defined Internet Architecture (SDIA) considering

both inter and intra-domain sending tasks. The objective of this

paper is basic: to change architectural advancement from a

hardware issue into a software one. And the answer is

somewhat standard, acquiring intensely from long- standing

(e.g., MPLS) and developing (e.g., SDN) deployment practices.

Hilmi E. Egilmez and A. Murat Tekalp [7] proposed novel

QoS expansions to distributed control plane designs for

interactive media delivery over large-scale, multi-operator

Software Defined Networks (SDNs) using single threaded

controller-forwarder mechanism.

3. Proposed Work

As of now, it is difficult to dynamically change network routing

on a per-flow basis. Ordinarily, when a packet arrives at a

router, it checks the packet‟s source and destination address

pair with the entries of the routing table, and forwards it as

indicated by generally fixed, predefined rules (e.g., routing

protocol) configured by the network operator. OpenFlow offers

a new paradigm to mainly remedy this deficiency by permitting

network operators to flexibly define different types of flows

(i.e., traffic classes) and associate them to some set of

forwarding rules (e.g., routing, priority queuing). So as to

guarantee ideal end-to-end QoS for multimedia delivery,

gathering up-to-date global network state information, such as

delay, bandwidth, and packet loss rate is crucial. Yet, over a

large-scale multi-domain network, this is a troublesome task

because of dimensionality. The problem becomes even more

difficult due to the distributed architecture of the current

Internet. OpenFlow facilitates this issue by employing a

centralized controller. Rather than sharing the state information

with all other routers, OpenFlow enabled forwarders directly

forward their local state information using the OpenFlow

protocol to the controller. The controller processes each

forwarder‟s state information and determines the best

forwarding rules using up-to-date global network state

information. Nonetheless, the current OpenFlow specification

is not appropriate to large scale multi operator

telecommunication networks. Consequently, there is

requirement for a distributed control plane comprising of

multiple controllers each of which is responsible for a part

(domain) of the network. Fig. 1 shows the

schematics of multi threaded controller-forwarder mechanism.

 Figure 1: Schematics of Multi-Threaded Controller-

Forwarder mechanism

In proposed architecture, the network is partitioned into

domains and each domain is managed by a controller. The

architecture consists of consists of three main modules: Super

Controller, Multi threaded Controllers and Multi threaded

forwarders.

A. Super Controller

The super controller is the core of an SDN network. It lies

between network devices at one end and applications at one

end. Any communications between applications and devices

have to go through controller. SDN controller is an application

in SDN that manages flow control to enable intelligent

networking. Super Controller is responsible for inter-domain

routing. Super controller gets aggregated routing information

from all controllers through the interface, and based on this

knowledge an inter-domain route is determined. Super

Ms. Pooja A. Baleghate, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19648-19652 Page 19650

controller pushes inter-domain routing decisions to all

controllers using controller-controller interface. Controller-

Controller interface allows multiple controllers to share

necessary information to cooperatively manage the whole

network. This interface allows controllers to share aggregated

routing information and QoS parameters among themselves to

help making inter-domain routing decisions with end-to-end

QoS requirements. In case of drastic events such as network

failure or congestion, the interface informs other controllers

actively. It periodically collects network topology or state

information, distributes and keeps them in sync.

Following algorithm is used by super controller managing

inter-domain routing in the distributed control plane.

Steps:

1. Procedure main calls procedure route and update, in

parallel.

2. Procedure route gets aggregated network information

from interface and decides inter-domain routes.

3. The inter-domain routing decisions are sent to each

domain‟s controllers through the interface.

4. Procedure update checks that if there is a route failure.

If there is such an event, then the route procedure is

restarted.

B. Multi-threaded controller

The Controller is responsible for intra-domain routing. Each

controller gets inter-domain route(s) determined by the super

controller. It starts „n‟ number of threads in single environment

to perform faster than a single threaded controller.

Following algorithm is used by each controller managing intra-

domain routing in the distributed control plane.

Steps:

1. Procedure main calls procedure route and update, in

parallel.

2. Procedure route determines an intra-domain route and

pushes necessary routing information to forwarders.

3. If there are no feasible routes, then a route failure event

is triggered and sent to the interface to inform the super

controller.

4. Update procedure keeps the network state information

up-to-date. If a link failure or congestion event is detected,

then the route procedure is restarted to re-optimize intra-

domain routing.

C. Multi-threaded forwarders

The forwarder is responsible for data forwarding function to

the controller. When a packet arrives at a forwarder, first it is

compared against the flow table. If matching entry is found,

then the packet will be forwarded to the specified port. If no

matching is found, then the packet is forwarded to controller.

The controller is then responsible for how to handle the

packets. This communication between controller and forwarder

is managed by OpenFlow protocol. This model forwards their

local state information to the controller. It starts „n‟ number of

threads in single environment to perform faster than a single

threaded forwarder.

These algorithms determine an optimized QoS routes from the

inter-domain and intra-domain decisions, so as to improve the

performance of the system.

4. Result Analysis

In this section, we apply our multi threaded mechanism to

streaming of videos. In order to simulate the proposed

architecture, we implemented a simulator by using

minimum 1GB RAM and 60GB (or above) hard disk. The

proposed system is run in simulation environment with

JVM heap size 21496k. The simulation results are carried

out with different thread counts ranging from 0 to 10. As

the thread count increases, the time required for execution

decreases. The simulation results are shown in Fig.2, 3 and

4.

 Figure 2: Time comparison for single-threaded and multi

threaded controller-forwarder mechanism

(Thread count 10)

Figure 3: Time comparison for single-threaded and multi-

threaded controller-forwarder mechanism

 (Thread count 7)

Ms. Pooja A. Baleghate, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19648-19652 Page 19651

Figure 4: Time comparison for single-threaded and multi-

threaded controller-forwarder mechanism

 (Thread count 3)

In Fig. 2 we compare, the time required for single threaded

controller-forwarder mechanism and multi threaded controller-

forwarder mechanism (with thread count 10) to transfer media

files sizes from 2 MB to 20 MB from source to destination.

Similarly, In Fig. 3 we compare, the time required for single

threaded controller-forwarder mechanism and multi threaded

controller-forwarder mechanism (with thread count 7) to

transfer media files sizes from 2 MB to 20 MB from source to

destination. In Fig. 4 we compare, the time required

for single threaded controller-forwarder mechanism and multi

threaded controller-forwarder mechanism (with thread count 3)

to transfer media files sizes from 2 MB to 20 MB from source

to destination.

5. Conclusion

This paper proposes a multi-threaded controller-forwarder

mechanism. The mechanism improves the QoS for multimedia

streaming over software defined network and performs faster

than a single threaded controller-forwarder mechanism.

6. Future Work

The proposed system supports multi threaded controller-

forwarder mechanism for enhancing the QoS of multimedia

traffic over Software Defined Networks. There are several

other domains where we can do some interesting research. For

instance,

1) Buffering at node: in current theory, we don‟t have any

provision for minimizing link delay. These link delays

will affect the total performance of the system. So, we

can implement buffering at those nodes where high link

delays occur.

2) Caching: Caching helps to minimize processing of

frequently requested data. Caching will be implemented

at the Super Controller so that the frequently required

data (i.e. the data which is mostly requested at super

controller) can be stored in cache memory so as it will

take less amount of time for processing the requests.

We leave the study of these problems as our future

work.

Acknowledgement

There have been many contributors for this to take shape

and authors are thankful to each of them.

References

[1] J. H. Saltzer, D. P. Reed, and D. Clark, “End-to-end

arguments in system design,” ACM Trans .Comput.

Syst.,vol.2,no.4,Nov.1984.

[2] T. Koponen, M. Casado, N. Gude, J. Stribling, L.

Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue,

T. Hama, and S. Shenker, “Onix: A distributed control

platform for large-scale production networks”, OSDI,

pp. 351–364, 2010

[3] A. Tootoonchian and Y. Ganjali, “Hyperflow: A

distributed control plane for OpenFlow”, in Proc. INM /

WREN‟10, pp.3–3, 2010.

[4] N. Feamster, J. Rexford, S. Shenker, D. Levin, R. Clark,

R. Hutchins, and J. Bailey, “SDX: A software-defined

internet exchange”, Open Netw. Summit, Apr. 2013.

[5] V. Kotronis, X. Dimitropoulos, and B. Ager,

“Outsourcing the routing control logic: Better internet

routing based on sdn principles”, in Proc. 11th ACM

Workshop Hot Topics Netw., pp. 55–60, 2012.

[6] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A.

Ghodsi, and S. Shenker, “Software-defined internet

architecture: Decoupling architecture from

infrastructure”, in Proc. 11th ACM Workshop Hot

Topics Netw., pp. 43–48, 2012.

[7] Hilmi E. Egilmez, A. Murat Tekalp, “Distributed QoS

Architectures for Multimedia Streaming Over Software

Defined Networks”, IEEE Trans. on Multimedia, vol.

16, no.6, Oct.2014.

[8] Open Networking Foundation (ONF), PaloAlto, CA,

USA, “Software defined networking: The new norm for

networks” 2012 [Online]. Available:

https://www.opennetworking.org/images/stories/downloa

ds/openflow/wp-sdn-newnorm.pdf

[9] N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.

Turner, “OpenFlow: Enabling innovation in campus

networks,” SIGCOMMComput.Commun.Rev.,vol.38,no.

2, pp. 69–74, Mar. 2008.

[10] Open Networking Foundation (ONF), Palo Alto, CA,

USA, “OpenFlow Switch Specification v1.3.1” [Online].

Available: https://www. opennetworking.org/ Accessed:

Sep. 6, 2012.

Author Profile

Ms. Pooja A. Baleghate, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19648-19652 Page 19652

Ms. Pooja A. Baleghate received the B.E. degree in Information

Technology in 2013 from Shivaji University. She is currently

pursuing M.E. in Computer Science and Enginnering from

Shivaji University.

Prof. Sachin B. Takmare is working as Assistant Professor in

Computer Science and Engineering Department of Bharati

Vidyapeeth‟s College of Engineering, Kolhapur with teaching

experience of about 10 years. He has published about three

International Papers and five National Papers.

Prof. Pramod A. Kharade is working as Assistant Professor in

Computer Science and Engineering Department of Bharati

Vidyapeeth‟s College of Engineering, Kolhapur with teaching

experience of about 8.5 years. His areas of specialization are

Information Security and Discrete Mathematics.

