
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 12 Dec. 2016, Page No. 19521-19628

Suraj Indiver, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19621-19628 Page 19621

New Soft Computing Techniques in the Software Testing
Suraj Indiver

1
, Mr. Vyom Kulshreshtha

2

M.Tech Student, Computer Science and Engineering,

SIT, Mathura, Dr. A.P.J.AKTU Lucknow

(Asstt. Professor)

(Supervisor), Computer Science & Engineering

SIT, Mathura, Dr. A.P.J.AKTU Lucknow

Abstract: Testing is tedious, time consuming and costly. This dissertation explores self test data creation technique. It uses a

new algorithm called Genetic-Particle Swarm Combined Algorithm (GPSCA) which is based on a combination of Genetic

Algorithm (GA) and Particle Swarm Optimization (PSO). It uses dominance relationship between two nodes. The test data

were derived from the program's structure with the aim to traverse every statement in the software. The algorithm uses a new

evaluation (fitness) function to evaluate the generated test data based on the concepts of the dominance relations between

nodes of the program’s control flow graph. The fitness function used to evaluate each test case by executing the program with

it as input, and recording the traversed nodes in the program that are covered by this test case. The main reason of using

GPSCA is its ability to handle input data which may be of complicated and complex and difficult to determine manually. Thus,

the problem of test data generation is treated entirely as an optimization problem. The performance of the proposed approach

is analyzed on a number of programs having different size and complexity. Finally, the performance of GPSCA is compared to

both GA and PSO for generation of automatic test cases to demonstrate its superiority. The effectiveness of test data generation

using GPSCA is better than GA and PSO as it requires fewer tests than later and achieves 100% coverage in less number of

generations

Keywords: GAs, PSO, GPSCA, Ant Colony Optimization,

Dominance Tree, Neural Networks.

1. INTRODUCTION

Software test is the main approach to find errors and defects

assuring the quality of software [1]. Therefore much efforts

and time is required in order to generate test cases to test the

software for reliability and other functionalities purposes.

Manually, generation of test cases consumes a lot of time and it

also depends on the skill of person. Therefore chances of errors

at the time of designing of test cases are immense which leads

to the inclusion of bugs in the system after testing also. On

The other hand, some test cases are better than the others in

terms of finding the errors. Therefore, a testing system is

required to differentiate good (suitable) test data from bad test

(unsuitable) data, and so it should be able to detect good test

data if they are generated. To overcome this, it is essential to

automate test data generation. Software testing tools must

ensure that the test cases generated by it is falling under the

corresponding testing criteria and are of good quality. Testing

tool must generate test cases with diversified nature and it

should not fall in local optima. Tool must be robust, reliable,

general and adaptive. Test data which is generated for one

program may or may not be necessary good for another

program. Therefore tools must be of adaptive in nature for

generating test cases for the software under test consideration.

The thesis presents the result of the research done in the area of

software testing using the soft computing approach which

gives adequate picture of the research project with special

reference to software testing using soft computing approach.

Different soft computing approaches such as Genetic

Algorithm (GA), Particle Swarm Optimization (PSO) and

hybrid of GA and PSO are used. These are used to compare

and find the minimum software test cases for testing the

software.

2. OBJECTIVES OF THE RESEARCH

To achieve the overall purposes of the dissertation following

are the objectives:

a) To identify, characterize and to automatic prioritization of

test cases in software testing using techniques like control

flow analysis etc.

b) To propose a new approach for software testing process,

optimizing testing efforts, testing complexity, quality and

reliability issues.

c) To assess the feasibility of proposed soft computing

technique to automatically generate test data for software

testing.

d) To compare the results obtained with existing methods

such as GA and PSO.

3. HYPOTHESES

a) To achieve the goal and aim of research following

hypotheses are taken into consideration which are justified

in the experiment and result chapter.

b) Genetic Algorithms (GAs) are efficient in generating the

test cases for the software/ program under test.

c) Particle Swarm Optimization (PSO) is more powerful and

efficient as compare to Genetic Algorithm (GA) in order

to achieve the goal or generating test cases.

DOI: 10.18535/ijecs/v5i12.64

Suraj Indiver, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19621-19628 Page 19622

d) Genetic-Particle Swarm Combined Algorithm (GPSCA) is

more powerful and efficient as compare to PSO and GA in

order to achieve the goal or generating test cases.

e) Change in size of population give best results in case of

GA and GPSCA.

f) Change in crossover probability give best results in case of

GA and GPSCA.

g) Change in mutation probability give best results in case of

GA and GPSCA.

h) Change in number of agents give best results in case of

PSO and GPSCA.

4. CLASSIFICATION OF TESTING

A. Black Box Testing

Black box testing is done without the knowledge of the

internals of the system under test. Black box testing is done

from customer’s view point. It involves looking at the

specifications and does not require examining the code of a

program. The test engineers engaged in black box testing only

knows the sets of input and expected output and is unaware of

how those inputs are transformed into output by software.

Black box testing requires functional knowledge of the product

to be tested [1, 9].

B. White Box Testing

White box testing is a way of testing the external functionality

of the code by examining and testing the program code that

realize the external functionality. This is also known as clear

box, or glass box or open box testing. It is also called program

based testing [2]. White box or logic-driven testing permits you

to examine the internal structure of the program. This strategy

derives test data from an examination of the program’s logic

[3]. White box testing takes into account the program code,

code structure, and internal design flow [3].

Figure 1: Classification of white box testing

5. TESTING PROBLEMS

To test the software, test cases are written. In order to find out

how a test case is valid, one does not have a definite

mechanism. One basically depends on the testers

understanding of the requirement. In this process, one has lot

of human error and his basic skill level taken into

consideration. This leads to the inclusion of bugs in the system

after testing also. To overcome this, it is essential to Automate

Test Data Generation. Automated test data generation reduces

an effort of software developers for creating test cases with a

goal to minimize the amount of manual work involved in text

execution and gain higher coverage with minimum cost and

time.

6. ARCHITECTURE OF TEST AUTOMATION

Design and architecture is an important aspect of automation.

The architecture of test automation is shown in figure 2.

Architecture for test automation involves two major heads:

Figure 2: Test automation architecture

a) A test infrastructure that covers a test case database

b) A defect database or defect repository

There is no hard and fast rule on when automation should start

and when it should end. The work on automation can go

simultaneously with product development. It can overlap with

multiple release of the product. Product and automation go

parallel in the same direction with similar expectation.

7. SOFT COMPUTING TECHNIQUES

7.1 OPTIMIZATION

It is the process of making something better. Optimization is

the process of adjusting the inputs to find the minimum or

maximum output or result [4]. The Optimization Process is

shown in figure 3. Optimization is the mechanism by which

one finds the maximum or minimum value of a function or

process. This mechanism is used in fields such as physics,

chemistry, economics, and engineering where the goal is to

maximize efficiency, production or some other measure.

Figure 3: Optimization process

7.2 NEURAL NETWORKS (NNS)

There are millions of very simple processing elements or

neurons in the brain, linked together in a massively parallel

manner. This is believed to be responsible for the human

intelligence and discriminating power [5]. Neural Networks are

DOI: 10.18535/ijecs/v5i12.64

Suraj Indiver, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19621-19628 Page 19623

developed to try to achieve biological system type performance

using a dense interconnection of simple processing elements

analogous to biological neurons. Neural Networks are

information driven rather than data driven [6]. Typically, there

are at least two layers, an input layer and an output layer. One

of the most common networks is the Back Propagation

Network (BPN) which consists of an input layer, and an output

layer with one or more intermediate hidden layers [7].

Figure 4: Neural networks

7.3 GENETIC ALGORITHMS (GAs)

GAs are general-purpose search algorithms, which use

principles inspired by natural genetics to evolve solutions to

problems [8]. As one can guess, genetic algorithms are inspired

by Darwin's theory about evolution. They have been

successfully applied to a large number of scientific and

engineering problems, such as optimization, machine learning,

automatic programming, transportation problems, adaptive

control etc. GA starts off with population of randomly

generated chromosomes, each representing a candidate

solution to the concrete problem being solved and advances

towards better chromosomes by applying genetic operators

based on the genetic processes occurring in nature. So far, GAs

had a great measure of success in search and optimization

problems due to their robust ability to exploit the information

accumulated about an initially unknown search space.

7.3.1 Representation of Chromosomes

The representation of chromosomes in GAs has very deep

impact on the performance of GA-based function. There are

different methods of representation of chromosomes like

binary encoding, value encoding, permutation encoding, tree

encoding etc. The most commonly used encoding is binary

encoding proposed by Holland [9]. In this method, the value of

individual is encoded as bit string consists of binary values

either 0 or 1. Each chromosome of population consists of same

length of binary string [10]. Suppose a program has two inputs

X and Y having value 8 and 6 respectively and length of binary

string is 5. Then, X and Y can be represented as shown in table

1.

Table 1: Binary Encoding

Chromosome Value Binary

Encoding

X 8 01000

Y 6 00110

Figure 5: Fundamental mechanism of simple genetic

algorithm

7.4 PARTICLE SWARM OPTIMIZATION (PSO)

Although GAs provides good solution but they not keep

information about the best solution in the whole community.

This strategy extends search by the introduction of memory. In

this optimization, along with the local best solution, a global

best solution is also stored somewhere in the memory, so that

all particles not trapped into local optima but moves to global

optima. PSO is an algorithm developed by Kennedy and

Eberhart [11] that simulates the social behaviors of bird

flocking or fish schooling and the methods by which they find

roosting places, foods sources or other suitable habitat. The

algorithm maintains a population potential where each particle

represents a potential solution to an optimization problem. The

PSO algorithm works by simultaneously maintaining several

candidate solutions in the search space. During each iteration

of the algorithm, each candidate solution is evaluated by the

objective function being optimized, determining the fitness of

that solution. Each candidate solution can be thought of as a

particle “flying” through the fitness landscape finding the

maximum or minimum of the objective function. Initially, the

PSO algorithm chooses candidate solutions randomly within

the search space. The flowchart of PSO algorithm is shown in

figure 6(a).

DOI: 10.18535/ijecs/v5i12.64

Suraj Indiver, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19621-19628 Page 19624

Figure 6 (a): Flow chart of PSO

The overall processing of PSO is shown in figure 6(b). PSO

accepts list of parameters from the input file pso1.run. It

produces the report in the output file pso.out.

Figure 6 (b): PSO Process Diagram

7.5 ANT COLONY OPTIMIZATION (ACO)

The idea of ant colony optimization is as its name suggests,

inspired from the ant colonies. Ant Colony Optimization

(ACO) is a population-based, general search technique for the

solution of difficult combinatorial problems, which is inspired

by the pheromone trail laying behavior of real ant colonies

[12]. Each ant moves along some unknown path in search of

food and while it goes it leaves behind a trail of what is known

as pheromone. The special feature of this pheromone is that it

evaporates with time such that as time proceeds, the

concentration of the pheromone decreases on any given path.

Now it’s obvious that the path with maximum pheromone is

the one that has been traversed the most recently or in fact by

most number of ants and hence the most desirable for

following ant [13]. The first ACO technique is known as Ant

System [14] and it was applied to the traveling salesman

problem. This work was further carried by Dorigo, Di Caro,

Blum etc [14-19]. Initial attempts at an ACO algorithm were

not very satisfying until the ACO algorithm was coupled with a

local optimizer.

One problem is premature convergence to a less than optimal

solution this is because too much virtual pheromone was laid

quickly. To avoid this stagnation, pheromone evaporation is

implemented. In other words, the pheromone associated with a

solution disappears after a period of time [20].

Step 1 : Initialization the pheromone trail

Step 2 : Iteration

 For each ant repeat

 Solution construction using the

current pheromone trail

 Evaluate the solution constructed

 Update the pheromone trail

 Until stopping criteria

Figure 7: A Generic Ant Colony Algorithm

8. PROBLEM STATEMENT & PROPOSED

APPROACH

8.1 The proposed approach composed of mainly two

components:

a) Proposed Technique - Dominance Tree - Concept for

reducing the test cases.

b) Proposed Metaheuristic - Genetic-Particle Swarm

Combined Algorithm (GPSCA) which is used to

generate automatic test data.

8.1 (a) Proposed Technique

This technique applies the concepts of dominance relations

between nodes to reduce the cost of software testing.

 Dominance Tree

Before discussing the concept of Dominance Tree, the

concepts about Control Flow Graph (CFG) is must.

The Control Flow Graph (CFG) of a program can be

represented by a directed graph G = V, E with a set of nodes

(V) and a set of edges (E). Each node represents a group of

consecutive statements, which together constitute a basic

block. The edges of the graph are then possible transfers of

control flow between the nodes. There are two specially

designated blocks, the entry block through which control enters

into the flow graph and the exit block through which all control

flow leaves.

Dominator Tree: For G = (V, E), a directed graph with two

distinguished nodes n0 and nk, a node n dominates a node m, if

every path P from the entry node n0 to m contains n. A

dominator tree DT(G) = (V,E) is a directed graph in which one

distinguished node n0, called the root, is the head of no edge;

every node n except the root n0 is a head of just one edge and

there exists a (unique) path (dominance path dom (n)) from the

root n0 to each node n. The root node dominates all nodes. The

dominator tree is an ancillary data structure depicting the

dominator relationship. This graph is a tree, since each node

has a unique immediate dominator. Figure 8 show dominance

tree.

DOI: 10.18535/ijecs/v5i12.64

Suraj Indiver, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19621-19628 Page 19625

Figure 8: Dominance Tree

8.1 (b) Proposed Metaheuristics

It has been commonly accepted that finding optimality to NP

hard problems is not a viable option since large amount of

computational time is needed for judgment of such solutions.

In reality, a good initial solution can be obtained by a heuristic/

metaheuristic in a reasonable computational time with less

number of test cases.

Figure 9(a): Proposed GPSCA Techniques

 Genetic-Particle Swarm Combined Algorithm

(GPSCA)

The proposed GPSCA combines the power of both GA with

PSO to form a hybrid algorithm. The combination of GA and

PSO always performs better than GA or PSO alone. The

proposed GPSCA consists of three major operators:

Enhancement, Crossover and Mutation..

The overall processing of GPSCA is shown in figure 9(b).

GPSCA accepts list of parameters from the input file

gpsca.run and produce the report in the output file gpsca.out.

Figure 9(b): GPSCA Process Diagram

9. RESEARCH METHODOLOGY

The proposed software is developed using C language. First

test object source code is fed to program for instrumentation.

The instrumented program provides the information for the

covered node. Then, the instrumented program is fed to

proposed search algorithms. The proposed search algorithm

technique besides this instrumented program also accepts a file

containing information about leaves of dominance tree along

with dominance paths as inputs. It accepts other parameters

like population size, length of chromosomes, maximum

number of generations, and probabilities of the crossover and

mutation operators in case of GA. The parameters in case of

PSO are like number of agents, maximum iteration, dimensions

etc. The algorithm produces a set of test cases, the set of nodes

covered by these test cases and the list of uncovered nodes, if

any, the list of distinct test cases, the list of test cases that

covered dominance nodes, the coverage percentage etc. in the

result file. The algorithm selects, one at a time, an uncovered

node of the set of leaves nodes of the dominance tree and

evolves the initial test data until the required test data are

obtained or the maximum number of generations is achieved.

Whenever a node is covered, the test case that caused this

coverage is stored in an array list. The technique checks the

coverage of remaining uncovered nodes by the generated test

data that cover the current node. The whole process is shown in

figure 10.

Figure 10: Building Blocks of Automatic Test Data Generator

Program

Instrumentation: for the purpose of instrumentation, a

program instrument.h is used which is called by main1.c; the

main1.c demands the source code of the program which has to

be instrumented and gives an instrumented program named as

prog.h. The prog.h is used to provide the covered node

information followed by test case when program is executed

with the given test case. This information is used by the search

algorithm to obtain the fitness function. The layout of

instrumentation is given in figure 11.

DOI: 10.18535/ijecs/v5i12.64

Suraj Indiver, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19621-19628 Page 19626

Figure 11: Steps of Instrumentation

The coding of the ss4.c (greatest of three numbers which is to

be tested) is shown as in figure 12. The output of the

instrumented program i.e. prog.h for the program greatest of

three number stored in the file ss4.c is shown in figure 13

Figure 12: Source code greatest of three number program

Figure13.shows after executing the main program, it demands,

the name of the program which has to be instrumented. After

which the program shows the code of source program which is

shown as first block of lines from 0 to 34 in the figure.

Figure 13: Program after instrumentation

10. RESULTS AND DISCUSSIONS

In the present work, Genetic Algorithm (GA), Particle Swarm

Optimization (PSO) and Genetic-Particle Swarm Combined

Algorithm (GPSCA) have been developed for fitness function

which is based on dominance relation between two nodes. The

fitness function based on the criteria of data flow coverage.

The evaluation of all the algorithms implemented has been

carried out using personal computer Pentium dual Core

processor with 1 GB RAM. Computational analysis has been

done among GA, PSO and GPSCA with the same stopping

criteria i.e. either 100% coverage of all dominance nodes or

maximum number of iterations/ generations achieved. This

allows a fair comparison among different algorithm.

 COMPARATIVE ANALYSIS OF GA, PSO and

GPSCA

The main aim of the research is to prove the usefulness and

utility of these algorithms towards solving the ins and outs of

testing objectives. The fitness function that is taken in this

research is depending on the dominance relation between

nodes of data flow graph. The main goal of research is to

combine the power of two algorithms GA and PSO. It proves

its power and effectiveness towards solving the testing

problems. Our technique takes the instrumented version of the

program under test, the dominator tree as inputs and returns the

total number of generation, total number of test cases, total

number of distinct test cases and cover ratio percentage. Initial

population for GA, PSO and GPSCA program is generated

DOI: 10.18535/ijecs/v5i12.64

Suraj Indiver, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19621-19628 Page 19627

randomly. Experiments are conducted 10 times for averaging

results. In each attempt, search functions are iterated for

sufficient number of generations for each of ten runs. For

experimental results are analyzed by changing the size of

populations with different mutation and crossover probability

in GA and GPSCA. In case of PSO and GPSCA also the

results are determined by changing the number of individuals.

A particle in case of PSO and a chromosome or individual in

GA is treated as a test case.

A test case may be a solution of the problem that is under

consideration or may not be. If a test case provides a perfect

solution then it is called a valid test case otherwise it is called

invalid test case. The solution of the problem is found when

search algorithm achieves 100 percent coverage. If it not

achieves the 100 percent coverage in defined number of

generations / iteration then search algorithms fails. For

experiment analysis seven programs for test data generation

activity have been taken which are frequently used by

researchers.

The brief discussions of these seven programs are as follow.

 GTN – This is program for finding greatest of three

numbers, this is a simple program which accepts three

inputs and return the greatest among three. But for

research point of view program is very important as it

contains nested if conditions and thus helps to check the

effectiveness of search algorithms.

 PRIME – this is the simplest program check whether a

given number is Prime number or not.

 RM – This program is loop based program which finds

remainder of two integer numbers.

 BS - this program is based on Bubble Sorting algorithm

which arranges the elements of array in ascending order.

This program is unique in the sense that it is the only

program in this set of programs which has nested loops.

 QE – this programs finds the roots of Quadratic Equation

 MM – this is array and loop based program that find

minimum and maximum value from an array.

 HCF – this program accepts two inputs and finds Highest

Common Factor between these two integer numbers. This

program also contains loops.

The table 2 shows more characteristics about these programs

like line of code (LOC), Cyclomatic Complexity (CC).

Table 2: Program Characteristics

Sr.

No.

Program

Name

LOC CC

1 GTN 36 06

2 PRIME 16 03

3 RM 35 10

4 BS 21 04

5 QUAD 24 06

6 MINMAX 27 04

7 HCF 11 04

The proposed GPSCA is performed on these set of programs

and compare it with the GA and PSO with the same set of

programs to demonstrate its effectiveness in achieving the

dominance tree leave nodes coverage in less number of

generations. The results of the proposed GPSCA are compared

with GA and PSO. As shown in figures 14 GPSCA performs

better than GA and PSO in number of generation. From figure

15, it can be analyzed easily that number of test cases

generated in case of GPSCA is less than GA and PSO because

GPSCA achieves 100 percent coverage in less number of

iterations.

Figure 14: Comparisons of GPSCA, PSO and GA w. r. t.

Number of Generations

Figure 15: Comparisons of GPSCA, PSO and GA w. r. t.

Number of Test Cases

The ratio of test cases and unique test cases generated by

search algorithm is shown in figure 16. Ratio = Total Test

cases / Unique Test Cases. The figure shows that this Ratio is

worst in case of GA and the proposed GPSCA is more

effective as compare to PSO in six out of seven programs.

Figure 16: Comparisons of GPSCA, PSO and GA w. r. t.

Ratio of Total Cases and Number of Unique Test Cases

Generated

11. CONCLUSIONS

Some of the major findings from the present research work as

follows:

DOI: 10.18535/ijecs/v5i12.64

Suraj Indiver, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19621-19628 Page 19628

1. The fitness function proposed for software testing

confirms to be an effective. It effectively reduces the

number of test cases required to achieve 100%

coverage.

2. Performance of proposed GPSCA show better results

as compared to GA and PSO alone.

3. The main advantage of GPSCA is that it provides a

quick solution in less number of iterations.

4. The experiments were carried out on seven real world

programs. The results confirm the effectiveness of

proposed GPSCA as compared to GA and PSO.

5. The experiments show that proposed GPSCA

performs better in generation of distinct test case as

compared to GA and PSO search algorithms.

6. Proposed hybrid GPSCA has given excellent results

for each of the program. Its performance in small as

well as large domains shows that it has both types of

search capabilities, local as well as global for

fulfilling testing requirements. It is suitable for simple

and complex problems. Therefore, proposed hybrid

GPSCA is strongly recommended for the problem of

test case generation.

12. FUTURE SCOPE OF RESEARCH WORK

Major findings and conclusions have been reported in the

dissertation. However, it can be extended to give more efficient

performance. One major aspect of future work is to develop

new crossover and mutation processes. These should be

efficient so that proposed search algorithm may be easier,

efficient and faster. The instrumentation of the Software Under

Test is done to a large extend but it can be further enhanced. So

that it can produce control flow graph and dominance tree

automatically and provides dominance tree leave nodes

information with path details. A new approach with this

proposed GPSCA may be possible to use this algorithm in

parallel because of one of its component i.e. GA. The

population can be split into several smaller sub populations.

Depending on the method these sub populations can form a

new population. The parallel GPSCA may be fruitful in

searching of results because these sub populations can explore

the search space more thoroughly.

REFRENCES

[1] K. Li, Z. Zhang and J. Kou, “Breading software test data

with genetic-particle swarm mixed algorithms”, Journal of

Computers, Vol. 5, No. 2, pp. 258-265, 2010.

 [2] B. Beizer, “Software testing techniques”, Second Edition,

Van Nostrand Reinhold, NewYork, 1990.

[3] R. A. DeMillo and A. J. Offlut, “Constraint-based

automatic test data generation”, IEEE Transactions on

Software Engineering, Vol. 17, No. 9, pp. 900-910, 1991.

[4] S. Desikan and G. Ramesh, “Software testing principles &

practices”, Pearson Education, 2007.

[5] R. Boyer, B. Elspas and K. He Levitt, “Select-a formal

system for testing and debugging programs by symbolic

execution”, SIGPLAN Otices, Vol. 10, No. 6, pp. 234-245,

June 1975.

[6] L. Clarke, “A system to generate test data and symbolically

execute programs”, IEEE Transaction on Software Eng., Vol.

SE-2, No. 3, pp. 215- 222, Sept. 1976.

[7] C. Ramamoorthy, S. Ho and W. Chen, “On the automated

generation of program test data”, IEEE Trans. Software Eng.,

Vol. SE-2, no. 4. pp. 293-300, Dec. 1976.

[8] W. Howden, “Symbolic testing and the DISSECT symbolic

evaluation system”, IEEE Trans. Software Eng., Vol. SE- 4,

No. 4, pp. 266- 278, 1977.

[9] J. H. Holland, “Adaptation in natural and artificial

system”, MIT Press, The university of Michigan press, 1975.

[10] D. Ince, “The automatic generation of test data”,

Computer Journal, Vol. 30, No. 1, pp. 63 69, 1987.

[11] W. Miller and D. Spooner, “Automatic generation of

floating-point test data”, IEEE Trans. Software Eng., Vol. SE-

2, No. 3, pp. 223-226, Sept. 1976.

[12] R. L. Haupt and S. E. Haupt, “Practical genetic

algorithms”, John Wiley & Sons publication.ll.

[13] S. Mitra and T. Acharya “Data mining multimedia, soft

computing, and bioinformatics”, John Wiley & Sons

publication.

[14] L. C. Jain and N. M. Martin, “Fusion of neural networks,

fuzzy systems and genetic algorithms: industrial applications”,

CRC Press, 1998.

[15] A. K. Dhingra, “Multi-objective flow shop scheduling

using metaheuristics”, Ph. D. thesis, NIT, Krukshetra, 2011.

[16] D. E. Goldberg, “Genetic algorithms in search,

optimization & machine learning”, Addison-Wesley, Reading,

1989.

[17] H. Singh, “Automatic generation of software test cases

using genetic algorithms”, M Tech. Thesis, TIET, Patiala,

Punjab, 2004.

[18] J. Kennedy and R. Eberhart, ”Particle swarm

optimization”, IEEE International Conference on Neural

Networks,IEEE Press, pp. 1942–1948, 1995.

[19] A. S. Ghidk, “A new software data-flow testing approach

via ant colony algorithms”, Universal Journal of Computer

Science and Engineering Technology, Vol. 1, No. 1, pp. 64-72,

Oct. 2010.

[20] P. R. Srivastava, N. Jose, S. Barade and D. Ghose,

“Optimized test sequence generation from usage models using

ant colony optimization”, IJSEA, Vol. 1, No. 2, 2010.

[21] M. Dorigo, V. Maniezzo and A. Colorni, “Ant system:

optimization by a colony of cooperating agents”, IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 26, No.

1, pp. 29-41, 1996.

[22] M. Dorigo and C. Blum, “Ant colony optimization theory:

A survey”, Theoretical Computer Science, Vol. 344, No. 2, pp.

243-278, 2005.

 AUTHOR PROFILE

Suraj Indiver

Master of Technology Student, Department of Computer

Science and Engineering, Sachdeva Institute of Technology,

Mathura, Dr. A.P.J. AKTU Lucknow. MCA from Maharishi

Dayanand University, Rohtak in 2013.

