

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 1 January 2015, Page No. 9784-9788

V Prasanti Parimala, IJECS Volume 4 Issue 1 January, 2015 Page No.9784-9788 Page 9784

Proficient Techniques For The Enhancement Of Horizontal

Aggregations In SQL

V Prasanti Parimala
1
, R Praveen Kumar2

1
Student in Dept. of CSE (M.Tech)

,Srinivasa Institute of Engineering and Technology

cheyyeru village,AP

prasantiparimala@gmail.com

2
Asst.Professor ,Dept.of CSE,

Srinivasa Institute of Engineering and Technology

cheyyeru village,AP

sripraveen4u@gmail.com

Abstract- The importance of datasets in data mining for knowledge discovery is universally recognized. Raw data sets that are available

are not directly amenable for data mining analysis. Vertical and horizontal aggregations have been extensively used to transform the

original data set for this purpose. However, vertical aggregations contribute only minimally for preparation of data sets in data mining

analysis. Horizontally aggregated data sets are extensively used. Horizontal data sets are generated directly by using simple, yet powerful

methods such as CASE, PIVOT, and SPJ. Basic SQL aggregations limitations to return one column per aggregated group using group

functions is overcome by these three methods to generate aggregated columns in a horizontal tabular layout that are suitable for data

mining analysis. Of these three methods SPJ employs relational operators to realize horizontal aggregations which are a better strategy

in comparison to case and pivot. However SPJ’s is weak in performance. In order to enhance the performance of SPJ method which

improves horizontal aggregation performance in parallel, we proposed technique to improve SPJ methodology by using Join

Enumeration strategies which includes a query tree generation with quantifier’s algorithm. Then horizontal aggregations performance

improvement is attempted using secondary indexes on common grouping columns. In conclusion we found that the above two changes

improved Horizontal aggregations performance significantly and produce efficient dataset in horizontal format.

Index Terms -- Aggregations, SQL, Non inner joins, data set

generations.

I. INTRODUCTION

 In data mining data sets play an important role in

knowledge discovery. Usually data in real-time is not in

well-organized form. So we have to prepare data sets

suitable for data mining from that unorganized data. This

data is stored and retrieved through front end applications

which use SQL to interact with relational databases.

Producing datasets needs identification of similar data and

then normalizing the tables. The aggregate functions

supported by SQL are SUM, MIN, MAX, COUNT and

AVG. These functions produce single value output. These

are known as vertical aggregations where each function

operates on the values of a domain vertically

 and produces a single value result. However, they can’t be

directly used in data mining analysis. Summary data sets can

be prepared and they can be used further in data mining

operations and in statistical algorithms [4][9]. Most of the

data mining algorithms expect a data set with horizontal

layout with many rows and one variable per column. Mining

Algorithms like regression, classification, PCA and

clustering require data set in summarized format [4].

Horizontal aggregations are capable of producing data sets

that can be used for real world data mining activities, by

using horizontal aggregate functions SPJ, PIVOT and

CASE. The empirical results revealed that these operations

are able to produce data sets with horizontal layout that is

suitable for OLAP data cube [8] operations or data mining

operations. Experimental results in [2] reveal that

Performance of CASE, PIVOT was considered decent in

terms of speed and scalability where as SPJ lags in speed

and scalability metrics. So, it is important to enhance the

functioning of existing native RDBMS methods such as SPJ

rather than build new ones to incorporate mining and there is

need to enhance the overall performance of horizontal

aggregations. In this paper we proposed top down join

enumeration algorithm (ES) which enhance performance of

SPJ method and secondary indexing in order to improve

performance of horizontal aggregations.

A. Paper Organization

This paper is organized as follows: Section 2 introduces

horizontal aggregations which use three methods to evaluate

Horizontal aggregations using existing SQL constructs.

Section 3 presents proposed techniques for performance

improvement of horizontal aggregations .Section 4 presents

experimental results .Section 5 draws conclusions and

directions for future work.

II. HORIZONTAL AGGREGATIONS

 978-1-4799-3064-7/14/$31.00 ©2014 IEEE

http://www.ijecs.in/
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAA&url=http%3A%2F%2Fwww.sriniet.com%2F&ei=XwFjVIaDLcGt7AbUjYCQBw&usg=AFQjCNF2fsXiuzwINrZQzzdqKOcijd6xCw&bvm=bv.79189006,d.d2s
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAA&url=http%3A%2F%2Fwww.sriniet.com%2F&ei=XwFjVIaDLcGt7AbUjYCQBw&usg=AFQjCNF2fsXiuzwINrZQzzdqKOcijd6xCw&bvm=bv.79189006,d.d2s

V Prasanti Parimala, IJECS Volume 4 Issue 1 January, 2015 Page No.9781-9785 Page 9785

Horizontal aggregations are new class of aggregate functions

that aggregate numeric expressions and transpose results to

produce a data set with a horizontal layout. Horizontal

aggregations are extension to traditional SQL aggregations,

which return multiple values in a horizontal layout (similar

to a multi-dimensional vector), instead of a single value per

tuple. Horizontal aggregations produce a data set with a

horizontal layout which is in summarized form (de

normalized) that is suitable for many data mining algorithms.

Horizontal aggregations were first proposed in paper [10]

and later extended by using pivot operator in [2].

Tables that will be used to explain SQL queries are defined

here. F is a input table as shown in table 1.

 TABEL 1: Input Table, F
k Store Id product A

1 3 Milk 9

2 4 Eggs 4

3 5 Milk 2

4 2 Bread 6

5 1 Bread 10

6 1 Bread 0

7 5 Eggs 11

8 4 Eggs Null

9 2 Milk 8

10 1 Milk 7

11 3 Milk 6

12 2 Milk 5

13 2 Eggs 14

 TABLE 2: Vertical Table, FV
Store Id product A

1 Bread 10

1 Milk 7

2 Bread 6

2 Milk 13

2 Eggs 14

3 Milk 15

4 Eggs 4

5 Eggs 11

5 Milk 2

 TABLE 3: Horizontal Table, FH
Store Id Count

Bread

Count

Milk

Count

Eggs

1 10 7 Null

2 6 13 14

3 Null 15 Null

4 Null 4 Null

5 Null 2 11

Here F is a fact table which is in unorganized form that is

similar to company’s unorganized data. Fv is vertical table

where the data is in vertical format which is not suitable for

data mining algorithms like clustering classification and

regression algorithms etc…,.so in order to produce data in

summarized form we go for horizontal aggregations which is

suitable for data mining analysis. Table2 is in vertical format

which returns single value per each row for respective

column. Whereas Table3 has returned multiple values per

each row for particular column which is somewhat similar to

multidimensional vector .

There are three fundamental methods to compute horizontal

aggregations.

 Fig 1 - Main steps of methods based on F.

A. SPJ method:

 It is based on standard relational algebra to select

project join. In SPJ we create one table with a vertical

aggregation for each result column, and then join all those

tables to produce FH by using left outer joins. Then all such

tables are joined in order to generate a table containing

horizontal aggregations. The projected tables with Select-

Project-Join-Aggregation queries are aggregated from input

table F. It is necessary to introduce an additional table F0

that will be outer joined with projected tables to get a

complete result data set.

The SPJ method example code to produce table 3 (FH) is

shown here (computed from F):

 /* SPJ method */

INSERT INTO F1

SELECT Store Id,count(A) AS A

FROM F

WHERE product=’Bread’

GROUP BY Store Id;

INSERT INTO F2

SELECT Store Id, count(A) AS A

FROM F

WHERE product=’Milk’

GROUP BY Store Id;

 INSERT INTO F3

SELECT Store Id, count(A) AS A

FROM F

WHERE product=’Eggs’

GROUP BY Store Id ;

INSERT INTO FH

SELECT F0.Store Id,F1.A AS product Count Bread ,F2.A

AS product Count milk , F3.A AS product Count Eggs.

FROM F0 LEFT OUTER JOIN F1 on F0.Store Id=F1. Store

Id LEFT OUTER JOIN F2 on F0. Store Id =F2. Store Id;

B. CASE method

V Prasanti Parimala, IJECS Volume 4 Issue 1 January, 2015 Page No.9781-9785 Page 9786

In this method the “case” programming construct which is

available in SQL is used. The case statement returns a value

selected from a set of values based on Boolean expressions.

Horizontal aggregation queries can be evaluated by directly

aggregating from F and transposing rows at the same time to

produce FH. First, we get the unique combinations of R1….

Rk, those define the matching Boolean expression for result

columns.

The CASE method example code to produce table3 (FH) is

shown here (computed from F):

/* CASE method */

INSERT INTO FH

SELECT

Store Id

,COUNT(CASE WHEN product =’Bread ’ THEN A

ELSE null END) as product count Bread

,COUNT(CASE WHEN product =’Milk’ THEN A

ELSE null END) as product count Milk

,COUNT(CASE WHEN product =’Eggs’ THEN A

ELSE null END) as product count Eggs

FROM F

GROUP BY Store Id;

C. PIVOT method

 This aggregation is based on the PIVOT operator

[7] available in RDBMS. Pivot transforms a series of rows

into a series of fewer numbers of rows with additional

columns. As it can provide transpositions, it will be used to

evaluate horizontal aggregations. PIVOT operator

determines how many columns are required transpose and it

can be combined with GROUP BY clause and it rotates a

table valued expression by turning the unique values from

one column in the expression into multiple columns in the

output. i.e. it rotates a rows to columns and aggregations

where they are required on any remaining column values that

are wanted in the final output.

 Finally, the PIVOT method example code in SQL to

produce table3 (FH)is shown here (computed from F):

/* PIVOT method */

INSERT INTO FH

SELECT Store Id

,[Bread] as product count Bread

,[Milk] as product count Milk

,[Eggs] as product count Eggs

FROM (SELECT Store Id, Product, A FROM F

) as p PIVOT (

COUNT(A)

FOR product IN ([Bread], [Milk],[Eggs])

) as pvt;

III . PROPOSED TECHNIQUES

A. Top-Down Join Enumeration:

As discussed above SPJ has less speed and scalability

compared to CASE and PIVOT .In SPJ we use left outer

joins to compute horizontal aggregations. To improve the

performance of SPJ we propose Join Enumeration strategies

to perform left outer joins which increase the performance of

horizontal aggregations .The algorithm includes a query tree

generation with quantifiers algorithm, which has both

relations referenced by the join predicate that are used to

associate each join predicate and additional relations needed

by a predicate to preserve the semantics of the original

query.

a). Algorithm Based On Top-Down Enumeration

In a bottom-up optimizer dynamic programming smaller

quantifier sets must be dealt before processing larger

quantifier sets which is different from top-down optimizing.

So according to the property of top-down optimizer an

algorithm satisfying the top-down optimizing is shown in

algorithm 1

For convenience we use the following notations, NS

includes relations referenced by the join predicate, which is

used to associate each join predicate. An ES includes

additional relations needed by predicate to preserve the

semantics of the original query. We denote by the

ref(preserving(p)) and ref(nullproducting(p)) are the set

of table reference by the join predicate p in the preserving

side and null producing side. The ref(p) denotes the set of

tables referenced by the join predicate p. Anset_antijoin

includes the relations that are linked to each relation through

outer joins pointing to each relation. An set_outerjoin

contains all the relations associated by inner join or anti join

predicates. After initializing ES with NS for every join

predicate p and an set_outerjoin and an set_antijoin for each

table in the join to include only the table itself. Algorithm 1

sets the ES of outer join, anti join, inner join predicates.The

construction of ES used various mechanisms, we propose to

use query tree generation with quantifiers algorithm for

constructing ES resulting in an optimized SPJ query results.

This strategy Improves performance of SPJ along the lines

of CASE, PIVOT.

 B. Secondary Indexes:

V Prasanti Parimala, IJECS Volume 4 Issue 1 January, 2015 Page No.9781-9785 Page 9787

An index whose search key specifies an order different from

the sequential order of the file is secondary indexing also

called non-clustering index or we can say secondary index

provides a secondary means of accessing a file for which

some primary access already exists. One may want to find all

the records whose values in a certain field frequently (which

is not the search-key of the primary index) satisfy some

condition. So in order to satisfy that purpose we can have

secondary indexes with an index record for each search-key

value.

 Index can be considered as a copy of a database

table which is always in sorted form. This Sorting provides

faster access to the data records of the table. The fields not

contained in the index can also be read because index also

contain corresponding record pointer of the actual table.

Primary index is different from the secondary indexes of a

table and it also contains the key fields of the table and a

pointer to the non-key fields of the table and primary index

will be automatically created automatically when the table is

created in the database. In order to improve performance we

have to use secondary indices. Consider an example where

Table SCOUNTER of flight model contains the assignment

of the airport carrier counters. The primary index on this

table consists of pointer to the original data records and the

key fields of the table as shown in fig 2.

 We can also create more indexes on a table

which are called as secondary indexes. This is required if the

table is frequently accessed such that it does not take

advantage of the sorting of the primary index for the access

In this example all the carrier counters at a particular airport

are often searched for bookings of flight. The airport ID is

used to search for counters for such an access. Primary index

sorting is of no use in speeding up this access. Table

SCOUNTER has a large number of entries in order to

support access effectively using the airport ID ,a secondary

index on the field AIRPORT (ID of the airport) must be

created as shown in fig 3.

Fig .2. primary indexing

Fig . 3. secondary indexing

So by using this secondary indexing technique we can

improve overall performance of Horizontal aggregations.

IV.EXPERIMENTAL RESULTS

For the experimental studies the environment used for the

development of prototype web based application that

demonstrates the techniques to improve performance of

horizontal aggregations includes MySQL v5 running on

DBMS server , Core 2 duo processor, 2 GB of RAM and

250 GB on hard disk. The SQL code generator was

programmed in the Java language and connected to the

server via JDBC.

 We used large real time data sets that are

taken from wall mart ecommerce application. We analyzed

queries having only one horizontal aggregation, with

different grouping and horizontal columns. To implement

three methodologies and top-down join enumeration

algorithm we use java Programming language which is an

object oriented high level programming language and java

script and html is used to developed web based application

to provide better GUI to user. The results showing the

performance comparison is shown in figure 4 .

 Fig . 4 .Graphical Comparison

Based on requirement of user we select various attributes

like total product results, top sales results, product

classification results etc..Results produced by existing

methodology to produce horizontal aggregation and our

proposed algorithm and secondary indexes are graphed. The

V Prasanti Parimala, IJECS Volume 4 Issue 1 January, 2015 Page No.9781-9785 Page 9788

results reveal that the top down join enumeration algorithm

has improved performance of horizontal aggregations in

aspect of data retrieval time.

V. CONCLUSIONS AND FUTURE WORK

Horizontal aggregations are used efficiently in decision

making and providing a macroscopic view of entire

business. These aggregations use a simple, yet powerful,

mining methods (CASE, PIVOT, and SPJ) of RDBMS to

generate aggregated columns in a horizontal tabular layout.

Horizontal aggregations evaluated with the CASE method

have similar performance to the built-in PIVOT operator but

both CASE and PIVOT evaluation methods are significantly

faster than the SPJ method. It is important to enhance the

functioning of existing native RDBMS methods such as

SPJ .So we propose Join Enumeration strategies and

secondary indexing. With the help of join enumeration

technique we perform left outer join in SPJ by following ES

algorithm , which includes relations referenced by the join

predicate that are used to associate each join predicate and

also considering additional relations needed by a predicate

to preserve the semantics of the original query.

We will apply Secondary indexes on common grouping

columns that accelerate computation and performance in

producing horizontal datasets that are suitable for efficient

data mining analysis.

There are several research issues. The Aggregated results

produced by a horizontal aggregation functions can be

applied to data cube exploration for multi-dimensional view

of data .Generated horizontal datasets can be applied to

clustering algorithms like k-means and optimize the

performance of K-means clustering algorithm which is most

challenging task.

REFERENCES

 1. WanliZuo,Yongheng Chen, Fenglin He and Kerui Chen,”

Optimization Strategy of Top-Down Join Enumeration on

Modern Multi-Core CPUs,” Journal of computers , Vol. 6,

NO. 10, October 2011.

 2. CarlosOrdonez, ZhiboChen,“Horizontal Aggregations in SQL

to Prepare Data Sets for Data Mining Analysis”, IEEE Trans.

Knowledge and Data Eng, Vol. 24, No. 4, April 2012.

 3 .Venky Harinarayan ,Ashish Guptay,”Generalized projections –

A powerful query optimization technique”.

 C. Ordonez, “Data Set Preprocessing and Transformation in a

Database System,” Intelligent Data Analysis, vol. 15, no. 4,

pp. 613-631, 2011.

 4 .E.F. Codd, “Extending the Database Relational Model to

Capture More Meaning,” ACM Trans. Database Systems,

vol. 4, no. 4, pp. 397-434, 1979.

 5. C.Galindo-Legaria and A. Rosenthal, “Outer Join

Simplification and Reordering for Query Optimization,”

ACM Trans. Database Systems, vol. 22, no. 1, pp. 43-73,

1997.

 6. C.Cunningham, G. Graefe, and C.A. Galindo-Legaria, “PIVOT

and UNPIVOT: Optimization and Execution Strategies in an

RDBMS,” Proc. 13th Int’l Conf. Very Large Data Bases

(VLDB ’04), pp. 998-1009, 2004.

 7. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data

Cube: A Relational Aggregation Operator Generalizing

Group-by, Cross- Tab and Sub-Total,” Proc. Int’l Conf. Data

Eng., pp. 152-159, 1996.
 8. C.Ordonez, “Statistical Model Computation with UDFs,”

IEEE Trans Knowledge and Data Eng., vol. 22, no. 12, pp. 1752 -

1765,Dec. 2010. [10] C. Ordonez, “Integrating k- Means

Clustering with a RelationalDBMS Using SQL,” IEEE Trans.

Knowledge and Data Eng., vol. 18,no. 2, pp. 188-201, Feb. 2006..

 9. C. Ordonez, “Horizontal Aggregations for Building Tabular Data Sets,”

Proc. Ninth ACM SIGMOD Workshop Data Mining and

Knowledge Discovery (DMKD ’04), pp. 35-42, 2004.

 10 .Han and M. Kamber. Data Mining: Concepts and

Techniques.MorganKaufmann,SanFrancisco,1stedition,2001.

