

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 5, May 2014, Page No. 5752-5758

A.P.Leela Vinodhini ,IJECS Volume 3 Issue 5 may, 2014 Page No.5752-5758 Page 5752

Optimizing Node Position using Ant Colony Optimization Algorithm (ACO)

A.P.Leela Vinodhini

M.E, A.Justine Jerald M.Tech, Assistant Professor

Abstract: Modern research has offered confirmation signifying how a malicious user could perform coresidence profiling and public-to-

private IP mapping to target and exploit customers which share physical resources. Twp steps are relayed for this attack they are

resource placement on the target’s physical machine and extraction. In this paper, in part inspired by mussel self-organization, relies on

user account and workload clustering to mitigate coresidence profiling. Users with similar preferences and workload characteristics are

mapped to the same cluster. To obfuscate the public-to-private IP map, each cluster is managed and accessed by an account proxy. Each

proxy uses one public IP

Address, which is shared by all clustered users when accessing their instances, and maintains the mapping to private IP addresses. In

this paper gives the risk assessment for mussel behavior. This paper presented arguments to show how our strategy increases the effort

required for an adversary to carry out a directed attack against a target set. This paper proved the experimental result from a risk

assessment that suggests a reduced per-individual chance of being randomly victimized given a non directed attack

Keywords: Security, Risk Assessement MUSSEL BEHAVIOR

INTRODUCTION

Equipped with the ability to leverage virtual resources on-

demand, cloud computing systems have recently emerged as a

viable low-cost alternative to traditional computing platforms.

This has sparked widespread interest, adoption, and/or research

initiatives from all institutions alike (e.g., academic, industrial,

government, etc.), which in turn, has led to myriads of success

stories [1], [2] that give credence to its potential and

effectiveness. Though promising, this technology suffers from

the same fate as any other new development in its infancy

stage. It solves some problems while newly introducing

unanticipated and not readily understood challenges [3]. At the

core of these concerns lies privacy and security [4]–[6]. Recent

research [7] has shown that it is possible to identify and target

a cloud user, launch malicious virtual machines (VMs) which

perform coresidence checks, and possibly extract confidential

information once coresidency with the victim has been

established. An example such as this exposes the volatility of

cloud security.

A cloud computing scenario can be modeled using three

different classes of participants: service users, service instances

(or just services), and the cloud provider. Every interaction in a

cloud computing scenario can be addressed to two entities of

these participant classes. In the same way, every attack attempt

in the cloud computing scenario can be detailed into a set of

interactions within this 3-class model. For instance, between a

user and a service instance one has the very same set of attack

vectors that exist outside the cloud computing scenario. Hence,

talking about cloud computing security means talking about

attacks with the cloud provider among the list of participants

[14].

Badishi et al. propose an ack-based port-hopping [7]

protocol focusing on the communication only between two

parties(client-server), modeled as cloud sender and cloud

receiver. The cloud receiver sends back an acknowledgment

for every data message received from the sender sending data

message, and the sender uses these acknowledgments as

signals to change the destination port numbers of its messages.

Since this protocol is acknowledgement based port hopping,

For this time synchronization is not necessary in this cloud

services and users

SYSTEM MODEL, THREAT MODEL, AND EXPLOIT DESCRIPTION

Cloud computing systems provide innovative solutions

while introducing new avenues for research direction. One

aspect of cloud systems which serves in this capacity is

hardware virtualization – the ability for multiple customers to

share the same physical resources simultaneously. Though

providers benefit from resource consolidation, this feature

poses new security challenges and possibly serves as a

significant system vulnerability. Consider two competing

organizations which both lease resources from the same cloud

provider. It is foreseeable that one customer’s motive could

consist of exploiting the shared nature of the cloud to identify,

target, and victimize its competitor. Possible attacks could

include: monitoring workflow patterns, extracting valuable

information, conducting denial of service (DoS), distributed

DoS (DDoS), or EDoS (Economic Denial of Service), where

the victim’s bill causes a shock at the end of the accounting

period because they used more instances than planned. Given

this, we consider customer VMs, data, and information to be

assets.

A. System and Threat Model

From a system model perspective, we classify customers

based on intent. Malicious users are those with malevolent

intent – those who target other users and seek physical machine

coresidence for unauthorized surveillance and/or data

extraction via certain exploits, e.g., side channel attacks. We

consider these type of users to be threats which launch attacks

A.P.Leela Vinodhini ,IJECS Volume 3 Issue 5 may, 2014 Page No.5752-5758 Page 5753

comprised of two steps: VM placement on the machine upon

which the target resides and data extraction. Below, we

identify 4 types of attackers and list the possible goals for each.

 eavesdropping nondirected attacker goal is to read

data or find out about any target

 malicious nondirected attacker goal is to cause a DoS

on any or all instances

 (eavesdropping directed attacker goal is to get data

from a specific competitor’s instance or learn about

their workload pattern

 malicious directed attacker goal is to cause one of the

following attacks on a particular target: DoS, DDos,

or EDoS.
Honest users, on Honest users, on the contrary, are those that

use cloud resources for their intended purposes. These users

have sincere intent. They abide by the protocols, procedures,

and regulations as outlined in the terms of service agreement.

We would like to prevent these users from being identified and

targeted by malicious users. A peer is simply one that shares

the same physical resources – a coresident user. A peer can

either be a malicious or honest user. We assume the cloud

provider to be trusted and honest – providing the services to its

customers as outlined in the service license agreement.

B. Exploit Description

Since the inception of cloud services, the possibility of users

being exploited by a rogue peer has always been amajor issue

of concern. However, the realization of these fears never quite

materialized until researchers began to uncover the extent of

cloud user vulnerability. The exploit we consider is described

by Ristenpart et al. In [7], they use Amazon’s EC2 [17] “ as a

case study to demonstrate that careful empirical mapping can

reveal how to launch VMs in a way that maximizes the

likelihood of advantageous placement.” To investigate this

notion, they assume a placement and extraction attack strategy.

They use domain name system (DNS) resolution queries and

traditional network tools, e.g., nmap, hping, wget, to determine

the external name of an instance and to derive a map which

exposes the correlation between the external public IP address

and the internal private IP address of an instance. They

additionally found that the internal IP addresses are statically

assigned to physical machines according to availability zone

and instance type. Thus, the map could be used to deduce the

availability zone and instance type for any given target –

effectively reducing both the search space for finding a target

and the number of “probe instances” needed to be deployed

before achieving coresidence. A probe instance is simply a

malicious VM that performs a coresidence check to determine

whether or not a target is a peer. If the target is a peer, it

proceeds with data extraction – the next phase of the attack.

Otherwise, it terminates. Ristenpart et al. identify 3 different

methods which could be used to determine coresidence, and

present two strategies an attacker could use to exploit

placement in EC2 – brute-forcing placement and placement

locality. The brute-forcing placement strategy deploys a large

number of instances over time in the same zone and of the

same type as that of the instances belonging to a large target

set. They conduct an experiment using this strategy and receive

a success rate of 8.4%. This means that 8.4% of the probe

instances actually achieved coresidence with instances of the

target set. The placement locality strategy, on the other hand,

assumes a smaller target set, and also presumes that the

attacker can launch probe instances soon after a targeted

victim’s instances are launched. They conduct another

experiment, and find that this strategy yields a success rate of

40%. They make the following conclusions concerning

Amazon’s VM placement algorithm

 N parallel instantiations launched from a single

account tend to result in placement on N different

machines.

 If a VM which runs on machine A is terminated and

another VM is launched immediately thereafter, then

that new VM tends to be placed on machine . This

may explainwhy the brute-forcing strategy did not

fare as well.

 Two VMs launched around the same time, from two

different accounts, tend to be assigned to the same

machine.

 There is a small inherent bias in assigning new VM

instances to machines with light loads.

MUSSEL BEHAVIOR USING K-MEANS ALGORITHM

It is foreseeable that a combinatorial rise in the possible

combinations of user preferences could result in large

computational overhead with deterministic or complete

enumeration algorithms. Thus, the use of heuristic algorithms

may prove to be beneficial. We extend the self-organization

behavior of mussels to develop an algorithm to address such a

problem.

Interactions between organisms, themselves, and the

environment in which they live lead to feedback which affects

both the organisms and the environment. For mussels, the

magnitude of this feedback varies with distance – a

phenomenon known as scale-dependent feedback (SDF) [5].

There are two types of SDF: positive and negative. Mussels

experience positive SDF over short-range distances with

respect to peers. This leads to cooperation between individuals

in the vicinity. If there is shortrange density, or a certain

number of peers per unit area in its immediate surroundings, an

individual mussel tends settle, or maintain its current position.

It then secretes byssal threads to attach itself to the shells of

peers, rocks, or other various substrates.

On the other hand, mussels experience negative SDF over

long-range distances with respect to peers. This leads to

competition which restricts survival over long distances. If

there is long-term density in its not so immediate surroundings,

an individual mussel tends to move to a new location. The

interplay between positive and negative SDF ultimately results

in patches of optimal sized clusters – large enough to decrease

the risk of predation and water stress yet small enough for the

groups to withstand the risk of food depletion.

Algorithm

Step 1: K points as the initial centroids

Step 2: repeat

Step 3: Form K clusters by assigning all points to the

closest centroid

Step 4: Recomputed the cancroids of each cluster

Step 5: until, the centroid don’t change.

A.P.Leela Vinodhini ,IJECS Volume 3 Issue 5 may, 2014 Page No.5752-5758 Page 5754

MODIFIED MODEL

We now look to modify this model such that groups of

individuals within some given population self-organize –

where clustering only occurs between peers which belong to

the same group or category. This requires thatmembers bemore

selective when choosing peers for cluster formations. In the

original algorithm, only peers within short-range distance are

eligible for local clustering. This condition , is satisfied

when peers are distance away

 (1)

Here the distance is calculated by using k-means algorithm.

Further, peers that are distance away tend to

viewed as potential competitors prompting an increase in

negative SDF. Thus,

 (2)

Here, is 22.5 – the distance used to determine long-

range density. In order to increase selectiveness, in this paper

modify the conditions for peer eligibility when determining

short and long-range density. For short-range density, we now

specify that in addition to being distance away, a

peer must belong to the same group, That is to say

 () (3)

In a similar fashion, for long-range density, we now

maintain that peers have to belong to the same group and must

be distance away. To ensure that there is not

extensive overlap between heterogeneous clusters, in this paper

also specify that peers that belong to different groups, , are at

least distance away. We run multiple simulations, each time

varying the value for , and find that yields the best

results. Given this, we say that the modified condition to

determine peers eligible for long-range density is:

 () () (4)

We now explicitly point out the difference between the

original and modified conditions for short and long-range

density. The original conditions for short and long-range

density are shown in (3) and (4). Here, is the total number of

mussels in the population. For short-range density, each

individual mussel performs a Boolean comparison – where the

distances of its peers are compared to .Apeer whose distance is

within short-range yields 1. Otherwise, it yields 0. Taking the

sum of all the comparisons excluding the reference mussel, and

dividing by the short-range area yields the short-range density.

A similar procedure is exercised to compute long-range

density. However, there are two differences. One, all mussels

determine whether the distances of their peers falls between

and ; and two, all mussels use the long-range area instead of

the short-range area.

 ∑ []

 (5)

 ∑ []

 (6)

The modified conditions are presented in (5) and (6). The

procedures to compute the modified short and long-range

densities are similar to those used for the original conditions.

The differences there are: all mussels take into consideration

whether their peers belong to the same group; and for long-

term density, mussels additionally consider whether those from

a different group are too close.

 [[∑

]] (7)

 [[∑

]] (8)

The linear expression which describes an individual

mussel’s chance of movement is now:

 (9)

To reverse the process, that is, to have the mussels disperse

from groups to random individual positions, we simply invert

the magnitudes for short and long-range density in (7). This

results in the linear expression shown in (8).

 (10)

Thus, the differences for the modified mathematical

formulation are: replaces , replaces , and

replaces

Now describe the technical analysis of the mussel-inspired

self-organization approach towards reducing the risks

.

Figure 1: Technical architecture of the account proxies and

mussel-based account allocation.

In this figure ap# denotes the account proxy, vm# denotes the

virtual machine, gp# denotes the gateway interface with public

IP, gr# denotes the interface to private IP, cluster # denotes the

logical VM cluster from mussel algorithm and host# denotes

the physical host for VM creation. of adversary exploitation as

described in [6]

They conclude by stating cloud providers should obfuscate

the internal structure of their services and placement policies in

order complicate the adversary’s attempts. However,

obfuscation of topology and placement policy leads to

additional computational overhead when doing VM placement,

CPU load balancing, traffic shaping and workload migrations.

They additionally state that such obfuscation techniques should

be demanded only by customers with strong privacy

requirements, but this additional differentiation in user

classification and infrastructure configuration leads to more

complex registration, preference analysis, and configuration

options. We suggest defining a single user management and

placement solution that comes with low-computation

placement and topology obfuscation inherently, without

Mussel-based

Allocator/controller

gp1

gp0

gp2

gr4

gr3

a

p

2

Gateway

gp2

gr1

a

p

1

Vm4

Vm3

Vm2

Vm1

Host 2

Host 2

Host 1

Cluster 2

Cluster 1

Users

A.P.Leela Vinodhini ,IJECS Volume 3 Issue 5 may, 2014 Page No.5752-5758 Page 5755

causing a change in the familiar interface exposed to cloud

users. Fig. 5 provides an overview of the integrated solution’s

technical architecture. Here, each logical cluster (cluster#) is

managed and accessed by the same account proxy (ap#). An

account proxy has one public IP address, which is hence shared

by all account owners in a cluster when accessing their

instances and the account proxy maintains the mapping to

private IP addresses. There is hence no 1-to-1 mapping of

public to private IP addresses or dependence on a sequential

allocation of private IP addresses. A 1-tomapping of public to

private IP addresses is implemented by most modern

application-level gateways that include network address

translation (NAT) and traversal. The sequence of interactions

of a typical user is as follows:

 Subscription of user with the cloud infrastructure via an

accessible gateway interface, gp0, with a static public IP

address. The user provides a username, password and

collection of preferences (duration, CPU, memory),

encrypted with the public key of the cloud infrastructure

provider.

 The user information is checked against subscription

policies and forwarded to the mussel-based

allocator/controller, which is responsible for

creating/dissolving groups and account proxies, as well

as assigning users and VM instances to account proxies,

groups, and physical hosts respectively. VMs with

similar workload and access preferences are assigned to

the same physical host when possible.

 The allocator/controller creates a new account proxy

(ap#), if necessary, and assigns the user; or it adds the

user to an existing account.

 Asynchronously, the allocator/controller selects a host

to create the requested VM instance and starts the VM

instance – assigning it a random IP address from a pool

of unassigned private addresses.

 The public IP of the newly created VM is mapped to the

private IP and returned to the user as a uniform resource

identifier (URI) of form /{ip of gp#}/{userid}/{vm_id}.

 The user uses the URI to send requests to the VM

including start, stop, modify, or ssh.

 The account proxy translates the URI into a private IP

and forwards the requests to the VM.

 Responses from the VM are returned to the user as if the

target was the public IP address of the account proxy.

In this paper assume that each user and the cloud provider

are able to generate and maintain non compromised public-

private key pairs (e.g., RSA [7]) and symmetric keys (e.g.,

AES [8]) such that the above interactions can be secured using

protocols like transport layer security (TLS) [9]. This is among

the current best practices from leading cloud providers such as

Amazon [10], and is an effective approach for minimizing

cloud communication risks such as man-in-the-middle, session

high jacking, and replay attacks – as also denoted in [11]–[13].

These types of attacks are hence not the focus of the solution as

we are intereste in mitigating the impact coresident placement

and data extractions have on an attacker’s ability to carry out

successful exploits against a given target set.

Figs. 3 – 6 show the set of capabilities and attack path an

attacker needs to execute for targeted coresidence. As shown in

Fig. 3, do not provide a solution to stopping (1) malicious VMs

or scripts from being installed in the cloud infrastructure, as

this depends on the types of pre installation scanning

mechanisms the provider implements.. in this paper remove the

usefulness of public-to-private IP address aims to remove the

usefulness of public-to-private IP addr

Figure 3: Attack capabilities and path to map public to private

IPs.

Figure 4: Attack path to determine mapping of VM types to IP

ranges and availability zones.

Step 1: Install VM with DNS lookup scripts

Step 2: Probe web-servers externally to check

responsive public IPs

Step 3: Use internal DNS lookup to map public

IPs to Private IPs

Step 4: Record unique public to private

mappings

Step 5: If more GOTO2, ELSE end

3 4 5

1

2

* *

* hard/ in distinguishable Easy / distinguishable

? Partial /enumerable

* hard/ in distinguishable Easy / distinguishable

? Partial /enumerable

Step 1: Install VM for IP assignment recording

Step 2: Specify VM of type *

Step 3: Install VM of type * in cloud

Step 4: Record private IP of newly-installed VM

Step 5: Infer IP assignment pattern for type *

 Step 6: If try further GOTO 7, ELSE end

 Step 7: Very type specification of *, GOTO 2

1 2 3 4 5

7

6

*

A.P.Leela Vinodhini ,IJECS Volume 3 Issue 5 may, 2014 Page No.5752-5758 Page 5756

mappings observable by the attacker, which impacts steps

(2), (3) and (4) in the attack path, shown in Fig. 3. Mapping 1

public IP address to randomly assigned private IP addresses

reduces the specificity of knowledge gained by an attacker

with the capability to do internal DNS. The records of

mappings will have collisions, which serve to impede targeted

coresidence by introducing additional effort and cost for the

attacker, in that more brute-force attempts and malicious

instances need to be deployed

Fig. 4 shows that the critical step (5) in the attack path is

disrupted by our approach, as there is no pattern used for

private IP address assignment. The assignment of IP addresses

by a dynamic host configuration protocol (DHCP) server will

follow a predictable sequence by default; but this can be

configured to randomly select from the pool of available IP

addresses. There is no need for the cloud administrator to

allocate IP addresses per availability zone as groups are

dynamically created and assigned responsibility for specific IP

addresses.

Figure 5: Determine of coresidence using Domo equivalence

check

Figure 6: Determination of coresidence using relative round

trip time estimate.

Figs. 5 and 6 show that addressing the critical steps (5) in

determining coresidence are not addressed explicitly by our

solution. It is still possible for the attacker to execute tracert on

randomly selected private IP addresses and test for coresidence

based on equivalent Dom0 addresses or relatively short round

trip times. However, in both cases the attacker is forced to

follow a random selection as opposed to following a sequence.

Therefore successful coresidence detection does not reveal

knowledge about other IP addresses that are numerically close.

Figs. 8 and 9 show that addressing the critical steps (5) in

determining coresidence are not addressed explicitly by our

solution. It is still possible for the attacker to execute tracert on

randomly selected private IP addresses and test for coresidence

based on equivalent Dom0 addresses or relatively short round

trip times. However, in both cases the attacker is forced to

follow a random selection as opposed to following a sequence.

Therefore successful coresidence detection does not reveal

knowledge about other IP addresses that are numerically close.

I. RISK ASSESSMENT

Up until this point, we have discussed how our solution

provides measures to prevent users from being targeted and

exploited. However, it is quite possible for users to be random

victims of non directed exploits. In this paper perform a risk

assessment to determine the likelihood of this event,

considering that the impact of non directed exploits is

workload and user dependent. With that said, suppose a

malicious user decides to randomly target users belonging to

any account proxy. Let user A denote a particular user amongst

those which could be victimized; and let group B describe all

users aside from user A. Below, we list 3 events.

Event : User A is not victimized

Event : Group B users are not victimized

Event B: A successful exploit occurs

Further,

 ()

 (|)
‖

 ()

 (|)
 (11)

 In this () is the likelihood that user A is not victimized

and () is the likelihood group B users are not victimized,

 (|) is the likelihood a successful exploit occurs, given

that user A is not victimized and (|) is the likelihood a

successful exploit occurs, given that group B users are not

victimized. In this paper assumed that events and are

mutually exclusive.

Bayes’ Theorem is taken in this paper to determine the

likelihood user A is NOT victimized, given that a successful

exploit occurred.

 (|)
 () (|)

 () (|) () (|)
 (12)

 ()()
 (13)

Now, suppose that all users each have a VM deployed; each

account proxy has members; and there are N total account

proxies. Further, consider that each proxy has the same chance

of being targeted, and that members assigned to each account

have the same chance of being victimized. Then, the chance of

user A being victimized is the likelihood that his particular

Step 1: Install VM with tracert script

Step 2: Select private IP of target

Step 3: Do tracert on private IP of target

Step 4: Check firsthop in tracert against last hop of

before target

Step 5: If first hop equals last hop infer share Domo

 Step 6: If more targets GOTO 2 else end

1 2 3 4 5

7

6

Step 1: Install VM

Step 2: Select private IP within numeric range

Step 3: Do ping on private IP of target

Step 4: Check round trip time (rtt)

Step 5: If response and “short” rtt: infer co-

residence;

Step 6: If more targets GOTO 2 else end

1 2 3 4 5 6

A.P.Leela Vinodhini ,IJECS Volume 3 Issue 5 may, 2014 Page No.5752-5758 Page 5757

account proxy is targeted, ⁄ times the likelihood that user A

will be randomly targeted ⁄ . This yields ⁄ . Thus, the

chance that user A will not be victimized is expressed in (10).

Notice, here, we use to denote the product N of and .

Moreover, as denoted in (11), we say that the likelihood of user

A being victimized is the same as the chance that users from

group B are not victimized

 [

]

 (14)

 [

]

 (15)

Substituting (14) and (15) into (13), we receive

 (|)
[

]

[

] [

]()

 (16)

 [

]
 (17)

 (18)

Also use Bayes’ Theorem to determine the likelihood that

users from group B are NOT victimized, given that a

successful exploit occurred.

 (|)
 () (|)

 () (|) () (|)
 (19)

()()

 ()()
 (20)

Substituting (14) and (15) into (20), we find

 (|)
[

][]

[

] [

][]

 (21)

[

]

 (22)

 ()
 (23)

Given an exploit, events and are equally likely when

 (|) (|) (24)

 ()
 (25)

Set and solve for receive

()() ()() (26)

 (27)

 () (28)

 (29)

The parameters for (12) (14), and (16) are . .

To understand howthe number of members affect and

 (|) and (|). we arbitrarily choose N=36 , specify a

set of values for parameters and , and plot the results. The

interpretation of the graphs is quite intuitive.

CONCL

USION

Prop

osed a

solution

which relies on mussel-inspired user account, workload

clustering, and account proxies to obfuscate the public to

private

Figure 7: (|) The likelihood user A is NOT victimized

The above figure clearly illustrates that it is highly likely a

user A will be NOT victimized, given a successful exploit has

occurred. The chances increase as the number of members to

one’s account proxy increases

Figure 11: (|) The likelihood that users from group B

are NOT victimized.

From the figure observes that the chances of a user from

group B not being the victim decrease as increases.

From the figure 12 observes that this only occurs for a select

values of and β when as shown in above figure

.When the events are equally likely when . The

values of are negligible in this case.

Figure 7: (|) (|) The likelihood user A1 and A2

is NOT victimized

REFERENCES

[1] M. C. Schatz, “Cloudburst: Highly sensitive read mapping

with mapreduce,Bioinform” vol. 25, no. 11, pp. 1363–

1369, 2009.

[2] B. Langmead, M. Schatz, J. Lin, M. Pop, and S. Salzberg,

“Searching for SNPs with cloud computing,” Genome

0

0.2

0.4

0.6

0.8

1

1.2

0 0.10.20.30.40.50.60.70.80.9 1

P
(A

1|
B

)

β

36, Account proxies,N

M=2

M=5

M=10

M=15

M=20

M=25

0
1
2
3
4
5
6
7

0 0.10.20.30.40.50.60.70.80.9 1

µ

β

36, Account proxies,N

M=2

M=5

M=10

M=15

M=20

M=25

0

5

10

0 0.2 0.4 0.6 0.8 1

P
(A

2|
B

)

β

36, Account proxies,N
M=2

M=5

M=10

A.P.Leela Vinodhini ,IJECS Volume 3 Issue 5 may, 2014 Page No.5752-5758 Page 5758

Biol., vol. 10, no. 11, p. R134+, Nov. 2009 [Online].

Available: http://dx.doi.org/10.1186/gb- 2009-10-11-r134

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,R.Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and

M. Zaharia, “A view of cloud computing,” Commun.

ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010 [Online].

Available: http://doi.acm.org/10.1145/1721654.1721672

[4] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and

privacy challenges in cloud computing environments,”

IEEE Security Privacy, vol. 8, no. 6, pp. 24–31,Nov. 2010

[Online].Available: http://dx.doi.org/10.

109/MSP.2010.186

[5] M. Rietkerk and J. Van De Koppel, “Regular pattern

formation in real ecosystems,” Trends Ecol. Evolut., vol.

23, no. 3, pp. 169–75, 2008 [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/18255188.

[6] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,

“Hey, you, get off of my cloud: exploring information

leakage in third-party compute clouds,” in Proc. 16th

ACM Conf. Computer and Commun. Security (CCS ’09),

New York, NY, USA, Nov. 2009, pp. 199–212 [Online].

Available: http://dx.doi.org/10.1145/1653662.1653687.

[7] B. Kaliski and S. O. T. Memo, Public-Key Cryptography

Standards (PKCS) #1: Rsa Cryptography Specifications

Version 2.1 2003, rfc 3447.

[8] Specification for the Advanced Encryption Standard

(AES) 2001, Federal Information Processing Standards

Publication 197 [Online]. Available:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[9] T. Dierks and E. Rescorla, The Transport Layer Security

(TLS) Protocol 2006, IETF RFC 4346.

[10] Amazon AWS Security Best Practices, A. W. S. LLC, Jan.

2011, White Paper [Online]. Available:

http://media.amazonwebservices.

com/Whitepaper_Security_Best_Practices_2010.pdf

[11] G. Brunette and R. Mogull, Security Guidance for Critical

Areas of Focus in Cloud Computing V2. 1 CSA (Cloud

Security Alliance), USA, 2009, vol. 1 [Online]. Available:

http://www.cloudsecurityalliance.

org/guidance/csaguide.v2

[12] M. Jensen, J. Schwenk, N. Gruschka, and L. Iacono, “On

technical security issues in cloud computing,” in Proc.

EEE Int. Conf. Cloud Comput., 2009 (CLOUD ’09), Sep.

2009, pp. 109–116.

[13] J. Wayne and T. Grance, Guidelines on Security and

Privacy in Public Cloud Computing, NIST Special

Publication, 2011 [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800–144/ SP800–

144.pdf

[14] Nils Gruschka and Meiko Jensen, “Attack Surfaces: A

Taxonomy for Attacks on Cloud Computing”, 3
rd

International Conference on Cloud Computing, 2010.

[15] G. Badishi, A. Herzberg, and I. Keidar, “Keeping Denial-

of-Service Attackers in the Dark,” IEEE Trans.

Dependable and Secure

[16] Computing, vol. 4, no. 3, pp. 191-204, July-Sept. 2007

http://dx.doi.org/10.1186/gb-
http://dx.doi.org/10.%20109/MSP.2010.186
http://dx.doi.org/10.%20109/MSP.2010.186
http://www.ncbi.nlm.nih.gov/pubmed/18255188
http://dx.doi.org/10.1145/1653662.1653687
http://media.amazonwebservices/
http://www.cloudsecurityalliance/
http://csrc.nist.gov/publications/nistpubs/800–144/

