
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 3 March 2017, Page No. 20710-20715

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i3.56

T. Francis Thamburaj, IJECS Volume 6 Issue 3 March, 2017 Page No. 20710-20715 Page 20710

Cognitive Weighted Polymorphism Factor: Empirical and Theoretical Vali-

dations
T. Francis Thamburaj

1
, A. Aloysius

2

1Computer Science Department, Bharathidasan University, St. Joseph‟s College,

Tiruchiraappalli, Tamil Nadu 620002, India.

francisthamburaj@gmail.com
2 Computer Science Department, Bharathidasan University, St. Joseph‟s College,

Tiruchiraappalli, Tamil Nadu 620002, India.

aloysius1972@gmail.com

Abstract: Software complexity metrics are valuable and widely accepted tools to produce high quality software. The quality of the software

metrics depends on various validations to prove it as valid, robust, realistic, accurate, and comprehensive metric. So, validations are im-

portant while proposing a new complexity metric. The Cognitive Weighted Polymorphism Factor complexity metric, already proposed by the

author, is validated empirically as well as theoretically to prove its worth. Case studies are conducted to prove the applicability of the metric

in all situations. To show the theoretical soundness of the metric, validations are done against Weyuker’s nine properties and Abreu’s seven

criteria. The empirical validation is done to corroborate the theoretical validations. To show the better accuracy of the metric, the compara-

tive study is done. Finally, the statistical validity is displayed with the performance of correlation analysis. All the validations proved that the

Cognitive Weighted Polymorphism Factor complexity metric is truly a valid, more robust, more realistic, more accurate and more compre-

hensive in nature.

Keywords: Cognitive Weighted Polymorphism Factor, Software Metric Validation, Polymorphic Metrics, Cognitive Complexity Metrics, Ob-

ject-Oriented Software Complexity Metrics, Software Metrics.

1. Introduction

The validation of software metrics, although an arduous task in

the field of software engineering, is important and critical to

the success of the software measurement [1]. The objective of

software complexity metric validation is to assess whether the

complexity metric is possessing the basic necessary properties

of valid metric. The problem is that there is a lack of agreed

upon validation procedures to analyze the quality of these met-

rics [2].

There are many ways to do the validation of the complexity

metric. It can be experimented with case studies in which the

metric is applied to pieces of programs [3]. It can be checked

against the nine abstract measurement properties of Weyuker

for a valid complexity metric [4]. Also, the metric can be vali-

dated by the seven criteria of Abreu for robust object-oriented

complexity metric [5]. These theoretical validations permit to

formally compare similar complexity metrics. Another way is

to collect the actual data and empirically analyze to find out the

veracity of the metric [6]. To find out the accuracy of the pro-

posed metric, the comparative study can be done with similar

metrics [7]. The statistical validation is done to inspect the

quality of the complexity metric.

 The following section explains the mathematical formula for

the cognitive weighted polymorphism factor complexity met-

ric. Section 3 portrays the experimentation with the case stud-

ies. Section 4 validates the complexity metric against

Weyuker‟s nine properties. Section 5 verifies the validity with

Abreu‟s seven criteria for the object-oriented complexity met-

ric. Section 6 deals with empirical and comparative study and

Section 7 does the correlation analysis for statistical validation.

The final section draws the conclusion and possible future

works.

2. The Complexity Metric for Validation

The Polymorphism Factor (PF) complexity metric is defined

by Abreu et al. as the ratio of the actual polymorphism present

in the software system with the maximum possible polymor-

phism potential, if all the methods, except the base ones, are

overridden in all classes [8]. The mathematical formula for PF

is

∑ ()

∑ [() ()]

 ()

where,

Mo(Ci) = number of overriding methods in class Ci,

Mn(Ci) = number of new methods defined in class Ci,

DC(Ci) = number of children for class Ci,

TC = Total number of Classes in the whole software system.

Francis Thamburaj and Aloysius [9], have already defined

the mathematical equation for Cognitive Weighted Polymor-

phism Factor (CWPF). The formal mathematical definition of

CWPF, is given in the Eq. 2.

∑ ()

∑ [() ()]

 ()

where,

 ()

Mn(Ci) = number of overriding methods in class Ci,

DC(Ci) = number of children for class Ci,

TC = Total number of Classes.

NPP = number of pure polymorphism,

NSP = number of static polymorphism,

NDP = number of dynamic polymorphism,

CWPP = cognitive weight of pure polymorphism,

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i3.56

T. Francis Thamburaj, IJECS Volume 6 Issue 3 March, 2017 Page No. 20710-20715 Page 20711

CWSP = cognitive weight of static polymorphism,

CWDP = cognitive weight of dynamic polymorphism.

MCW = Max (CWPP, CWSP, CWDP)

In the numerator of Eq.2, each type of polymorphism is mul-

tiplied with corresponding cognitive weight. The denominator

is multiplied by MCW the maximum of the three cognitive

weights. Thamburaj et al, already calibrated the cognitive

weights for different types of polymorphisms such as pure,

static, and dynamic with series of empirical experiments. The

unique cognitive values are: CWpp = 3, CWsp = 5, and CWdp

= 7 [9].

3. Experimentation and Case Studies

The proposed CWPF metric given by Eq. 2 is evaluated with

the following case study programs. In the first case study, the

program has two classes. The parent class C1 has two methods

m1 and m2. The child class C2 has two statistically overridden

methods. The UML diagram is given in Figure 1.

1: /*** First Case Study Program ***/

2: class C1 {

3: float v1 = 3;

4: void m1(int i){ }

5: void m2(char ch){ }

6: }

7: class C2 extends C1 {

8: void m1(float f) { }

9: void m2(String s) { }

10: }

Applying CWPF metric as given in Eq. 2,

 () ()

(() ())

 = (0+2*5) / ((2*1+2*0)*5) = 1

1: /*** Second Case Study Program ***/

2: class C3 {

3: float v1 = 3;

4: void m1(int i){ }

5: void m2(char ch){ }

6: float m3(){

7: return 4 * v1;}

8: float m4(){

9: return v1 * v1;}

10: }

11: class C4 extends C3 {

12: void m1(float f) { }

13: void m2(String s) { }

14: }

15: class C5 extends C3 {

16: float m3(){

17: return 2 * 3.14 * v1;}

18: float m4(){

19: return v1 * v1 * v1;}

20: int m5(int a, int b) {

21: return a+b;}

22: int m6(int a, int b) {

23: return a * b;}

24: }

25: class C6 extends C5 {

26: }

27: class C7 extends C5 {

28: }

 In the second case study, the program has five classes. The

root class C3 has two methods m3 and m4. The C4 class has

two statically overridden methods. The C5 class has two dy-

namically overridden methods and two new methods. The C4

and C5 classes has no method. The UML diagram of the pro-

gram is given in Figure 2. Applying CWPF metric as given in

Eq. 2,

 () () () () ()

(
 () () ()

 () ()
)

= (0+2*5+2*7+0+0) / (2*4+0*0+0*2+0+0)*7

= 24/56 = 0.48

In the third case study, the program has three classes. The root

class C8 has two methods m1 and m2. The C9 class has two

statically overridden methods. The C10 class has two statically

overridden methods and one new method. The UML diagram

is given in Figure 3. The Java program is given below.
1: /*** Third Case Study Program ***/

2: class C8 {

3: float v1 = 3;

4: void m1(int i){ }

5: void m2(char ch){ }

6: }

7: class C9 extends C8 {

8: void m1(float f) { }

9: void m2(String s) { }

10: }

11: class C10 extends C8 {

12: void m1(float f) { }

13: void m2(String s) { }

14: void m3(double d) {}

Figure 1: UML Diagram of First Case Study

Figure 2: The UML of Second Case Study

DOI: 10.18535/ijecs/v6i3.56

T. Francis Thamburaj, IJECS Volume 6 Issue 3 March, 2017 Page No. 20710-20715 Page 20712

15: }

16:

Applying CWPF metric as given in Eq. 2,

 () () ()

(() () ())

 = (0+2*5+2*5) / ((2*2+0*0+1*0)*5) = 1

4. VALIDATION BY WEYUKER’S PROPERTIES
Weyuker has proposed nine properties to evaluate any software

complexity measure [10]. A good software complexity metric

should follow all or at least the majority of these properties in

order to be a good complexity metric, since they evaluate the

weaknesses of a measure in a concrete way. Chidamber and

Kemerer refer Weyuker‟s properties to validate their metric

suite [11]. This section validates CWPF against these criteria to

establish the robustness of the complexity metrics.

Property 1: ()() () where P and Q are pro-

gram bodies.

The first property states that a complexity metric should not

rank all program bodies as equally complex. The CWPF com-

plexity metric has different complexity values in the case

study, namely, 1 and 0.48. Hence it satisfies the first property

Property 2: Let c be a non-negative number. Then there are

only finitely many programs of complexity c.

This property states that there should be only a finite number

of classes with same complexity metric values. That is, a com-

plexity measure should not be too “coarse” to rate too many

programs as being of equal complexity. Any software system

will have only finite number of classes and polymorphism can

happen only within these classes. Further, the number of pure,

static and dynamic types may not be the same in all polymor-

phic tree. So, they will have different CWPF complexity metric

values as shown in case studies. Hence the property is satisfied.

Property 3: There are distinct program P and Q such that

This property states that a measure should not be too “fine” to

assign to every program a unique complexity. In the case stud-

ies there are two different polymorphic trees, namely case

study 1 and 3, have the same CWPF complexity value of 1.

Hence, it is not too fine to assign different complexity values.

So, this property is satisfied.

Property 4: ()() () where P and Q

are program bodies.

This property is about the syntactic complexity of the classes.

That is, the implementation of two identical classes may differ

and hence the complexity metric value will differ. In the case

studies, the identical classes C1 and C3 have different com-

plexity values 1 and 0.48 due to the variation in the number of

children. Hence this property is satisfied.

Property 5: ()() ()
This property is about „monotonicity‟ of program complexity.

More specifically, the components of a program are no more

complex than the program itself. The candidate complexity

metrics satisfy this property. In case study 2, the overall com-

plexity of the polymorphic tree C3, C4, C5, C6, C7 is greater

than the complexity of each sub tree like C5, C6, C7, as the

number of classes and methods is less than the overall tree.

Property 6: ()()() () ()

 ()()() () ()
This property states that if a new class is appended to two clas-

ses with the same class complexity, the class complexities of

the two new combined classes are different. In other words, the

interaction between P and R can be different than the interac-

tion between Q and R resulting in different complexity values

for P + R and Q + R. In the case of CWPF complexity metric,

adding a new class to two different polymorphic tree will not

change the complexity value since CWPF depends on the

number of classes and new methods in each class in each tree.

Hence, this property is not satisfied.

Property 7: ()() such that Q is formed by permuting the

order of the statements of P and ()
The property seven states that the changing of the order of the

program changes the complexity metric value. The Polymor-

phism metric depends on the number of methods in the parent

and child classes irrespective of the order of the method in

each class. Hence the complexity metric value of CWPF will

not change if we change the order of the methods. So, the

property is not satisfied.

Property 8: If P is renaming of Q, then ()
The property eight says that renaming a program does not

change the complexity metric value of the program. It is clear-

ly evident that the complexity metric values of CWPF is not

affected by the name change of the program, as it depends only

on the number of children and new methods in each class of

the tree. Hence, this property is satisfied.

Property 9: ()() () ()
The last property tells that the complexity of a program formed

by concatenating two programs may be greater than the sum of

their complexities. The rationale behind this logic is that there

may be interaction between the concatenated subprograms. The

complexity metric CWPF depends on the number of classes

and new methods in each class. When two programs with same

complexity values are combined, the number of children will

change resulting in change of complexity value. Therefore, this

property is satisfied by the candidate complexity metric.

Table 1: Summary of Weyuker‟s Properties

Figure 3: UML Diagram of Third Case Study

DOI: 10.18535/ijecs/v6i3.56

T. Francis Thamburaj, IJECS Volume 6 Issue 3 March, 2017 Page No. 20710-20715 Page 20713

Weyuker‟s PF CWPF

Property 1 Yes Yes

Property 2 Yes Yes

Property 3 Yes Yes

Property 4 Yes Yes

Property 5 Yes Yes

Property 6 No No

Property 7 No No

Property 8 Yes Yes

Property 9 Yes Yes

 The Table 1 shows the summary of the validation of CWPF

against the Weyuker‟s nine properties for a good software met-

ric. The property 7 does not fit, in general, to any object-

oriented software system. Out of the nine properties, seven

properties are satisfied by CWPF complexity measures. The

high number of satisfied properties proves that CWPF is theo-

retically sound and valid complexity metric.

5. Validation with Abreu’s Criteria

A set of seven criteria for evaluation of an object-oriented

complexity metric is proposed by Abreu et al [8]. Here the

proposed metric is validated against these criteria.

Criterion 1: Metrics determination should be formally defined.

The first criterion requests to avoid the subjectivity in the

measurement of complexity of the software. The objective

formalization of the complexity metric enables comparisons

with other similar complexity metrics. The CWPF complexity

metric is formally defined with a mathematical equation.

Hence, it satisfies the first criterion.

Criterion 2: Non-size metrics should be system size independ-

ent.

The second criterion is about the usefulness of the complexity

metric. The complexity metric should be applied over different

types and sizes of projects. Regarding the CWPF complexity

metric, the case study shows that it is applicable to single, mul-

ti-level, and hierarchical inheritance trees with varying struc-

tural complexities and sizes, in terms of number of classes.

Hence this criteria is satisfied.

Criterion 3: Metrics should be dimensionless or expressed in

some consistent unit system.

The third criterion states that the subjective or artificial meas-

urement units for the complexity metrics should be avoided, in

order to escape from the possibility of misinterpretations. The

measurement units for CWPF complexity metric is in ratio

scale and hence it is dimensionless as given in this criterion.

Criterion 4: Metrics should be obtainable early in the life-

cycle.

This criterion talks about the reduction of cost and human ef-

fort in developing the software system. The polymorphism

factor complexity metric values can be captured early in the

software life cycle. The number of polymorphic functions can

be surmised even at the basic design phase, even though more

accurate number can be got at the coding level. So, CWPF

complexity metric satisfies this criterion.

Criterion 5: Metrics should be down-scalable.

This criterion talks about the applicability of complexity met-

rics both in the system level and subsystem or module level, as

the software development process is generally done by break-

ing the large software system into many manageable modules

and finally integrated. The down-scalable criterion is applica-

ble to CWPF complexity metric, as it is a class level complexi-

ty metric and its value is calculated for each class separately

before adding them to give the system level complexity metric

value.

Criterion 6: Metrics should be easily computable.

The sixth criterion deals with the practicality of complexity

metric collection, that is tedious, time consuming and costly.

This problem can be solved if the complexity metric formula-

tion is simple and hence easy to calculate the values. It will be

better if it yields itself to automatize the complexity metric

value collection process. Calculation involved in the CWPF

equation can easily be computerized since it involves only

simple multiplication, addition and division in order to find the

ratio value. Hence, this criterion is satisfied by CWPF com-

plexity metric.

Criterion 7: Metrics should be language independent.

The last criterion speaks about the independence of the com-

plexity metric from different programming language con-

structs. In other words, the complexity metric should be appli-

cable to different languages with their particular bindings.

Though the CWPF complexity metric is designed with Java

language, it can be applied to other object-oriented languages

with language specific bindings. Abreu has done it for PF

complexity metrics with C++ language [12] and Eiffel lan-

guage [13] with different bindings specific to the language.

Table 2: Summary of Abreu‟s Criteria

Abreu‟s PF CWPF

Criterion 1 Yes Yes

Criterion 2 Yes Yes

Criterion 3 Yes Yes

Criterion 4 Yes Yes

Criterion 5 Yes Yes

Criterion 6 Yes Yes

Criterion 7 Yes Yes

 The Table 2 gives the summary of the validations with

Abreu‟s criteria. The table shows that all the seven criteria of

Abreu are satisfied by the CWPF complexity metric. Hence,

the complexity metric is theoretically sound and valid metric.

6. Comparative Study

In order to prove that the proposed complexity metric CWPF is

better than the existing complexity metric PF, the comparative

study is done [8]. When Abreu proposed the Polymorphism

Factor complexity metric, he did not consider the cognitive

complexity due to the polymorphism. He had considered only

the structural or the architectural complexity. Therefore, PF

complexity metric does not depict the true picture of the com-

plexity that is existing in the program. This is precisely the

difference between the PF and CWPF complexity metrics. The

CWPF complexity metric is more sophisticated and accurate

than PF complexity metric of Abreu, as it includes the cogni-

tive complexity that arises due to three different types of poly-

morphisms, namely pure, static, and dynamic [14]. The cogni-

DOI: 10.18535/ijecs/v6i3.56

T. Francis Thamburaj, IJECS Volume 6 Issue 3 March, 2017 Page No. 20710-20715 Page 20714

tive weights of each type is calibrated through a series of ex-

periments [9]. These cognitive weights are multiplied with the

corresponding type of polymorphism to yield the accurate

measurement of the complexity metric. The polymorphic cog-

nitive weights are the effort needed by the programmer or the

user to understand the different types of polymorphism embed-

ded in the program.

Table 3: The Complexity Metric Values and CMT

Programs# PF CWPF CMT

P1 8.3 11.7 315.2143

P2 7.69 9.2 274.5714

P3 12 15.2 362.8571

P4 10.3 11.7 3521429

P5 9.52 9.52 259.9286

 The comprehension tests were conducted in order to com-

pare the proposed CWPF complexity metric with the already

existing PF complexity metric. A group of forty students doing

their master‟s degree in Computer Science was employed for

this purpose. The students were supplied with five different

programs,

Figure 4: Comparison of PF and CWPF with CMT

P1 to P5 in Java for the comprehension test. The time taken to

comprehend the program and complete the test in seconds was

captured. To maintain the accuracy, the time spent was record-

ed online with the help of test program interface tool. The av-

erage time taken to comprehend each of the five programs by

all the students was calculated and placed in the Table 3 under

the column head Comprehension Mean Time (CMT). The

complexity values of PF and CWPF complexity metrics were

calculated manually for each of the five programs as shown in

the experimentation and case studies in the section 3. To cap-

ture the differences between the two complexity metrics, the

values found in Table 3 are translated into the graphical repre-

sentation as shown in Figure 4. In this graph, the values of

CWPF is much closure to CMT than the values of PF. This

shows that CWPF complexity metric is more accurate com-

plexity indicator than PF complexity metric.

7. Statistical Analysis

The statistical analysis over the PF and CWPF with respect to

CMT was done using the Pearson correlation test. In the Pear-

son correlation test, the coefficient „r‟ is calculated to check the

type and the strength of the association between PF & CMT

and CWPF & CMT. Here, the correlation „r‟ can take value

between +1 to -1. The positive value shows that there is direct

correlation between the variables in which as the X value in-

creases the Y value increases. The negative value indicates that

there is inverse correlation in which as the X value increases,

the Y value decreases.

Figure 5: Pearson Correlation between PF and CMT

Figure 6: Pearson Correlation between CWPF and CMT

The calculated „r‟ value for the PF and CMT is 0.7146 and for

CWPF and CMT is 0.8836. Both the correlation values are

positive and so the complexity metrics PF as well as the CWPF

are directly correlated with CMT. In other words, as the values

of PF and CWPF increase, the CMT values also increase and

vice versa. Thus there is a correspondence between the PF &

CMT and CWPF & CMT. The value of „r‟ points to the

strength of the correlation between the variables. The „r‟ value

between CWPF and CMT is bigger than the „r‟ value between

PF and CMT. It implies that the correspondence between

CWPF and CMT is stronger than the correspondence between

PF and CMT. The Pearson correlation graphs in Figure 5 and

Figure 6 also reveal this fact clearly. Hence, CWPF is statically

proved to be the better complexity measure than the PF meas-

ure.

8. Conclusion

The validation of CWPF complexity metric is done using five

different methods. The applicability of the metric is proved

with case studies. The theoretical validation against Weyuker‟s

nine properties and Abreu‟s seven criteria emphatically assert-

ed that CWPF complexity metric is a sound and robust metric.

The comparative study done with PF complexity metric has

exhibited that CWPF complexity metric is more accurate than

PF complexity metric. Finally, it is checked with the statistical

analysis using the Pearson correlation which has proved CWPF

complexity metric is a better and more comprehensive indica-

tor than the PF complexity metric. All the five validations

proved the practical applicability, theoretical veracity, empiri-

DOI: 10.18535/ijecs/v6i3.56

T. Francis Thamburaj, IJECS Volume 6 Issue 3 March, 2017 Page No. 20710-20715 Page 20715

cal repeatability and statistical accuracy of the complexity met-

ric CWPF beyond doubt.

As the future work, large scale empirical validation can be

done over open source software systems. Also, validations can

be done against specific aspect of the software quality like

maintainability that plays a high priority role in software indus-

try.

References

[1] K. P. Srinivasan, and T. Devi, "Software metrics valida-

tion methodologies in software engineering," Internation-

al Journal of Software Engineering & Applications vol. 5,

no. 6, pp. 87-102, 2014.

[2] Jacquet, Jean-Philippe, and Alain Abran, "From software

metrics to software measurement methods: a process

model," In Software Engineering Standards Symposium

and Forum, 1997, Emerging International Standards.

ISESS 97, Third IEEE International, pp. 128-135, 1997.

[3] Aloysius A., "A Cognitive Complexity Metrics Suite for

Object Oriented Design," PhD Thesis, Bharathidasan

University, Tiruchirappalli, India, 2012.

[4] T. Francis Thamburaj and A. Aloysius, "Validation of

Cognitive Weighted Method Hiding Factor Complexity

Metric," International Journal of Applied Engineering

Research (IJAER), Print ISSN: 0973, Online ISSN 1087-

1090, vol. 10, no. 82, .pp. 91-96, December, 2015.

[5] T. Francis Thamburaj and A. Aloysius, “On Validating

Cognitive Weighted Attribute Hidiing Factor Complexity

Metric,” International Conference on Computing Com-

munication and Information Science (ICCCIS‟16), July

29th 2016.

[6] T. Francis Thamburaj and A. Aloysius, “Cognitive

Weighted Method Hiding Factor Complexity Metric,” In-

ternational Journal of Computer Science and Software

Engineering (IJCSSE), ISSN (Online): 2409-4285, vol. 4,

no. 10, pp. 272-279, October 2015.

[7] T. Francis Thamburaj and A. Aloysisus, “Cognitive Per-

spective of Attribute Hiding Factor Complexity Metric,”

International Journal of Engineering and Computer Sci-

ence, ISSN: 2319-7242, vol. 4, no. 11, pp. 14973-14979,

November 5th 2015.

[8] Abreu, Fernando Brito, and Rogério Carapuça., "Object-

oriented software engineering: Measuring and controlling

the development process,” Proceedings of the 4th interna-

tional conference on software quality. vol. 186, 1994.

[9] T. Francis Thamburaj and Aloysius, A., "Cognitive

Weighted Polymorphism Factor: A Comprehension

Augmented Complexity Metric". World Academy of Sci-

ence, Engineering and Technology, International Science

Index 107, International Journal of Computer, Electrical,

Automation, Control and Information Engineering,

PISSN:2010-376X, EISSN:2010-3778, vol. 9, no. 11, pp.

2199 – 2204, November 12th 2015.

[10] Elaine J. Weyuker, “Evaluating Software Complexity

Measures”, IEEE Transactions on Software Engineering,

9, 1357-1365, Sep. 1988.

[11] Chidamber S.R., Kemerer C.F., “Towards a Metrics Suite

for Object-Oriented Design,” Object-Oriented Program-

ming Systems, Languages and Applications (OOPSLA),

26, 197–211, 1991.

[12] F. Brito e Abreu, M. Goulao, and R. Estevers, "Toward

the Design Quality Evaluation of OO Software Systems,"

Proceedings of the 5th International Conference on Soft-

ware Quality, Austin, Texas, USA, pp. 44-57. 1995.

[13] Abreu, Fernando Brito, Rita Esteves, and Miguel Goulão,

“The design of Eiffel programs: Quantitative evaluation

using the mood metrics,” In Proceedings of TOOLS‟96.

California, July, 1996.

[14] Benlarbi, Saïda, and Walcelio L. Melo, "Polymorphism

measures for early risk prediction,” IEEE Software Engi-

neering, 1999. Proceedings of the 1999 International Con-

ference, pp.334-344, 1999.

Author Profile

T. Francis Thamburaj is working as Assistant Professor in Department of

Computer Science, St. Joseph‟s College, Trichy, Tamil Nadu, India. He has
obtained the Master of Computer Applications degree in 1987 and Master of

Philosophy degree in 2001 from Bharathidasan University, Trichy. He has 27

years of experience in teaching Computer Science. His research areas are Arti-
ficial Neural Networks and Software Metrics. He has published many research

articles in the national & international journals and conferences. He has acted

as a chair person for many national and international conferences. Notably, in
2011 he has chaired sessions and presented a research paper in the World

Congress in Computer Science, Computer Engineering, and Applied Compu-
ting (WORLDCOMP‟11), Las Vegas, USA. In 2015, he has chaired sessions

in the international conference, World Academy of Science, Engineering and

Technology (WASET), Kyoto, Japan and also presented a research paper on
cognitive weighted polymorphism factor. A list of his research articles can be

found in Google Scholar website. He is currently pursuing Doctor of Philoso-

phy program and his current area of research is Object Oriented Cognitive
Aspects in Software Metrics.

A. Aloysius is working as Assistant Professor in Department
of Computer Science, St. Joseph‟s College, Trichy, Tamil

Nadu, India. He has got the Master of Computer Science

degree in 1996, Master of Philosophy degree in 2004, and
Doctor of Philosophy in Computer Science degree in 2013

from Bharathidasan University, Trichy. He has 15 years of

experience in teaching and research. He has published many
research articles in the National/ International conferences

and journals. He has also presented 2 research articles in the International

Conferences on Computational Intelligence and Cognitive Informatics in Indo-
nesia. He has acted as a chair person for many national and international con-

ferences. Currently, he is guiding many research scholars in Computer Science.

His current areas of research are Cognitive Aspects in Software Design and
Big Data,

