
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 12 Dec. 2016, Page No. 19507-19511

Oyebode Idris
1
, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19507-19511 Page 14507

DOID: A Lexical Analyzer for Understanding Mid-Level Compilation

Processes

Oyebode Idris
1
 and Adedoyin Olayinka Ajayi

2

1
Ekiti State University, Department of Computer Science, Ado Ekiti, Nigeria

oyebodeidris@gmail.com
2
Ekiti State University, Department of Computer Science, Ado Ekiti, Nigeria

 dedoyyin@gmail.com

Abstract: This research was undertaken to give students in the local Nigerian environment a hands-on, practical and direct

knowledge of Compiler Construction and Automata Theory, with the motivation to make it the Country’s first programming

language. The project was carried out using the Lex/Flex Lexical Analyzer Generator and the C Language. Compiler

construction and automata theory has been one of the tougher subjects for local students in the Nigerian region. The purpose

of this research is to make our programmers better understand the processes in program compilation and also catch up with

the interest of nonprogrammers who may become fascinated by the exquisiteness of programming when it is only at the highest

level, which is more like speaking to a fellow human. Locals and students will also be more interested in the subject matter

when they are to learn a Language developed in their country.

Keywords: Lexical Analyzer, Compiler Construction,

LexFlex, Automata Theory, Programming Language, C

Language.

1. Introduction

The evolution of Programming Languages started from the

mnemonic Assembly Languages of the early 1950s to the first

major step towards High Level Languages in the latter half of

the 1950s with the development of Fortran, Cobol and Lisp.

The philosophy behind these languages was to create higher-

level notations with which programmers could more easily

write numerical computations, business applications, and

symbolic programs. These languages were so successful that

they are still in use today. More on the evolution of

programming languages and their classifications can be found

in [1].

 Lexical Analysis, also called Scanning, is the first phase of a

compiler. A compiler is a program that can read a program in

one language - the source language - and translate it into an

equivalent program in another language - the target

language [1]. Character streams that make up the source

program are read and categorized into Lexemes. This produces

tokens which are passed to the syntax analysis phase. Other

stages of compiler construction includes Semantic Analysis,

Intermediate Code Generation and Code Optimization. Lexical

Analysis also perform other works as: removing unnecessary

blanks and comments, labeling lexemes with tokens that are

passed for Syntax Analysis and updating symbol tables with

identifiers and numbers.

 A Lexical Analyzer performs Lexical Analysis, that is, it

groups input character streams into lexemes [1]. It is a very

important part of a compiler as without it, all other phases are

useless, because it interfaces the syntax analysis and other

phases. It can be developed by using a Lexical

Analyzer/Scanner Generator (e.g. Flex), or writing it by hand

in an assembly language (good for efficiency) or writing by

hand in a high level language. The proposed analyzer called

DoId will be achieved using the Lexical Analyzer generator.

All existing programming language compilers have the lexical

analyzers embedded in them, but it is not visible to the outside

environment except for the Tiny Language Scanner and maybe

a couple others.

2. Related Literature

The Compiler Project on MicroJava [2], is a small compiler for

a Java-like language. The Project has three levels as follows:

DOI: 10.18535/ijecs/v5i12.43

Oyebode Idris
1
, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19507-19511 Page 14508

i.Level 1 requires you to implement a scanner and a parser for

the language MicroJava.

ii.Level 2, which deals with symbol table handling and type

checking.

iii.Level 3, which deals with code generation for the MicroJava

Virtual Machine.

 The project was implemented in Java using Sun

Microsystem's Java Development Kit [3] or some other

development environment. It was really very inspiring in the

development of this research, not to go into detail of it. Our

research makes use of the Flex compiler [4, 6].

 Also, a new a approach GLAP model for design and time

complexity analysis of lexical analyzer was proposed in this

paper. In the model different steps of Tokenizer (generation of

tokens) through lexemes, and better input system

implementation have been introduced [5].

3. Methods

This Lexical Analyzer was implemented by the Flex compiler,

which is a Lexical Analyzer Generator. The Flex specifications

are placed in a ".l" extension file which includes three sections

[6]. These sections are the definition section which is optional,

which can contain definitions for text replacements, global C

code to be used by actions, etc. it contains literal block which

is C code delimited by %{ and %} and between this are

variable declarations and function prototypes. The second

section is where the regular expressions and the actions are

placed. The actions are C code and the rules section has the

form:

r1 action 1

r2 action 2

rn actionn

i. r1 is a regular expression and action1 is C code fragment

ii. When r1 matches an input string, action1 is executed

iii. action1 should be in {} if more than one statement exists

 and the third section is also optional consisting of C codes

also, this sections are shown as:

definition section

%%

rules section

%%

auxiliary functions.

 The rules section which is the main section comprises of

patterns which define the set of lexemes corresponding to a

token. They are defined through regular expressions which

define regular languages. A regular language is a subset of all

languages that can be defined by regular expressions.

 The DoId Analyzer is run by first processing the Flex file(

".l" file) which generates a scanner saved as lex.yy.c. This

scanner is then compiled, it consists of a function yylex()

which is going to be used as it is by running it repeatedly on

the input, a main function is grabbed out of the Lex library [7]

using a (-ll) option, this grabs the default main() routine out of

the library. The scanner is then run which can take any valid

inputs as specified in the DoId specifications. The steps for this

are shown below:

Commands

Flex DoId.l #creates lex.yy.c file

Gcc lex.yy.c -ll #compiles lex.yy.c

DoId.exe <samplefile.in #executable file, DOID compiles a

sample file

These commands are executed on a command line.

 The DoId Analyzer can be invoked by a parser via the

function yylex(), which returns a token or zero. Some tokens

have further information associated with them. These are the

following:

1. Tokens which indicate numbers (INTEGER and FLOAT)

are first saved in the yytext variable as a string, they are then

converted to the actual number and saved in the yylval global

variable before being returned in the variable INT_VAL and

FLOAT_VAL.

2. Tokens which indicate character strings (CHAR and

STRING) return the length of the string in yylval and leave the

string itself accessible in the global variable stringbuf. Escape

sequences are processed before the string is returned. The

string can contain embedded nulls and is not null terminated.

DOI: 10.18535/ijecs/v5i12.43

Oyebode Idris
1
, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19507-19511 Page 14509

They are returned in the variables CHAR_VAL and

STRING_VAL respectively.

3. Tokens which indicate identifiers collect the identifier string,

null-terminate it, and make a privately allocated copy of it. A

pointer to this copy is returned in yylval. The scanner/lexical

analyzer examines the symbol table to find if the identifier is a

user defined type, and returns IDENTIFIER.

4. Tokens which are reserved words are returned just as

reserved words e.g Din, Dout, while, if etc.

5. Comments are terminated and not compiled with the

program when run.

6. Tokens that are unidentified return error messages of

"unknown character"

 The Scanner reads the inputs line by line and checks for

errors on each of the line, if an error is encountered on a line, it

calls the error function and prints an error message. The Finite

State Machine for some of the tokens can be seen in Figure 1.

3.1. The Program Structure in DOID

Doid programs are programs which may consist of a bundle

statement and other valid DoId statements only,or a bundle

statement and with classes containing valid DoId statements.

Either of these may include a 'Use' statement which can be

used to call the DoId library for built in classes. All valid DoId

programs must also terminate with an End Statement which

signifies the end of the program.

Sample DoId Programs

 A Hello World Program in DoId can be written as follows:

//Hello World Program

bundle Hello;

use Doid.swing.console;

public class HelloWorld {

def main() {

Dout("Hello World!!!");

}

}

End

It can also be achieved in a much easier way as:

bundle Hello;

Dout("Hello World!!!");

End

 Figure 1: Creation of DOID Lexical Analyzer.

Figure 2: Lexical Analyzer, DOID Architecture

(communication with parser)

The above Figure 2 shows how the DoId Lexical Analyzer

communicates with a parser.

Lexical Details

 Some of the tokens in DOID are

i. Integer tokens: sequence of digits, for example 1234.

ii. Float tokens: digits with decimal points or signed numbers, for

example -123.45

iii. Boolean tokens: true and false.

iv. String Tokens: ASCII characters in double quotes, for example

"Hi there".

v. Identifiers: a letter followed by a sequence of letters, digits and

underscores.

vi. Reserved words: these are for, while, bundle, class etc.

DOI: 10.18535/ijecs/v5i12.43

Oyebode Idris
1
, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19507-19511 Page 14510

vii. Operators: these includes arithmetic, relational etc

Expressions

DoId Expressions take the following forms;

a) Variables

b) Arithmetic operator applications such as +, -, /, *, % with

precedence and associativity applies.

c) Relational operators applications such as not equal, <, >, <=,

>=. Precedence and associativity also applies.

d) Operators 'and' and 'or' works as conjunctions and disjunctions.

Algorithm

The regular expressions are equal to finite automata. They are

converted to an NFA by Flex, the NFA is then converted to an

equivalent DFA which is simulated [1]. An algorithm for the

DoId analyzer is as follows:

Algorithm: Analyze(A)

Where A = Input string

Step 1: Is A valid DOID word?

 i. if Yes, go to step 2

 ii. if No, print error, "unknown character"

Step 2: check if A is a keyword

 i. if A is keyword, return keyword

 ii. if not, goto step 3

Step 3: check if A is a special character or operator

 i. if A is special character or operator, return special

character or operator respectively

 ii. if not, goto step 4

Step 4: check if A is a valid identifier

 i. if A is a valid identifier, insert identifier into symbol

table and return identifier

 ii. if not, goto step 4

Step 5: check if A is a character or string value

 i. if Yes, return character or string respectively

 ii. if No, goto step 5

Step 6: check if A is integer or floating value

 i. if A is integer or floating value, convert from string

to real numbers, save, then return integer or

floating value respectively

 ii. if not, goto step 6

Step 7: A is a comment, discard comment.

 The above algorithm works with tokens as its major raw

material. A token recognizer is therefore used which uses

transition diagrams explained in Figures 3, 4 and 5. These

transition diagrams for the DoId tokens can be seen below and

they are separated to avoid difficulties.

Figure 3: Transition diagram for identifier

Figure 4: Transition diagram for String

Figure 5: Transition diagram for some DOID Keywords (a)

DOI: 10.18535/ijecs/v5i12.43

Oyebode Idris
1
, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19507-19511 Page 14511

Figure 5: Transition diagram for some DOID Keywords (b)

 Considering an example, if the action of the DoId lexical

analyzer constructed from the transition diagram above. If it

encounters a DOI followed by a blank, the lexical analyzer

would go through states 1, 2, 3 and 4, then fail and retract the

input to the identifier transition. It would then startup the

second transition diagram at state 56, go through state 57 two

times, go to state 58 on the blank, retract the input one

position, then insert DOI into the symbol table.

4. CONCLUSION AND FUTURE WORK

We have briefly discussed the development of lexical analyzers

using the Lexical Analyzer Generator for Languages for a

proposed DOID Lexical Analyzer which offers fewer lexical

specifications but still covering the necessary specifications for

any standard Programming Language. We believe that having

a small set of lexical specifications improves the speed of

computation. So that, due to small specification set, DOID

provides faster computation and is easier to learn. Our

implementation of this will also enhance the way local students

view the study of Programming Languages and the possibility

and need to research more in the field, and the beauty of the

desugaring model.

 We hope that our work encourages researchers and

developers to look more into the branch of developing more

efficient and effective programming languages for and can be

used as basic guide for future researches. We hope this will be

a platform to build a local indigenous programming language.

REFERENCES

[1] AHO, Alfred V., RAVI Sethi, LAM, Monica S. and

JEFFREY D. Ullman, Compilers, Principles, Techniques and

Tools., Addison-Wesley, Boston, 2006.

[2] Hanspeter Mössenböck (2014). “MicroJava”.

http://microjava.com. Last accessed: 21 December, 2014

[3] Sun Microsystem's Java Development Kit JDK available

via: http://java.sun.com/j2se/1.5.0/index.jsp)

[4] Aaby Anthony (2004). Compiler Construction using Flex

and Bison. Available at:

http://foja.dcs.fmph.uniba.sk/kompilatory/docs/compiler.pdf.

Last accessed: 21 January, 2015

[5] BISWAJIT Bhowmik, ABHISHEK Kumar, ABHISHEK

Kumar Jha, RAJESH Kumar Agrawal. (2010) A New

Approach of Complier Design in Context of Lexical Analyzer

and Parser Generation for NextGen Languages. International

Journal of Computer Applications (0975 – 8887)Volume 6–

No.11, September 2010.

[6] MUHAMMED, Mudawwar.(n.d.) Scanning Practice: Using

the Lex Scanner Generator, a TINY Language and Scanner –

Compiler Design

[7] LESK, Michael E., SCHMIDT, Eric (1975). Lex − A

Lexical Analyzer Generator. New Jersey: Bell Laboratories

http://microjava.com/

