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Abstract 

The arrival of android platforms with increased storage capabilities, better visualisations, computing 

competencies and the ubiquitous use of these platforms in the field of e-banking, online banking, business, 

and the storage of sensitive information on these devices, android platform is becoming the most targeted 

platform by malwares. They are primarily spread via repackaged apps to piggyback payload, update attacks, 

and drive by downloads.  Malware constitutes a severe menace to user privacy, money, device and file 

veracity. It is posing benevolence challenges and difficulties to detect such malwares as signature based 

detection techniques available today are becoming inefficient in sensing new and anonymous malware. 

Hence we presents machine learning as an emerging era of modified and latest detection techniques. In this 

paper we will present various machine learning solutions to counter android malwares that analyse features 

from malicious application and use those features to classify and detect unknown malicious applications. 

This paper summarizes the evolution of malware detection techniques based on machine learning algorithms 

focused on the android OS. 
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Introduction  

The convenience of interactive mobile devices has enticed their users, who now carry a wealth of sensitive 

information around with them: personal data, bank information and account details, GPS location, contacts, 

text messages and emails [1-5]. The value of these data has attracted cyber-criminals who invest time and 

money in exploiting vulnerable mobile platforms, commonly through malware. Google’s Android platform 

has become the most targeted mobile operating system, likely for two key reasons [6]. On one hand, 

Android is a ubiquitous platform, with more than 1.9 billion installed-base devices [7]. On the other hand, 

Android applications are easy to reverse-engineer and can be readily modified or repackaged. Since 
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attackers focus their energy on targets that have the highest return on investment, popular platforms like 

Android with accessible inner workings are doomed to attract special attention from cyber-criminals [8]. 

Mobile malware may perform malicious activities like steal data, send credentials to attackers, send 

premium SMSs [9]. Expecting a shipment of 1 billion Android devices in 2017 and with over 50 billion total 

app downloads since the first Android phone was released in 2008, cyber criminals naturally expanded their 

vicious activities towards Google’s mobile platform. Mobile threat researchers indeed recognize an alarming 

increase of Android malware from2012 to 2013 and estimate that the number of detected malicious apps is 

now in the range of 120,000 to 718,000 [10-13]. 

Based on the current attack trends and analysis of the present literatures there are following types of 

malwares  

 1. Information Extraction Compromises the device and steals personal information such as IMEI number, 

user’s personal information, etc. 

 2. Automatic Calls and SMS User’s phone bill is increased by making calls and sending SMS to some 

premium numbers  

3. Root Exploits The malware will gain system root privileges and takes control of the system and modifies 

the information. 

 4. Search Engine Optimizations Artificially search for a term and simulates clicks on targeted websites in 

order to increase the revenue of a search engineer increase the traffic on a website.  

5. Dynamically Downloaded codean installed benign application downloads a malicious code and deploys 

it in the mobile devices. 

 6. Covert channela vulnerability in the devices that facilitates the information leak between the processes 

that are not supposed to share the information. 

 7. Botnets A network of compromised mobile devices with a Bot Master which is controlled by Command 

and Control servers (C&C). Carry out Spam delivery, DDDos attacks on the host devices. [14] 

 

An important concern on the growing Android platform is malware detection. Malware detection techniques 

on the Android platform are similar to techniques used on any platform. Detection is fundamentally broken 

into static analysis, by analysing a compiled file; dynamic analysis, by analysing the runtime behaviour, such 

as battery, memory, and network utilization of the device; or hybrid analysis, by combining static and 

dynamic techniques [15]. Static analysis is advantageous on memory-limited Android devices because the 

malware is not executed, only analysed. However, dynamic analysis provides additional protection, 
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particularly against polymorphic malware that change form during execution. To use the advantages from 

both static and dynamic analysis, desktop vendors such as AVG [16] employ hybrid techniques [17]. 

Behaviour of both malicious and benign applications are profiled with a set of feature vectors, which are 

snapshots of system state information, such as memory utilization and power consumption. Machine 

learning algorithms are trained with known feature vectors to attempt to predict the classification of 

unknown feature vectors. Due to the range of hardware configurations a very large number of feature vectors 

from a diverse set of hardware are needed to effectively train machine learning algorithms. Future work will 

explore machine-invariant hardware metrics [17]. 

CHALLENGES OF EVALUATING MOBILE MALWARE 

Classifiers while malware classifiers have the potential to detect and proactively prevent the spread of 

malware on mobile devices, there are a number of challenges to determining which techniques are most 

effective at detecting malware. A critical challenge is the need for the collection and experimentation with a 

large dataset for training malware classifiers, typically spanning hundreds of applications and thousands of 

feature vectors. These datasets can be difficult to collect accurately, as there is an inherent trade-off between 

profiling malware operating maliciously, such as gaining network access on a mobile device, and ensuring 

that both the malware remains within its sandbox and the malware profile remains accurate. Moreover, 

malware classifiers must be trained and evaluated in a repeatable and consistent manner with large-scale 

experimentation and automation infrastructure. 

 Stream: STREAM, a System for automatically Training and Evaluating Android Malware classifiers 

and provides an effective method of rapidly profiling malware and training machine learning classifiers. 

STREAM can run on a single server or distributed across a grid of remote servers. Figure 1 shows a 

high– level operational overview of STREAM. The master server distributes profiling jobs to the worker 

nodes. The node servers then distribute the jobs between devices or emulators in parallel. Inside each 

device or emulator, STREAM manages the applications, drives the feature vector collection, and 

manages classifier training and evaluation. The parallelization addresses the size of the problem domain 

and the STREAM framework provides a combination of accuracy and scalability [17]. 

 

 

 

                         

                   Figure 1. High-level overview of STREAM distributed across multiple nodes [17]. 



DOI: 10.18535/ijecs/v6i5.32 
 

Lokesh Vaishanav, IJECS Volume 6 Issue 5 May, 2017 Page No. 21378-21389 Page 21381 

MADAM (Multi-Level Anomaly Detector for Android Malware 

MADAM monitors the device actions, its interaction with the user and the running apps, by retrieving five 

groups of features at four different levels of abstraction, namely the kernel level, application-level, user-

level and package-level. For some groups of features MADAM applies an anomaly based approach, for 

other groups it implements a signature based approach that considers behavioural patterns that we have 

derived from known malware misbehaviours. In fact, MADAM has been designed to detect malicious 

behavioural patterns extracted from several categories of malware. This multi-level behavioural analysis 

allows MADAM to detect misbehaviours typical of almost all malware which can be found in the wild. 

MADAM also has shown efficient detection capabilities as it introduces a 1.4% performance overhead and a 

4% battery depletion. Finally, MADAM is usable because it both requires little-to-none user interaction and 

does not impact the user experience due to its efficiency. MADAM achieves the above goals as follows: 

(i) It monitors five groups of Android features, among which system calls (type and amount) globally 

issued on the device, the security relevant API calls, and the user activity, to detect unusual user and 

device behavioural patterns; to this end, it exploits two cooperating proximity-based classifiers to 

detect and alert anomalies 

(ii)  It intercepts and blocks dangerous actions by detecting specific behavioural patterns which take into 

account a set of known security hazard for the user and the device; 

(iii)  Every time a new app is installed, MADAM assesses its security risk by analysing the requested 

permissions and reputation metadata, such as user scores and download number, and it inserts the 

app in a suspicious list if evaluated as risky. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of MADAM [18]. 

To derive the features at the four system levels, and to detect and prevent a misbehaviour, MADAM can be 

logically decomposed into four main architectural blocks, which are depicted in Fig. 2 (in particular, see 
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“Madam Architecture”). The first one is the App Risk Assessment, which includes the App Evaluator that 

implements an analysis of metadata of an app package (apk) (permission and market data), before the app is 

installed on the device. This evaluation computes the app’s risk score, i.e. the likelihood that the app is a 

malware. Based on this risk evaluation, this component populates a set of suspicious apps (App Suspicious 

List), which will be monitored at run-time. The second block is the Global Monitor, which monitors the 

device and OS features at three levels, i.e. kernel (SysCall Monitor), user (User Activity Monitor) and 

application (Message Monitor). These features are monitored regardless of the specific app or system 

components generating them, and are used to shape the current behaviour of the device itself. Then, these 

behaviours are classified as genuine (normal) or malicious (anomalous) by the Classifier component. The 

third block is the Per-App Monitor, which implements a set of known behavioural patterns to monitor the 

actions performed by the set of suspicious apps(App Suspicious List), generated by the App Risk 

Assessment, through the Signature-Based Detector. Finally, the User Interface & Prevention component 

includes the Prevention module, which stops malicious actions [18]. 

 

 Crowdroid used a machine learning-based framework that recognizes Trojan like malware on Android 

Smartphones, it monitored the number of times a particular system call was issued by an application 

during the execution of an action that requires user interaction. Crowdroid used about 100 system calls 

with only two trepanised applications tested. [19]. 

 

 Andromaly is an intrusion detection system that relies on machine learning techniques. It monitors both 

the Smartphone and user's behaviours by observing several parameters, spanning from sensor activities 

to CPU usage. Andromaly used 88 features to describe system behaviours besides rooting the device and 

the use of external Linux server; the features are then pre-processed by feature selection algorithms [20]. 

 

 VMM approach to malware detection in their design of Paranoid Android system where researchers can 

perform a complete malware analysis in the cloud using mobile phone replicas. In their work, the phone 

replicas are executed in a secure virtual environment, limiting their system to no more than 105 replicas 

running concurrently [21]. 

 

 Neural network approach this proved effective in detecting fraud calls and imposters. The disadvantage 

of this method is that the process is relatively slow and this method classifies applications into groups 

having same behaviours and hence, there will be lot of false positives [22]. 
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This technique focused on viruses that are transmitted through SMS messages and other communication 

interfaces like Bluetooth and Infrared. But they did not concentrate on worms that will automatically make 

high rate calls from the mobile device which will incur loss to the user as they are only collecting and 

monitoring SMS traces [23]. 

 

 HOSBAD is a Host-based Anomaly Detection System targeted at Android Malware propagated via 

SMSs and calls. HOSBAD integrates data mining with supervised machine learning techniques in its 

implementation. It is designed to monitor and extract Android’s applications data at the application layer 

and using these data to detect malware infections using a supervised machine learning approach to 

differentiate between normal and malicious behaviours of applications.[24]. In fact, the problem of 

anomaly detection can be seen as a problem of binary classification, in which each normal behaviour is 

classified as “Standard”, whereas abnormal ones are classified as “Suspicious” [25]. The supervised 

machine learning model could be viewed as a black box having as input sets of behaviours formatted 

into sets of feature vectors in ARFF and the output is a flag of “Normal” or “Malicious”. The supervised 

machine learning model which in this case is the K-NN classifier is trained using a normality model on 

how to classify correctly each element of the feature vector. The training of the classifier takes place at 

the point called the training phase. This phase is critical because the accuracy of the classifier is 

dependent on the training phase hence a good training set must be supplied to the classifier [24]. To 

generate a good feature vector that represents typical Android device behaviour HOSBAD utilize 

features that represents behaviours when the device is active and when it is inactive. However, our 

training set also contains some malicious behaviour, which strongly differs from the normal ones. 

Choosing the right features to best represent the device behaviours is a critical task, since their number 

and correlation determine the quality of the training set [26].   

Malware Detection Process 

HOSBAD combines features extracted from different categories of the device functionality as given in Fig 

3. First, it monitors the device activities and extracts the features associated with these activities. Secondly, 

it observes correlation among the features derived from the events belonging to the different activities. In 

order to extract features first, HOSBAD monitors the incoming and out-going SMSs. An application may 

send SMS during its execution and for this to happen, it must contain the SEND_SMS permission in its 

manifest file otherwise the application will crash as soon as it tries to send SMS message by invoking the 

SEND_SMS function. The Permissions required by an application are displayed to the user during 

installation time and the user must either accept all or forfeit the installation of the application that is, the 

user must agree with all the stated permissions for the application to get installed. This mechanism provides 

a rough control that can be effective especially to new Android users. An application that gets the 
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SEND_SMS permission could be harmful, since it is able to send SMSs including premium SMSs without 

the knowledge of the user [24]. 

 

 

 

 

Table 1[24]. 

To monitor and extract the stated features from the device, the design includes three monitors; the call 

monitor, the SMS monitor and the device status monitor see Figure 4. A collector receives these features 

from all the monitors and then builds the vectors in .csv format. These vectors are parsed and converted to 

arff; the format acceptable by Weka machine learning tool and stored in local files on the SD card in .arff 

using a logger module so that they can be used as test set.   

 

 

 

 

 

 

 

 

            Figure 4: Architecture of the Host-based Anomaly Malware Detection System (HOSBAD) [24]. 

 The classifier module is responsible for performing behaviour-based analysis in which Android applications 

are classified as either Normal or Malicious. This is done by employing the trained K-NN classifier. A key 

process of the system is the training phase which identifies the behaviour of the applications. It identifies 

Android applications into two classifications namely: Normal and Malicious. Figure 4 gives a complete 

representation of the processes involved in the different phases of the malware detection [24]. 

MAMA (Manifest Analysis for Malware detection in Android) 
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 A new technique for the detection of malicious Android executable. This approach employs several features 

extracted by analysing the Manifest file of the Android applications. In particular, we use the permissions 

and the feature tags within the manifest file. These features are then used to build well-known supervised 

machine-learning algorithms to detect malicious applications. In summary, our main findings are: 

(i) A new method for representing Android applications, based on the permissions and the features from 

the Manifest file. 

(ii) Adoption of well-known machine learning classifiers to provide detection of malicious applications 

in Android. We found out that machine-learning algorithms can provide detection of malicious 

applications in Android and that the best representation of executable is the combination of both 

permissions and features from the Manifest file. 

Feature sets that are used in order to detect Android malware are gathered from the AndroidManifest.xml 

file that is within each Android application. These feature sets are: (i) the permissions required for the 

application, under the uses-permission tag and (ii) the features under the uses-features group in the 

Android Manifest File. In order to obtain these features, we first extracted the permissions used by each of 

the applications. To this extent, we employed the aapt tool (Android Asset Packaging Tool), available 

within the set of tools provided by the Android SDK [27]. 

Machine learning algorithms  

Machine learning is an area within Artificial Intelligence that develops and designs new algorithms to 

generalize behaviours using data [28]. Traditionally, these algorithms are categorized with regards to the 

availability of labelled instances in the training dataset. We have used supervised algorithms, which are the 

ones that employ a dataset that has been previously labelled (in our case, into malware and benign 

software). In this section we detail the algorithms employed [27]. 

 K-Nearest Neighbours The K-Nearest Neighbour (KNN) classifier is one of the simplest supervised 

machine learning models. This method classifies an unknown specimen based on the class of the 

instances closest to it in the training space by measuring the distance between the training instances and 

the unknown instance. Even though several methods exist in order to choose the class of the unknown 

sample, the most common technique is to simply classify the unknown instance as the most common 

class amongst the K-nearest neighbours [29]. 

 Decision Trees Decision Tree classifiers are a type of machine-learning classifiers that are graphically 

represented as trees. Internal nodes denote conditions regarding the variables of a problem, whereas final 

nodes or leaves represent the ultimate decision of the algorithm [30]. Different training methods are 

typically used for learning the graph structure of these models from a labelled dataset. We used Random 
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Forest, an ensemble (i.e., combination of classifiers) of different randomly-built decision trees [31, 32, 

and 30]. 

 Bayesian networks Bayesian Networks [33], which are based on the Bayes Theorem, are defined as 

graphical probabilistic models for multivariate analysis. Specifically, they are directed acyclic graphs 

that have an associated probability distribution function [34]. Nodes within the directed graph represent 

problem variables (they can be either a premise or a conclusion) and the edges represent conditional 

dependencies between such variables. Moreover, the probability function illustrates the strength of these 

relationships in the graph [34].  The most important capability of Bayesian Networks is their ability to 

determine the probability that a certain hypothesis is true (e.g., the probability of an application of being 

malware) [27]. 

 Support Vector Machines(SVM) SVM algorithms divide the n-dimensional space representation of the 

data into two regions using a hyperplane. This hyperplane always maximizes the margin between those 

two regions or classes. The margin is defined by the farthest distance between the examples of the two 

classes and computed based on the distance between the closest instances of both classes, which are 

called supporting vectors [35]. Instead of using linear hyperplanes, it is commonto use the so-called 

kernel functions. These kernel functions lead to non-linear classification surfaces, such as polynomial, 

radial or sigmoid surfaces [36]. 

Discussion & Future Scope 

The sudden growth of the Android mobile platform has made it a main target of cyber-criminals. Mobile 

malware specifically aiming Android has gushed and grown in tandem with the rising popularity of the 

platform. This paper recapitulates recent developments in android malware detection using machine learning 

algorithms. Detection techniques and systems that uses static, dynamic and hybrid tactics are discussed and 

highlighted. We must propose new techniques which have the ability to detect advanced malware attacks 

such as Zero-day attack. Because miscellaneous variants and new types of mobile malware are on the rise, 

further study on a technique that could detect future malware should be planned Implementation of 

Behavior-based analysis with permission-based can also be done to determine malicious Android 

applications. Administrative User interface and an AMDA Android Application will allow easier analysis 

and access of the system.  

Conclusion 

In the world of machines everything is becoming smart and number of users connected to internet and 

smartphones is increasing on vast scale. As huge users are interconnected with internet by smartphones 

cyber terrorist are aiming to disrupt the whole network of advanced users. They are aiming at the 

confidential data of business companies, they are stealing abstract information and murdering the cyber 
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world through their actions. Thus it is necessary to halt their activities to large extent so that modern era of 

internet can be protected. This paper is based on the behavioural analysis of android malwares using various 

machine learning algorithms already being developed. This paper majorly focus on STREAM, a System for 

automatically Training and Evaluating Android Malware classifiers and provides an effective method of 

rapidly profiling malware and training machine learning classifiers, MADAM (Multi-Level Anomaly 

Detector for Android Malware, (HOSBAD) Host-based Anomaly Detection System, and MAMA (Manifest 

Analysis for Malware detection in Android) and last various machine learning algorithms are being 

discussed.  
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