
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 4 Issue 8 Aug 2015, Page No. 14052-14057

K.V.Maruthi Prasad, IJECS Volume 04 Issue 08 August, 2015 Page No.14052-14057 Page 14052

C Source Code Auto Review Tool for Secure Programming of

Indian Spacecraft Ground Software Elements, GEOSCHEMACS

K.V.Maruthi Prasad1, J.Krishna Kishore2

1ISRO Satellite Centre, HAL Airport Road,

Vimanapura P.O, Bengaluru-17, Karnataka, India

maruti@isac.gov.in

2 ISRO Satellite Centre, HAL Airport Road,

Vimanapura P.O, Bengaluru-17, Karnataka, India

jkk@isac.gov.in

Abstract: Secure software development involves practicing secure programming constructs and standards. To enable the software is

developed with secure programming standards, secure static analysis play major role in finding out the hidden vulnerabilities in the source

code. Secure static analysis tools yield significant reduction in runtime failures of the software. GEOSCHEMACS (Geostationary Earth

Orbit SpaceCraft HEalth Monitoring, Analysis and Control Software) is Indian Spacecrafts primary ground software element and

developed mostly based on C programming language. The aim of this paper was to discuss the development of software for auto reviewing

of C source code. The paper highlights the necessity of a customized & proprietary tool in complying against CERT (Computer Emergency

Response Team) C secure coding standard and enhancing the secure software development of GEOSCHEMACS. It brings out the design

and test results of the tool.

Keywords: Secure Static Analysis, GEOSCHEMACS, Ground Software, C Source Code.

1. Introduction

Practicing secure coding constructs and standards is one of

the most important aspects in secure software development.

Many software security vulnerabilities were caused by insecure

coding practices and also inherent problems of the language.

Static analysis review for secure programming practices can

always make the software development more secure.

GEOSCHEMACS is a software system of over fifty major

components and near to one million lines of source code of

various technologies. C has been the primary programming

language used in the development. Other many technologies

such as X/Motif, OpenGL, Java, HTML, and JavaScript have

been also rendered in realizing various packages.

To ensure the development of GEOSCHEMACS more

secure and to minimize the scope of inherent software

vulnerabilities, various practices are being added. Introduction

of a static analysis tool for secure programming constructs of C

language is one among them. Software possessing the

capability of reviewing the source code against some secure

coding standard has been thought. CERT of SEI (Software

Engineering Institute) has been the major secure coding

standard for C. As part of the research titled “Secure Software

Development for Indian Spacecraft Ground Software,

GEOSCHEMACS”, a comprehensive and integrated capability

of reviewing C source code for secure coding standard has

been envisaged.

This paper was aimed at bringing the details of the tool

developed for automatic reviewing of C source code against

CERT secure coding standards. It has been arranged into

introduction, background, the tool, methodology, testing,

results and conclusion sections. Background tries to introduce

the concepts on secure programming constructs,

GEOSCHEMACS, CERT C secure coding standard, C secure

static analysis tools. The necessity of in-house development of

auto reviewing of C source code has been well discussed in the

section of ‘The Tool’. Design of the tool was explained in the

next section. Testing and results of the tool were listed in the

corresponding sections.

2. Background

2.1 Secure Programming Constructs

In general, guidelines for secure coding can be listed as [3][4]:

1. Minimum code size

2. Less complexity in code

3. Separation of data and program control

4. Consistent and standard coding style

5. Assumption of all inputs as hostile

6. Secure concern integration of library modules

7. Application of minimum possible privilege for the minimal

amount of time for the minimal processes

8. No sensitive data in source code

9. Avoiding of insecure library routines

10. Proper error handling and failing securely

11. Secure use of standard compilers and extensions

12. Nondeterministic random number usage and strong

cryptography

13. Proper handling of multithread and multi process related

inter process communication and other complexities

14. Avoiding incorrect use of pointers and links

15. Exception handling and proper process synchronization

http://www.ijecs.in/

DOI: 10.18535/ijecs/v4i8.77

K.V.Maruthi Prasad, IJECS Volume 04 Issue 08 August, 2015 Page No.14052-14057 Page 14053

measures

16. Avoiding common logic errors with reference to input

validation, compiler checks, type checking, static checking

17. Avoiding buffer overflows and race conditions scenario

18. Secure file operations

19. Secure storage and encryption

20. Ensuring that all input meets specification

21. Safe initialization and Data sanitization

22. Proper handling of strings and formatted output

23. Following and Coding as per security guidelines &

standards

24. Coding for reuse and maintainability

25. Allocation of memory more cautiously

2.2 GEOSCHEMACS

It is a set of software packages based on client server

distributed computing architecture and is the primary tool for

Indian spacecraft health monitoring, analysis and control.

Figure 1: GEOSCHEMACS software architecture

2.3 CERT C Secure Coding Standard

The CERT C Secure Coding Standard [11] [12] provides rules

and recommendations for secure coding in the C programming

language. The goal of these rules and recommendations is to

eliminate insecure coding practices and undefined behaviors

that can lead to exploitable vulnerabilities [11] [12]. Coding

practices are defined to be rules when all of the following

conditions are met:

1. Violation of the coding practice will result in a security flaw

that may result in an exploitable vulnerability.

2. There is an enumerable set of exceptional conditions (or no

such conditions) in which violating the coding practice is

necessary to ensure the correct behavior for the program.

3. Conformance to the coding practice can be verified.

Rules must be followed to claim compliance with this standard

unless an exceptional condition exists. Compliance with

recommendations is not necessary to claim compliance with

this standard. The purpose of the secure coding standard is to

promote software security [11] [12]. The secure coding

standards proposed by CERT are based on documented

standard language versions as defined by official or defacto

standards organizations. Various categories that have been

identified under this standard are related to Preprocessor

(PRE), Declarations and initialization (DCL), Expressions

(EXP), Integers (INT), Floating Point (FLP), Arrays (ARR),

Characters and Strings (STR), Memory management (MEM),

Formatted Input Output (FIO), Environment (ENV), Signals

(SIG), Error-handling (ERR), Concurrency (CON),

Miscellaneous (MSC) and POSIX (POS) [11][12].

2.4 C Secure Static Analysis Tools

Secure static analysis is the code reviewing technique for

listing out the security vulnerabilities of the source. Since C is

one of the legacy and prominent programming language having

inherent problems, static analysis for secure programming

constructs would always enhance the reliability of the software.

Various open source static analysis tools such as RATS, ITS4,

Flaw finder, Splint and many other commercial tools were used

in reviewing the C source code.

Splint (Secure programming lint) is a tool for statistically

checking C programs for security vulnerabilities and

programming mistakes. Splint does many of the traditional lint

checks including unused declarations, type mismatches, use

before definition, unreachable code, ignored return values,

execution paths with no return, likely infinite loops and fall

through cases[13]. RATS (Rough Auditing Tool for Security)

is a tool for scanning C, C++, Perl, PHP and Python source

code and flagging common security related programming errors

such as buffer overflows and TOCTOU (Time Of Check, Time

Of Use) race conditions[14]. ITS4 (IT is Software Stupid

Security Scanner) was developed for scanning vulnerabilities of

C and C++ code [15][19]. Flaw finder is another open source static

analysis tool which searches through C/C++ source code looking for

potential security flaws [16].

3. The Tool

Usage of static analysis software for auto reviewing C source

code has been one of the objectives towards secure

GEOSCHEMACS. GEOSCHEMACS consists of major

software components realized with C. To cover most of the

legacy and upcoming C source code reviewed against certain

secure coding standard, a suitable static analysis tool is

required. C secure coding standard developed by CERT is most

appropriate one for getting complied and reviewed against it.

3.1 Why in-house developed software?

Many static analysis tools both of commercial and free

categories are available for C source code analysis. Each of the

tool has it’s own demerits. Open source C static secure

vulnerability scanners such as Splint, ITS4, RATS, flaw finder

were tested for the CERT C secure coding rules compliancy

[1]. Test results show that Splint tool with around forty percent

complied against secure coding rules has been the best among

them with reference to different factors that have been

considered in complying and reviewing the source code

snippets of various embedded vulnerabilities [1].

The points favourable in selecting the option of in-house

software for auto reviewing of C source code for CERT secure

coding standard can be listed as:

1. No single open source security scanner could satisfy for

CERT C secure coding standard rules [1]

2. In-house software would provide simple customization and

user friendliness in giving a more permanent solution

3. No specific tool gives an integrated & comprehensive

solution of C source code auto review

DOI: 10.18535/ijecs/v4i8.77

K.V.Maruthi Prasad, IJECS Volume 04 Issue 08 August, 2015 Page No.14052-14057 Page 14054

4. Too many ambiguities in finding / listing the vulnerabilities

of the source by most of the tools in majority cases

5. Maintenance overhead of the open source tools

6. Economically not a good solution if a commercial tool is

procured

7. An automatic review software for source code compliance to

secure coding rules always saves time, helps in multiple times

reviewing of the same source and enhances the software

development process and the software quality[1]

3.2 Highlights of the auto review tool

1. GUI based software for auto reviewing of C source code.

2. Performs secure static analysis reviewing for the given

source code file / make file / build file of the software.

3. Lists out all the vulnerabilities in source code with the

corresponding suggestions for removing them

4. Reviews against CERT C secure coding standard.

5. Presents the listing of mistakes in designer friendly manner

6. Use of Splint open static analysis tool

7. Uses gcc compiler warnings and grep utility

8. Ensures the process of source code reviewing automated

9. Various software security vulnerabilities such as buffer

overflows, invalidated input, race conditions, insecure file

operations, access control problems etc… can be found out

10. Helps in building secure software

Figure 2: Main GUI of C source code auto review tool

This software system is for automatic code reviewing of any C

source code against C secure programming standard (CERT C

secure coding standard). It is based on X/Motif GUI and

facilitates C source code of a make file or build file or single

source file reviewed for CERT C secure coding rules.

4. Methodology

The criteria applied in designing the software for auto

reviewing of C source code against CERT secure coding rules

are

1. Usability

2. Maximum usage of the open source secure static tools

3. Minimum time of reviewing

4. Developer friendly presentation of the found out

vulnerabilities

5. Minimum false positives

6. Targeting of zero false negatives

7. Possible Suggestions listed along with the flaws

8. Clear and unambiguous warnings listing with pointed line

number, function and source file name

9. Ensuring of maximum extent source code compliance to

CERT C secure coding standard

10. Facilitation of reviewing all the C source code of any

software at a time

Different steps of the methodology are:

Step 1: Listing of all the secure coding rules against each

category and for all the fifteen categories of CERT C secure

coding standard [11][12].

Step 2: Identify probable patterns of messages or warnings

listed by the tool Splint and the compiler gcc with –Wall flag

for the violation of each secure coding rule under each category

with source code snippets developed and stuffed with

vulnerabilities for that secure coding rule.

Step 3: Apply the identified patterns or warnings of each secure

coding rule to match the vulnerabilities / messages listed while

reviewing the C source code of interest with Splint, gcc and

‘grep’ tools. List all the matched vulnerabilities with each one

having the exact source code line and module of the

corresponding source file, CERT secure coding rule that is

being violated or to be complied.

Steps 1 and 2 are the presets for the step 3. Step 3 is actually

the auto reviewing process against CERT C secure coding

rules.

4.1 Algorithm

 Get input of either make file or build file of the software or

any individual C source file. Ensure all the source files and

include directory paths processed from the given input

make or build file of the software.

 Check each and every source file is getting compiled. If any

one source file could not be compiled, come out with

appropriate error.

 Once all the source files are checked for compiling, apply

splint tool for all these source files together. Every

warning shall be checked for the match with reference to

all CERT C secure coding standard rules corresponding

listed patterns of step 2. If any pattern matches with the

warning, display that vulnerability and with specific

suggestions for removal.

 For each source of software, apply –Wall option with ‘gcc’

compiler to get the possible warnings. Resulting warnings

shall be matched with the already listed patterns of gcc

with the stuffed vulnerability source. If any message of the

warning matches with the listed patterns, display the

corresponding vulnerability and as well the possible

remedy for the problem.

 Use ‘UNO’ tool [20] for checking the warnings related to

array indexing error. UNO is any acronym for uninitialized

variables, null-pointer dereferencing and out-of-bound

array indexing [20].

 Use ‘grep’ tool for getting the unsolicited routines

availability in the given C source. If any one of the

unsolicited library routines used, display that vulnerability

with the possible solution.

DOI: 10.18535/ijecs/v4i8.77

K.V.Maruthi Prasad, IJECS Volume 04 Issue 08 August, 2015 Page No.14052-14057 Page 14055

 Evaluate the source code verified against the insecure usage

of signal handlers and signal processing. If any insecure

programming issues with reference to signals were found,

list them with the possible mitigation.

4.2 Implementation

As per the necessity, over 200 C source code applications

stuffed with different vulnerabilities were collected. Each one

of them attributes to violation of one of secure coding rules of

one of the fifteen categories of CERT secure coding standard.

These vulnerability stuffed source code snippets were reviewed

with ‘splint’ tool and ‘gcc –Wall’. Patterns of the warning

messages were gathered against each secure coding rule of

every category of CERT C secure coding standard. Code

snippets stuffed with array indexing vulnerabilities were

analysed with ‘Uno’ tool also. Corresponding patterns of

warning messages were taken for the usage of confirmation of

array indexing related violations. ‘splint’, ‘gcc –Wall’ and

‘uno’ [20] were only considered [1] after testing all the open

source static security vulnerability scanners mentioned in

section 2.4. These three tools were included with reference to

the capability of the tools in finding out the vulnerabilities of

the C source code samples of stuffed vulnerabilities.

Table 1: Static analysis tools information

Tool name Version

splint 3.1.0

uno 2.13

gcc -Wall 4.1.2

Table 2: Category wise C secure coding rules and vulnerability

stuffed code samples

CERT C secure

coding Category

Number of C

secure coding

rules

Number of

vulnerability

stuffed code

snippets

Preprocessor 3 3

Declarations and
initialization

8 19

Expressions 13 30

Integers 7 23

Floating Point 4 7

Arrays 6 18

Strings 6 17

Memory
management

6 12

Formatted input
output

13 21

Environment 5 8

Signals 4 6

Error handling 3 9

Concurrency 12 12

POSIX 17 17

Miscellaneous 7 8

As per the design and algorithm mentioned in section 4.1,

software has been developed using C and X/Motif. The

development operating system was RHEL (RedHat Enterprise

Linux) 5.4 server version.

Properly indented and formatted source code would always

help the secure static analysis or review. Source code

beautified with certain indentation and formatting rules make

the auto reviewing results understood easily & clearly. A

feature of the nature of beautification of the source by the

specified indenting & formatting rules has been included.

Artistic Style (astyle) [17][18] is a free source code indenter,

formatter and beautifier for C, C++, C# and Java programming

languages. Artistic style software of 2.05 version (astyle 2.05)

has been installed. The same has been used for beautifying the

source code under review as per the developer’s optional

selection.

Software was realized with a feature of interactive

presentation of the found out vulnerabilities of the given C

source code. Facility for reporting the summary to a file was

also incorporated.

5. Testing and Results

Software has been realized by applying all types of testing at

various levels including unit testing and as per the standard

software process. Multiple source combinations such as

individual C source file, individual C with X/Motif source,

source code of the software through make file, source of the

software through build file were reviewed for CERT C secure

coding standard rules through this tool. Using this tool, various

individual C source files and source files through make file or

build file were beautified as per GEOSCHEMACS C source

coding indentation, styling and formatting standards.

An instance of the result of automatic code review of an

individual source file ‘CreateInputArea.c’ of this tool is as

follows:

CERT Rule:Free dynamically allocated memory when no

longer needed:

CreateInputArea.c: (in function reviewForBuildfile)

CreateInputArea.c:336:14: Fresh storage item not released

before return

CreateInputArea.c:333:7: Fresh storage item created

CERT Rule :Do not read uninitialized memory:

CreateInputArea.c: (in function reviewForBuildfile)

CreateInputArea.c:342:7: Buffer overflow possible with

sprintf. Recommend using snprintf instead: sprintf

CERT Rule :Guarantee that storage for strings has sufficient

space for character data and the null terminator:

CreateInputArea.c: (in function reviewForBuildfile)

CreateInputArea.c:342:7: Buffer overflow possible with

sprintf. Recommend using snprintf instead: sprint

CERT Rule :Declare identifiers before using them:

CreateInputArea.c: (in function validateInputs)

CreateInputArea.c:476:13: Return value type int does not

match declared type char

CERT Rule :Ensure that integer conversions do not result in

lost or misinterpreted data:

CreateInputArea.c: (in function getSourceFilesFromBuildFile)

CreateInputArea.c:578:4: Assignment of int to char:

DOI: 10.18535/ijecs/v4i8.77

K.V.Maruthi Prasad, IJECS Volume 04 Issue 08 August, 2015 Page No.14052-14057 Page 14056

CERT rule: Instead of str(cpy/cat/cmp), use strn(cpy/cat/cmp

with sufficient storage in dest. w.r.t the size of src + null char:

CreateInputArea.c:345:strcat(sysCmd, " -I");

Figure 3: Listed highlights for ‘CreateInputArea.c’ source file

For a build file (script for compiling multiple source files) of

this auto review tool, called ‘AutoreviewBld’, some of the

reported listings were as follows:

CERT Rule :Do not read uninitialized memory:

CreateInputArea.c: (in function reviewForMakefile)

CreateInputArea.c:221:34: Passed storage &noOfSrcDirs not

completely defined:

CERT Rule :Do not read uninitialized memory:

ReportForMakeFile.c: (in function rptUnoForMakeFile)

ReportForMakeFile.c:234:7: Buffer overflow possible with

sprintf. Recommend using snprintf instead: sprintf

CERT Rule :Guarantee that storage for strings has sufficient

space for character data and the null terminator:

ReportForMakeFile.c: (in function rptUnoForMakeFile)

ReportForMakeFile.c:234:7: Buffer overflow possible with

sprintf. Recommend using snprintf instead: sprintf

CERT Rule :Free dynamically allocated memory when no

longer needed:

CreateInputArea.c: (in function reviewForMakefile)

CreateInputArea.c:294:14: Fresh storage item not released

before return

CERT Rule :Ensure that integer conversions do not result in

lost or misinterpreted data:

ReportForMakeFile.c: (in function rptFinalForSplintMakeFile)

ReportForMakeFile.c:551:68: Assignment of int to char:

funcStrg = 1

Rule: Instead of str(cpy/cat/cmp), use strn(cpy/cat/cmp) with

sufficient storage in dest. w.r.t the size of src + null char:

ReportForMakeFile.c:571:strcat(srcStr, tmpStr1);

Figure 4: Listed highlights for ‘AutoreviewBld’ build file

Through make file (makefile.tmacq) of the software which

acquires spacecraft telemetry was reviewed with this tool. Few

of the found out listed warnings are as follows:

CERT Rule :Guarantee that storage for strings has sufficient

space for character data and the null terminator:

TmAcqLatest.c: (in function main)

TmAcqLatest.c:152:8: Buffer overflow possible with sprintf.

Recommend using snprintf instead: sprint

CERT Rule :Do not read uninitialized memory:

TmAcqLatest.c: (in function main)

TmAcqLatest.c:244:8: Variable map_to_config used before

definition. An rvalue is used that may not be initialized to a

value on some execution

CERT Rule :Ensure that integer conversions do not result in

lost or misinterpreted data:

TmAcqLatest.c: (in function main)

TmAcqLatest.c:293:8: Assignment of int to unsigned char:

CERT Rule :Do not read uninitialized memory:

TmAcqLatest.c: (in function main)

TmAcqLatest.c:300:26: Passed storage &err_i2 not completely

defined:

CERT Rule :Ensure that integer conversions do not result in

lost or misinterpreted data:

TmAcqLatest.c: (in function main)

TmAcqLatest.c:344:5: Assignment of int to char:

TiuDataBreakL1[i] = 1

CERT Rule :Do not form or use out-of-bounds pointers or

array subscripts:

TmAcqLatest.c: (in function main)

TmAcqLatest.c:534:44: Storage rfp[] may become null

TmAcqLatest.c: (in function write_into_port)

CERT Rule :Declare identifiers before using them:

TmAcqLatest.c: (in function map_to_config)

TmAcqLatest.c:802:10: Return value type int does not match

declared type char:

CERT Rule :Ensure that control never reaches the end of a

non-void function:

AcqEnvChk.c: In function ‘AcqEnvChk’

AcqEnvChk.c:49: warning: control reaches end of non-void

function

CERT Rule :Declare identifiers before using them:

AcqEvrTmacq.c: In function ‘AcqEvrHand’

AcqEvrTmacq.c:40: warning: implicit declaration of function

CERT Rule :Declare identifiers before using them:

PostTypeOneFrame.c: In function ‘postTypeOneFrame’

PostTypeOneFrame.c:233: warning: incompatible implicit

declaration of built-in function ‘exit’

Rule:Instead of str(cpy/cat/cmp), use strn(cpy/cat/cmp) with

sufficient storage in dest. w.r.t the size of src + null char:

TmAcqLatest.c:756:strcpy (err_msg_c, "Invalid S/C id");

Figure 5: Listed highlights for ‘makefile.tmacq’ make file

Different combinations of testing results show that the

purpose of the in-house developed tool for reviewing C source

code against secure programming constructs as per CERT

secure coding standard has been well met. The software has

been put into usage for all the legacy software reviewing and

also for the software being developed based on C language and

X/Motif. However, the insecure programming related to

concurrency was not handled in the present version of the

software. Secure programming constructs with reference to

concurrency and posix threads are yet to be incorporated in the

tool.

6. Conclusions

The software for auto reviewing C source code against

CERT secure coding standard rules was helpful in building

secure software. Static analysis tool for secure programming

constructs reviewing has been vital in removing vulnerabilities

DOI: 10.18535/ijecs/v4i8.77

K.V.Maruthi Prasad, IJECS Volume 04 Issue 08 August, 2015 Page No.14052-14057 Page 14057

of the source code. An in-house tool based on X/Motif GUI for

automatic review of the C source code of the given software

with the corresponding input of make file or build file or source

file has been developed. The tool was very much embedded

into the secure software development of GEOSCHEMACS.

The tool could give the developers to review the C source code

and list the hidden vulnerabilities along with the possible

suggestions. This software facilitates the developers to comply

C code against the CERT C secure coding standard. It helped

to have a better and most near estimation of the quality of C

based software.

Since majority of the software components developed in C,

GEOSCHEMACS software process can be enhanced with the

inclusion of this auto review tool and for resulting secure

software. The results were very encouraging since very low

percentage of false positives and no false negatives. The

induction of the tool would always cut the review and testing

time sharply. It plays major role in building more confidence in

the software. However, auto review of the C source code can’t

be a remedy for all the problems associated in the source. With

an established software process and application of good coding

standards, the tool can become most effective.

References

[1] K.V.Maruthi Prasad, J.Krishna Kishore, “Testing Open

Source Static Security Vulnerability Scanners for CERT

C Secure Coding Rules Compliance,” International

Journal of Advanced Research in Computer Science and

Software Engineering, Volume 4, Issue 12, December

2014, pp. 895-901. (online)

[2] A feature essay on “Static Analysis of Source Code (Tools

and Techniques)” by Dr Sachin Kadam in Developer IQ,

July 2013.

[3] Robert C. Seacord, Secure coding in C and C++, Addison

Wesley Professional, Pearson Education Inc, Boston,

2005.

[4] Matt Messier, John Viega, Secure Programming

Cookbook for C and C++, O’Reilly Publishers, USA, July

2003.

[5] Mark Dowd, John McDonald, Justin Schuh; “The Art of

Software Security Assessment: identifying and preventing

software vulnerabilities”, Addison-Wesley, Boston, July

2012.

[6] Goertzel, Karen Mercedes, Winograd, Theodore,

“Enhancing the Development Life Cycle to Produce

Secure Software”, a reference guide book on software

assurance, Version 2.0, 2008; accessed from

https://www.csiac.org on 6th June 2015.

[7] KendraKratkiewicz, Richard Lipmann, “Using a

Diagnostic Corpus of C Programs to Evaluate Buffer

Overflow Detection by Static Analysis Tools”, in the

workshop on Evaluation of Software Defect Detection

Tools conducted on 12th June 2005; accessed from

https://www.cs.umd.edu on 19-08-2015.

[8] Ondrej Vasik, Kamil dudka, 25 slides presentation on

“Common Errors in C/C++ Code and Static Analysis,”

accessed from https://kdudka.fedorapeople.org on 19th

August 2015.

[9] George Chatzieleftheriou, Panagiotis Katsaros “Test-

driving Static Analysis Tools in Search of C Code

Vulnerabilities,” accessed on 19-08-2015 from

http://delab.csd.auth.gr

[10] Edited by Stacy Simpson, “Fundamental Practices for

Secure Software Development” A Guide to the most

effective secure development practices; accessed from

http://www.safecode.org on 2nd June 2015.

[11] http://www.securecoding.cert.org

[12] http://www.securecoding.cert.org/confluence/display/secc

ode/CERT+C+Coding+Standard

[13] http://www.splint.org

[14] http://www.fortify.com/security-resources/rats.jsp

[15] http://www.cigital.com/its4

[16] http://www.dwheeler.com/flawfinder

[17] http://astyle.sourceforge.net

[18] http://sourceforge.net/projects/style

[19] http://www.rstcorp.com/its4

[20] http://spinroot.com/uno

https://www.csiac.org/
https://www.cs.umd.edu/
https://kdudka.fedorapeople.org/
http://delab.csd.auth.gr/
http://www.safecode.org/
http://www.securecoding.cert.org/
http://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Coding+Standard
http://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Coding+Standard
http://www.splint.org/
http://www.fortify.com/security-resources/rats.jsp
http://www.cigital.com/its4
http://www.dwheeler.com/flawfinder
http://astyle.sourceforge.net/
http://sourceforge.net/projects/style
http://www.rstcorp.com/its4
http://spinroot.com/uno

