

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 5 May, 2014 Page No. 5642-5646

Jaypal D. Rangari
1
 IJECS Volume 3 Issue 5 May, 2014 Page No.5642-5646 Page 5642

Enhance Performance of Random Testing using

Randomized Algorithm

Jaypal D. Rangari
1
, Swapnili P. Karmore

2

1Student, Department of Computer Science and Engineering,

G. H. Raisoni College of Engineering, Nagpur, India

jay.drs@gmail.com

2Professor, Department of Computer Science and Engineering,

G. H. Raisoni College of Engineering, Nagpur, India

swapravin@gmail.com

Abstract: this paper implements and enhances performance of software random testing. Random testing is a base software testing

technique that can be used to improve the software reliability as well as to discover software failures. Random testing is a black-box software

testing technique where programs are tested by generating random, independent inputs. In proposed methods uses both Monte Carlo and

Las Vegas Randomized algorithms. Monte Carlo has fast execution while Las Vegas has low execution time, but sometimes Monte Carlo

algorithm gives false result while Las Vegas gives always correct result. In proposed method has two result sets, in first result set has

executed test cases and in second has fails test cases. Initially test cases are tested using Monte Carlo algorithm and produced executed and

fail result sets. The fail result set is again tested using Las Vegas algorithm because sometimes Monte Carlo gives false result. We present a

technique that improves performance random testing. These results are very hopeful, given that evidences that our perception is likely to be

useful in improving the efficiency of random testing.

Keywords: Testing, random testing randomized algorithm, performance of random testing, software testing

1. Introduction

Randomized algorithms are used to explain many software

engineering problems. It uses degree of randomness as part of

their logic. In random testing randomized algorithms are very

significant for difficult problems where an exact result cannot

be calculated in a deterministic way. However, randomized

algorithms produce dissimilar results on every run when it

applied to the same problem. It is very important to evaluate

the effectiveness of randomized algorithms by collecting data

from a large number of executions. It performs a complete

study as well as gets complete information of current practice

in software engineering research. The test case selection is

simple and easy, they are randomly chosen among huge range.

Random testing is more commercial in software testing

problem. Effectively combining random testing with other

testing techniques may provide up more powerful and cost-

effective testing methods.

1.1 Specification-Based Techniques

• Equivalence partitioning

• Boundary value analysis

• Decision table

• Finite-state machine method

• Testing from formal specification

• Random testing

Software testing is an execution of the software or given code

with the aim of removing and debugging failures which is an

important phase to confirm the correctness of software system.

In software testing consist of two important steps, i.e. 1)

generating test cases and 2) validating the performance of

software system by executing the test cases [1]. In general,

since we cannot execute all the test cases, it is performed with

limited test cases. Thus, the good quality of test cases results to

the good quality of software products. Random testing is one of

the most standard techniques in software testing although the

random testing (RT) is easy for execution.

Testing a system is the procedure of finding errors which

correct any gaps, errors or missing requirements. In the

randomized algorithms apply a random value to solve various

problems. Randomized algorithms are useful in difficult

problems in an exact solution can be derived in a deterministic

manner. Different outcome in each run occur when applied to

the same problem instance. There are two types of randomized

algorithm

1. Monte Carlo algorithm

2. Las Vegas algorithm

1.2 Monte Carlo algorithm:

Jaypal D. Rangari
1
 IJECS Volume 3 Issue 5 May, 2014 Page No.5642-5646 Page 5643

It may produce incorrect results, but with very less error

probability. It has a fixed execution time. If the algorithm is

executed repeatedly with independent random options each

time, the probability of failure can be made arbitrarily little at

the cost of running time. In this algorithm with one-sided

errors, the failure probability can be minimized by executing

the algorithm k times [18]. Thus, prime numbers answer is

always correct, and for composite number the answer is correct

with probability at least 1−(1−1/2)k = 1−2−k.

1.3 Las Vegas Algorithm:

This algorithm always gives the correct result and its execution

time is higher than Monte Carlo algorithm. For high complexity

execute Las Vegas randomized algorithm because we need

correct result after the execution.

Random testing is black-box software testing, it is not focus the

code or methods that written in the program. In Fig.1 black box

random testing, it focuses on inputs and output only. During

execution of software testing randomized algorithm is used to

generate test cases. It generates random number of choices

during test cases execution to produce a result. It selects test

cases from the whole input set randomly. The process of test

cases generation can be minimized using randomized

algorithm..

Figure. 1. Black box random testing.

1.4 Why we use random testing?

Random testing gives an advantage of easily calculating

software reliability from test outcomes. Test inputs are

randomly generated according to a prepared profile, and failure

times are recorded. The data obtained from random testing can

then be used to calculate reliability. Other testing methods

cannot be used in this way to calculate software reliability. Use

of random test inputs may save some of the time and effort. It

must consider the time needed to write random test generator

verses the time to write a set of directed tests. Random Testing

methods are applicable for any single project. Different testing

techniques can find different types of defects.

2. Implementation

Figure. 2. Random testing implementations steps.

Random testing is also known as black-box software testing

technique. In the figure 2 shows the complete execution of

random testing.

2.1 Input domain identification

This is basic step in software random testing. There are various

classes, functions and methods in the system or programs. First

analyze the whole system and find out classes, function and

methods separately, each one have different input domains. We

need to identify the input domain according to the software

requirement specification for each classes, methods and

functions for testing. If we need to print even number from 1 to

10 then input domain will be 0 to 11 (InputD[0-11]).

2.2 Test input selection

After identification of input domain, test input is selected

among input domain for execution. Initially boundary value

analyses are performed on each test cases. In boundary value

analysis, the test is executed for first three input and last three

input from input domain. For input domain InputD[0-11], the

test case is executed for boundary value analysis for input 0, 1,

2 and 9, 10, 11.

2.3 Test cases execution

In the step, test cases are executed for testing. The input is

randomly selected from the input domain which is generated

using randomized algorithm.

2.4 Result comparison

During test cases execution result is generated for each test

cases, these result compare with expected result. If the result is

match with expected result then test case stored in executed test

set, fail test cases are stored in fail result set.

3. Proposed Work

In proposed work, software random testing is performed using

Monte Carlo and Las Vegas randomized algorithm. In figure 3

shows the basic flow for random testing, in which system is

tested by using both random testing algorithms.

3.1 Create test plan

First we create test plan for testing which define detailed

understanding of the eventual workflow. A test plan specifies

the strategy that will be used to validate and make sure that a

product or system meets its specifications and other

requirements. A test plan is generally prepared by or with

significant input from test expert persons.

3.2 Execute test cases using Monte Carlo Randomized

algorithm

The test cases is generated using Monte Carlo randomized

algorithm and executed that test cases. There are two possible

result, execute and fail test cases. Execute test cases are stored

in execute result set and fail test cases are stored in fail result

set.

generateTestCases(inputDomain[first-1, last+1)

 begin

 i=0

 repeat

Randomly select one element from input

domain.

 i = i + 1

 until i=last-1 or error is found

end

Jaypal D. Rangari
1
 IJECS Volume 3 Issue 5 May, 2014 Page No.5642-5646 Page 5644

3.3 Execute test cases using Las Vegas Randomized

algorithm

The test cases are generated using Las Vegas randomized

algorithm and again executed fail result sets test cases.

Sometimes Monte Carlo algorithm give false result so that we

again test the fail result set to obtain better result.

generateTestCases(inputDomain[first-1, last+1)

begin

repeat

Randomly select one element from input

domain.

 until error is found

end

3.4 Generate report

In this step, we generate the report against fail test cases and

executed test cases. Aim of this paper is to enhance the

performance of random testing so that not concentrate on fails

and pass test cases. We focus on how much time is taken to

execute the test cases and comparison with previous methods.

Figure. 3. Proposed random testing implementations.

 There are many methods for random testing, such as- Markov

Chain Monte Carlo Methods [1], Adaptive Random Testing

[2], [8], [9], [10], [17], Centroidal Voronoi Tessellations [3] ,

Dynamic Random Testing [4],[5] , Random-Partition Testing

[4] [5], Combinatorial testing [14], Group Testing [15], Sneak

paths testing [16]. Among these, adaptive random testing is

more powerful and efficient. In this paper we compare

proposed result with the adaptive random testing.

4. Result

In the below report shows time taken for executing test cases

using randomized (adaptive) algorithm and our proposed

algorithm. In this paper the test suit is downloaded from

“NIST” website [19]. This website provides standard data for

testing.

In the experiments, we have examined the performance of

Random Testing (RT), Adaptive Random Testing (ART) and

Dynamic Random Testing (DRT). As a result, combination of

both algorithms is drastically improved against those of RT,

ART and DRT. We present a technique that improves

performance random testing.

We studied and implement random testing algorithm for

enhancing performance of random testing. In proposed method

uses Monte Carlo and Las Vegas randomized algorithm which

is very helpful for test cases generation in different ways. Using

proposed method, we can minimize the efforts for test cases

generation process during random testing also minimizes

testing efforts.

Figure. 4. Time require executing all test cases using randomized and

proposed technique.

In figure 5, shows the time require for executing all the test

cases using random testing. In figure 6, shows the time require

for executing all the test cases using proposed random testing.

And in figure 7, shows the time comparison for both methods.

Figure 7 shows that the time require for random proposed

testing is less that time require for random testing, on this basis

we can say that, proposed system is better than the previous

one.

Figure. 5. Time require for random testing to execute all test cases.

Figure. 6. Time require for proposed random testing to execute all test cases.

Jaypal D. Rangari
1
 IJECS Volume 3 Issue 5 May, 2014 Page No.5642-5646 Page 5645

Figure. 7. Time comparison for both methods.

In figure 8, shows complete statistics report for random testing

and proposed random testing. There are 62 test cases; the

average execution time is 0.125 for random testing and 0.065

for proposed random testing. On the basis of this result we can

say that our system is more effective and efficient than

previous.

Figure. 8. Test cases execution statistics for both methods.

In this paper we presented the results that evaluate the

performance of random testing. Using this method we can

minimize testing efforts. Monte Carlo and Las Vegas algorithm

is responsible for generating cases. We apply only one

algorithm at a time according to code complexity. If

complexity of code is high then use Las Vegas and for low

complexity use Monte Carlo algorithm. The aim of the study

was to observe how it performs random testing in general and

to determine a more efficient strategy to recommend as best

practice.

5. Features

• Minimize the efforts for test cases generation process

• Less calculation

• Simple procedure

• Consistency in test cases generation

• User profile

• Random input values

• Reliability

• Automated Testing

6. Conclusion

In this paper, we studied and implement random testing

algorithm for enhancing performance of random testing. In

proposed method uses Monte Carlo and Las Vegas randomized

algorithm which is very helpful for test cases generation in

different ways. Using proposed method, we can minimize the

efforts for test cases generation process during random testing

also minimizes testing efforts. Monte Carlo and Las Vegas

algorithm is responsible for generating cases. The aim of the

study was to enhance performs random testing. In the current

scenario, Random testing is widely used for gaming and

protocol testing because of running large number of test cases

with high failure detection efficiency. Random testing cannot

get perfect or optimal results, but it can get pretty good results

with low cost. In some cases, random testing methods are more

practical than any option.

7. Future Work

Randomized algorithms are not realistic, they are probabilistic.

We should make it more realistic by applying various new

approaches. In this testing there are many of the tests are

redundant and unrealistic, we needs to remove redundant and

unrealistic test cases. We also needs to minimize time which is

spend on analyzing the test cases and facilitate to recreate the

test if we do not record what data was used for testing.

8. References

[1] Bo Zhou, Hiroyuki Okamura, Tadashi Dohi "Enhancing

Performance of Random Testing through Markov Chain Monte

Carlo Methods" IEEE Transactions on Computers, VOL. 62,

NO. 1, JANUARY 2013

[2] Tsong Yueh Chen, Fei-ChingKuo,HuaiLiu, W. Eric Wong "Code

Coverage of Adaptive Random Testing" IEEE Transactions on

Reliability, VOL. 62, NO. 1, MARCH 2013

[3] Ali Shahbazi, Andrew F. Tappenden, James Miller "Centroidal

Voronoi Tessellations—A New Approach to Random Testing"

IEEE Transactions on Software Engineering, VOL. 39, NO. 2,

FEBRUARY 2013

[4] Junpeng Lv, Hai Hu, Kai-Yuan Cai "A Sufficient Condition for

Parameters Estimation in Dynamic Random Testing" 2011 35th

IEEE Annual Computer Software and Applications Conference

Workshops, 978-0-7695-4459-5/11 $26.00 © 2011 IEEE

[5] Andrea Arcuri, Muhammad Zohaib Iqbal, Lionel Briand

"Random Testing: Theoretical Results and Practical

Implications" IEEE Transactions on Software Engineering, VOL.

38, NO. 2, MARCH/APRIL 2012

[6] Rajiv Chopra, Sushila Madan "Reusing Black Box Test Paths

For White Box Testing of Websites" 978-1-4673-4529-

3/12/$31.00 c-2012 IEEE

[7] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu "Application

of a Failure Driven Test Profile in Random Testing" IEEE

Transactions on Reliability, VOL. 58, NO. 1, MARCH 2009

[8] Andrew F. Tappenden, James Miller "A Novel Evolutionary

Approach for Adaptive Random Testing" IEEE Transactions on

Reliability, VOL. 58, NO. 4, DECEMBER 2009

[9] Rubing Huang, Xiaodong Xie, Tsong Yueh Chen, Yansheng Lu

"Adaptive Random Test Case Generation for Combinatorial

Jaypal D. Rangari
1
 IJECS Volume 3 Issue 5 May, 2014 Page No.5642-5646 Page 5646

Testing" 2012 IEEE 36th International Conference on Computer

Software and Applications, 0730-3157/12 $26.00 © 2012 IEEE

[10] Zhi Quan Zhou, Arnaldo Sinaga, Willy Susilo "On the Fault-

Detection Capabilities of Adaptive Random Test Case

Prioritization: Case Studies with Large Test Suites" 2012 45th

Hawaii International Conference on System Sciences, 978-0-

7695-4525-7/12 $26.00 © 2012 IEEE

[11] Padmanabhan Krishnan, R. Venkatesh, Prasad Bokil, Tukaram

Muske, Vijay Suman "Effectiveness of Random Testing of

Embedded Systems" 2012 45th Hawaii International Conference

on System Sciences, 978-0-7695-4525-7/12 $26.00 © 2012

IEEE

[12] Manuel Oriol "Random testing: evaluation of a law describing

the number of faults found" 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation,

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

[13] Bo SUN, Yunwei DONG, Hong YE "On Enhancing Adaptive

Random Testing for AADL Model" 2012 9th International

Conference on Ubiquitous Intelligence and Computing and 9th

International Conference on Autonomic and Trusted Computing,

978-0-7695-4843-2/12 $26.00 © 2012 IEEE

[14] Andrea Arcuri, Lionel Briand "Formal Analysis of the

Probability of Interaction Fault Detection Using Random

Testing" IEEE Transactions on Software Engineering, VOL. 38,

NO. 5, SEPTEMBER/OCTOBER 2012

[15] Marc Mézard, Cristina Toninelli "Group Testing With Random

Pools: Optimal Two-Stage Algorithms" IEEE Transactions on

Information Theory, VOL. 57, NO. 3, MARCH 2011

[16] Sachhidh Kannan, Jeyavijayan Rajendran, Ramesh Karri, Ozgur

Sinanoglu, "Sneak-Path Testing of Crossbar-Based Nonvolatile

Random Access Memories" IEEE Transactions on

Nanotechnology, VOL. 12, NO. 3, MAY 2013

[17] Robert Merkel, Fei-Ching Kuo, Tsong Yueh Chen"An analysis

of failure-based test profiles for random testing" 2011 35th IEEE

Annual Computer Software and Applications Conference, 0730-

3157/11 $26.00 © 2011 IEEE

[18] Rajeev Motwani and P. Raghavan. Randomized Algorithms.

Cambridge University Press, New York (NY), 1995

[19] http://samate.nist.gov/SRD/testsuite.php

Author Profile

Jaypal D. Rangari received B.Sc. degree in Mathematics from

Nagpur University, Maharashtra, India. He received Master degree in

Computer Application in 2012 from University of Mumbai. Currently

pursuing M.Tech. (Final Year) in Computer Science and Engineering

from G. H. Raisoni College of Engineering Nagpur, Maharashtra,

India. His research area of interests in Software Engineering, Software

Testing, Algorithm and Data Structure. At present he is engaged in

“Enhance Performance of Random Testing using Randomized

Algorithm” under the guidance of Prof. Swapnili P. Karmore

