
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 4 Issue 8 Aug 2015, Page No. 13956-13963

Badamasi Imam Ya’u, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13956-13963 Page 13956

Component-Based: The Right Candidate for Restructuring the

Nature of Software Development in Organizations
Badamasi Imam Ya’u

International Islamic University Malaysia,

P. O. Box 10, 50728 Gombak, Kuala Lampur, Malaysia

Email: badayau@gmail.com

Abstract

Component-based software development is an emerging field in software engineering aims toward the cost

effective development of composite components or a complete system by reusing pre-built components or

subsystems that are perhaps stored in a repository. In this paper the techniques of current software model

such as objects and classes in object-oriented programming language and architecture models have been

studied and hence coming up with the rationale of using a component-based software model with a unique

property of compositionality and encapsulation as contrarily to what happens in the current component

models.

1.0. Introduction

It is ubiquitous that many people interchange the

meaning of software and computer programs. As

we know, a computer program is a step by step

sequence of instructions that perform or carryout a

particular task, and therefore it is virtually

concerned as line by line written code. In the other

hand, software is a broader term that not only

confines about instruction coding but also entails

all necessary details such as other programs

incorporated in the software, software installation

requirements, configuration files, system

documentation, license, user documentation,

website information etc. [1]. The process of

developing, organizing, maintaining, managing,

specifying, evolving the software system is known

as software engineering. Software engineering is a

field of engineering applied to software system

with the aim of rapid and cost effective production

of software to satisfy the end users. The notion of

software engineering began in 1968 during the

software crisis as a result of the then emergence of

new powerful third generation computer hardware

[2]. Right from that time, the needs for software

always increased as the computer based systems

are produced. More and more electronic products

incorporate computer software in different forms,

and the cost of these software products plays

significant role in the total system cost. So

because of the dependability on those complex

computer-based systems, the production of cost

effective software systems is essential for the

http://www.ijecs.in/

DOI: 10.18535/ijecs/v4i8.59

Badamasi Imam Ya’u, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13956-13963 Page 13957

national and international economy which is the

primary goal of software engineering.

This paper focuses on Component-based

development which is a branch of software

engineering aims towards a systematic way of

reusing pre-built software components or sub-

systems in a cost effective approach to develop

larger and larger systems.

Prior to any software development, are a lot of

activities that involve software requirement

specification, analysis, design etc. These

requirements are mostly enquired from the

intended customers, stakeholders, clients and

other end users. Different techniques are available

and used to gather the necessary requirements;

these include interview, discussion, administration

of questionnaire, documentation, etc. Components

are to be built on the basis of systematic

compositionality and encapsulation model where

each component encapsulates computation (data)

and its composition connector or operator

encapsulates controls for such interaction. Each

component has an interface through which it

receives and sends information.

2.0. Motivation

Component-based development (CBD) is an

important area of software engineering that is

emerging and focuses more on the reusability of

components. For long, industries have been

looking a way or technique that will be used to

reduce the cost of software production and

maintenance as well as decreasing the time of this

software to markets. Component-based models

promise all these [3]. The backbone of any CBD

technique is its underline software component

design which describes its functionality,

reusability, adaptability and defines how it can be

constructed; updated, deployed as well as

explaining what operations can be used on those

components and what are the constraints of these

operations.

Basically, two types of component models [4] do

exist: Object oriented models where objects

behave as components and communicate with

each other. Typical example is Enterprise

javaBeans (EJB) in object oriented programming.

The other type is where architectural units behave

as components in software architecture; typical

example of this model is architecture description

languages (ADLs). The aforementioned models

are the two major categories of component models

that cover all existing current software component

models such as JavaBeans, COM, web services,

UML 2.0, Koala, KobrA etc.

Ideally, components are developed according to

acceptable standard life cycle. That is, each

component should undergo three stages of

development: design phase, deployment phase and

runtime phase. By undergoing these stages, we

assume that a component conforms to the

acceptable CBD desiderata. The criteria for this

desiderata is that, from the design phase,

components should be preexisting software

fragments developed and stored in repositories by

different or independent software developers and

further allow the reusability of these software

units by other independent parties to compose

DOI: 10.18535/ijecs/v4i8.59

Badamasi Imam Ya’u, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13956-13963 Page 13958

larger composite system that will satisfy their

need.

3.0. Software Requirement Specification

SRS is the technique of defining, describing, and

showing the total characteristics, behavior,

patterns etc. of the system or new system to be

developed. To develop or produce anything, we

need some raw ingredients as an input that will be

processed and yield an output. Requirements are

the building blocks and key ingredients of any

software system, and should therefore be properly

elicited. Variety of requirements elicitation

methods are adopted [5]. These include verbal

interviews, survey, questionnaires, scenarios etc.

Requirement elicitation is carried out by system

developer mostly through interaction with clients

and users. In the phase, two types of requirements

are obtained: Functional and non-functional

requirements. Functional requirements are those

requirements that describe the overall behavior

expected of the target system, i.e. the

functionalities or services the system should

provide. They are sometimes referred to as use

cases which completely describe the interactions

between a user and the software. They include

inputs, outputs, exceptions etc.

In the other hand, non-functional requirements are

requirements which do not directly define the

services or functions of a system but rather control

the functionality of the system. They are system

properties or constraints that determine the

behavior of the target system. They entail quality

standards, reliability, response time, storage

capacity performance requirement and design

constrains that are imposed during the software

design or implementation. Unlike functional

requirements, non-functional requirements relate

to the entire system rather than to individual

fragments of the system. In this case, their failure

significantly prevents the functionality of the

whole system.

4.0. Component-based Approach

To develop a component-based software system

that will support incremental composition a

special component-based model of Kung Kiu Lau

with properties of encapsulation and

compositionality which is coupled with exogenous

connectors that help improves the lapses therein

current component models [6]. The encapsulation

property wraps the computations that occur in the

components and control mechanism that passes to

and pro from the exogenous connector whereby

making data and computation private from

outsiders of the component; while making total

freedom for the exogenous connector to initiate

and pass control. This feature makes the model so

efficient in alleviating tight coupling during

component’s communication. A good description

of this model follows in the subsequent sections.

4.1. Basic Entities of Components

In this approach, a component based model is

defined to have the properties of compositionality

and encapsulation. To express these properties,

two basic entities by which each component

DOI: 10.18535/ijecs/v4i8.59

Badamasi Imam Ya’u, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13956-13963 Page 13959

possesses need to be understood. These are

computation unit and connector [7].

 Computation unit: is more or less a

private section where a component stores a

set of methods, data (services); and

provides these services when they are

needed outside of the component (for other

computation units). The methods are

invoked but the invocation in this respect

is not direct as in object oriented

components. Everything is private and

encapsulated within the computation unit;

i.e. there no inter method invocation

between computation units, rather any

communication should be passed and

controlled via an intermediary.

 Connector: This is the intermediary that

passes control between computation units

or components. Since we are talking about

composition, the intermediary is not meant

to be a single connector merely for a single

component. To deal with composition, two

types of connectors do exist: invocation

and composition connector.

 Invocation connector: is a unary

level i.e. the lowest level connector

that is encapsulated in a single

component. It receives control

from outside of the component,

passes this control to the

computation unit to invoke the

chosen methods or services and

sends or passes back the control

after the execution of the request to

where it was initially came outside

of the component. The invocation

connector therefore encapsulates

control in this respect.

 Composition connector: Like

invocation connector, a

composition connector also

coordinates and encapsulates

control but in this case for a set of

components. Because of the

hierarchical nature of the

composition. Variety of n-ary

composition connectors are used to

accomplish the compositional task.

These include: sequencing e.g.

sequencer to pass control serially; a

pipe to pass result of one

component that is required in other

unit. We use selector connector for

branching among the components,

loop for iteration and guard

connector for verification.

4.2. Kinds of Component

To exploit the usefulness of invocation and

composition connectors, components are

categorized into two classes; atomic and

composite components [8].

 Atomic component consists of

computation unit and invocation connector

and therefore encapsulates computation.

 Composite component entails the

combination of atomic components

connected by composition connector such

as sequencing, selector, pipe etc. it

DOI: 10.18535/ijecs/v4i8.59

Badamasi Imam Ya’u, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13956-13963 Page 13960

encapsulates computation and control by

connecting the subcomponents to the

interface of the composite component.

The figure below depicts the two kinds of

components i.e. atomic and composite

components as shown in [9].

Fig 1: Atomic and Composite component

4.3. Properties of Component Model

Virtually, software component models have some

distinct special properties that distinguish them

from others. The distinguishing characteristics

that make this component model so special and

work in a superb manner are the following two

main techniques:

4.3.1. Encapsulation

Encapsulation [10] is a term that specifies a region

of control and ownership which a component

maintains. Components usually have data and

processes by which those data are computed. To

differentiate a component with class or object in

object oriented programs, both data and

computation should be encapsulated in the

component model making them both private from

the external environment. While in other hand, an

object can only encapsulate data. By making the

data and the computation private, I mean there is

no direct access to that region. Any access should

be provided by interfaces. This makes the

computation to be done within the component unit

itself without having invoked to other units. If we

look at the picture depicted in the fig 4 above, we

see that in all cases data in a blue rectangular box

is encapsulated. In 1(a) the invocation connector

and the computation unit are surrounded by dotted

line, showing that computation is encapsulated in

the atomic component. So no any outside method

can directly have access to the computation

without the intervention of the invocation

connector. While in 1(b), both computation and

control are encapsulated by the dotted line to

make the composition connector and the

individual computations in F and G private to

other components.

4.3.2. Compositionality

The general idea is how to utilize our

understanding of software component with the

characteristics of encapsulation to continue

building more and more composite components.

Component should then be compositional, i.e.

having two or more components in a repository,

say F and G as depicted in figure 3, with each

atomic component maintaining the property of

encapsulation as in 1(a) above, then a composite

component say H can be built by assembling F

and G as shown in 1(b) above coupled with

inheriting both encapsulation and

H

DOI: 10.18535/ijecs/v4i8.59

Badamasi Imam Ya’u, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13956-13963 Page 13961

compositionality properties. Since computation

and control are encapsulated for any composition,

depending upon the number of preexisting

components we have in the repository and the new

ones constructed on the ground that the system

needs, we continue to compose larger complex

composite components or system with similar

property of compositionality [11].

4.3.3. Exogenous Connectors

As we have seen so far, current component

models use connectors as a mechanism for

message passing; the connectors being just a

medium such as bus in C2 [12] for establishing

communication between components. The pitfall

here is that, everything is initiated and coordinated

in the components. Computation as well as

origination of control are done in the components;

thus enables the component to initiate method call

(or remote procedure call) and manipulate their

returns. This technique only allows the connector

to coordinate the flow of the messages between

the components and hence maximizes coupling

among the components and connectors.

The rationale in exogenous connector is to

alleviate external dependency and coupling so that

computation and control are separated and done in

the component and connectors respectively. In

exogenous connector as shown in fig 2 below,

there is no direct interaction between component

A, B, C, D and E, rather all components respond

by sending their reactions to the intermediate

connectors Con1, Con2, Con3 and Con4. In this,

the exogenous connectors encapsulate the entire

control of the interaction; they initiate the method

calls in the components and coordinate any flow

between the connected components.

Fig 2: components connected by exogenous

connector

In current component models where messaging

passing of either direct or indirect methods are

adopted, the connectors are merely channels that

support interaction; since computation and control

are handled in the components, the connectors are

not meant to be stored in the repository, for they

are not reusable; they are specifically meant for

particular application. For better wellbeing of

component-based method, the adaptation of

exogenous connectors to separate control from

computation is really expedient.

4.4. Example Using Partial Architectures

Partial architectures with open interfaces are used

during component development process to enable

incremental composition to the completion of the

development where they become components with

closed interfaces [13]. To describe how the

composition will be done, let us use a simple

example of the following requirements.

R1. Customers scan items from their shopping

basket in supermarkets.

DOI: 10.18535/ijecs/v4i8.59

Badamasi Imam Ya’u, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13956-13963 Page 13962

R2. A machine reads the bar code of the item and

displays the amount.

R3. Customers then pay the amount of their items

by cash or using credit card

R4. The machine then verifies the payment and

prints receipt for the customer

In this simple example we have four requirements

that merely require a component scanner that will

read the car code, a component display, cash, card

reader, authentication, and print components.

Fig 3: Partial architectures of self-service machine

The above example is incomplete in the sense it

only shows the partial architectures rather than

depicting a complete system with all level

composition connectors. Like in the first

composition, we need a pipe connector to push the

data from code reader to display amount; in the

second composition a selector is needed for

branching and finally pipe connector to compose

the entire system. However, during the

progression of the project, a tool will be

developed to implement the task.

5.0. Conclusion

Component-based software development brings

lots of benefits to organizations and software

vendors for the provision of reusability of

components. To serve the same purpose, this

project was started from the scratch and aims for

mapping requirements directly to components as

traditional structured models fall short to achieve.

It involves automatic extraction and incremental

mapping of parts of speech from natural language

requirements specification to partial architecture

under construction. In realizing this, the project

adopts a special component model with the

properties of encapsulation and compositionality

which uses exogenous connectors that ensure

loose coupling in the system.

6.0. Reference

1. Stephen R. Schach (2002). Object-

Oriented and Classical Software

Engineering. McGraw-Hill Higher

Education, 1221 Avenue of the Americas,

New York, NY 10020. Fifth edition.

2. Sommerville (2001). Software

Engineering. Sixth edition, Pearson

Education limited.

3. A. W. Brown. Large-Scale, Component-

based development. Object and component

technology series, 2000.

4. K-K. Lau and Z. Wang: Software

Component Models. IEEE Transactions on

Software Engineering Vol. 33, No. 10

October 2007.

5. M. Saeki, H. Horai and H. Enomoto:

Software Development Process from

natural Language Specification. In proc.

11th ICE, pages 64-73. ACM, 1989, ACM.

6. K.-K. Lau, A. Nordin and T. Rana.

Constructing Component-Based Systems

Directly from Requirements Using

Incremental Composition.

7. K.-K, Lau M. Orgaghi, Z. Wang: A

Software Component Model and its

DOI: 10.18535/ijecs/v4i8.59

Badamasi Imam Ya’u, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13956-13963 Page 13963

preliminary formalization. In: de Boer.

F.S., Bonsangue, MM., Graf, S., de

Roever, W.-P (eds) FMCO 2005. LNCS,

vol. 4111, pp. 1-21. Springer, Heidelberg

(2006).

8. K.-K. Lau and I. Ntalamagkas.

Component-based Construction of

Component Systems with Active

Components. School of Computer Science,

University of Manchester.

9. K.-K, Lau (2010). A Software Component

Model with Encapsulation and

Compositionality.

10. K.-K. Lau and F. Taweel. Data

encapsulation in software components. In

H. Schmidt et al., editor, proc. CBSE

2005.

11. K.-K. Lau and I. Ntalamagkas. A

compositional approach to active and

passive components. In proc.

EUROMICRO- SEAA 2008, pages 76-83.

IEEE, 2008.

12. K.-K. Lau, P. V. Elizondo and Z. Wang.

Exogenous Connectors for Software

Components.

13. CBSE 2005, LNCS 3489, pp. 90-106

2005.

14. J. A. Wang (2000). Towards Component-

Based Software Engineering. Consortium

for computing in Small Colleges: Rocky

Mountain Conference, JCSC 16,

1(November 2000).

