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Abstract 

This paper studies the stochastic behavior of the LMS and NLMS algorithms for a system identification 

framework when the input signal is a Cyclostationary white Gaussian process. The input Cyclostationary 

signal is modeled by a white Gaussian random process with periodically time-varying power. Mathematical 

models are derived for the mean and mean-square-deviation (MSD) behavior of the adaptive weights with the 

input Cyclostationary. These models are also applied to the non-stationary system with a random walk 

variation of the optimal weights. Finally, the performance of the two algorithms is compared for a variety of 

scenarios. 
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1. INTRODUCTION  

        An important aspect of adaptive filter 

performance is the ability to track time variations 

of the underlying signal statistics. The standard 

analytical model assumes the input signal is 

stationary. 

        However, a non-stationary signal model can 

be provided by a random walk model for the 

optimum weights. The form of the mean-square 

error performance surface remains unaltered while 

the surface moves in the weight space over time. 

This model provides the conditions for the adaptive 

algorithm to track the optimum solution.  

        Alternatively, the input signal can be modeled 

as a Cyclostationary process in many practical 

applications. In these cases, the form of the 

performance surface is periodic with the same 

period as the input autocorrelation matrix. This 

performance surface deformation affects the 

adaptive filter convergence and is independent of 

changes in the optimum weights. This transient 

performance surface deformation can be modeled 

by standard analytical models. However, it is still 

desirable to understand the adaptive performance 

with non-stationary inputs. 

 Analysis of the LMS behavior for 

Cyclostationary inputs studied only its 

convergence in the mean. The special case of a 

pulsed variation of the input power and a linear 

combiner structure has recently been studied for 
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both LMS and NLMS algorithms. An analysis of 

the Least Mean Fourth (LMF) algorithm behavior 

for non stationary inputs has been recently 

presented. The analytical model derived for the 

LMF behavior was valid only for a specific form of 

the input autocorrelation matrix, and cannot be 

easily extended to a general time-varying input 

statistics. Also, as the LMF weight update equation 

is a function of a higher power of the estimation 

error, the statistical assumptions used are 

necessarily different from those required for the 

analysis of the LMS and NLMS algorithms.  

         Hence, the study of the behaviors of the LMS 

and NLMS algorithms under Cyclostationary 

inputs cannot be inferred from the analysis and new 

models must be derived. Adaptive solutions 

involving Cyclostationary signals have been 

sought for many application areas. In particular, 

communication, radar, and sonar systems 

frequently need such solutions, as several man-

made signals encountered in these areas have 

parameters that vary periodically with time. 

Thus, a statistical analysis of adaptive 

algorithms under Cyclostationary inputs could 

have a significant impact on a wide variety of 

problems involving Cyclostationary processes. The 

analysis of the adaptive filter behavior for 

Cyclostationary inputs is not easy because of the 

difficulty of modeling the input cyclostationarity in 

a mathematically treatable way. Thus, relatively 

simple models are needed from which to infer 

algorithm behavior for inputs with time-varying 

statistics. 

This paper presents statistical analyses of 

the Least Mean Square (LMS) and the Normalized 

Least Mean Square (NLMS) algorithms with 

specific Cyclostationary input signals and an 

unknown system in a system identification 

framework. The input Cyclostationary signal is 

modeled by a white Gaussian random process with 

periodically time-varying power. These models are 

used to study the adaptive filter performance for 

input signals with sinusoidal and pulsed power 

variations and a transversal filter structure. The 

cases of fast, moderate and slow power variations 

are considered. Mathematical models are derived 

for the mean and mean-square-deviation (MSD) 

behavior of the adaptive weights with these input 

cyclostationarities. These models are derived via 

extension of well-known results for the LMS and 

NLMS algorithms to the Cyclostationary case. 

These models are also applied to the non stationary 

channel with a random walk variation of the 

optimal weights. Simulation results show excellent 

agreement with the theoretically predicted 

behaviors, confirming the usefulness of the 

analytical model to study the adaptive filter 

behavior. 

2. Statistical Assumptions 

A. System Identification and the Markov Channel 

Model 

                    This paper studies the system 

identification model given in Fig. 1. The N 

dimensional input vector to the adaptive filter tap 

weights is given by 

 𝑋(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝑁 + 1)]T. 

The observation noise ŋ0(n) is assumed to be a 

zero-mean i.i.d. random sequence, with variance 

σ0
2 and statistically independent of any other 

signal. 
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       The standard random-walk model is used for 

the unknown channel 

           H(𝑛 + 1) = 𝐻(𝑛) + 𝑄(𝑛)       (2.1) 

Where Q(n) is a white Gaussian vector with zero 

mean and covariance matrix      

E[Q(n)QT(n)]=σq
2(n)I.                         (2.2) 

 

            The Vector sequence Q(n) is assumed 

independent of both X(n) and n0(n). 

 

       Fig.1. System Identification Model 

 

B. Independence Theory and the Performance 

Measure   

       The Independence Theory (IT) of adaptive 

filtering assumes that the weights at time 𝑛  are 

statistically independent of the input vector at time 

n. The use of this assumption considerably 

simplifies the stochastic analysis of the adaptive 

filter. 

MSD is given by  

 

MSD(𝑛)=E[(W(𝑛)-H(𝑛))T(W(𝑛)H(𝑛))] (2.3) 

C. Cyclostationary Input Signal Model 

 

     A wide sense Cyclostationary random process 

y(t) is defined as 

        E[y(t1+T)]=E[y(t1)]                     (2.4) 

        E[y(t1+T)y(t2+T)]=E[y(t1)y(t2)]  (2.5) 

For all t1 and t2 and where T is the period. simple 

model is considered sinusoidal power time 

variation. 

σx
2 (n)=β(1+sin(ω0n)) for β>0,ω0>0   (2.6) 

         The time variations can be classified as slow, 

moderate or fast as compared to the length of the 

filter. Hence, the variations are slow if ω0N <<2π 

and if N<<T . The variations are fast for if ω0N 

>>2π and if N>>T . The variations are moderate for 

if ω0N =2π and if N=T. 

3. LMS Algorithm 

         The LMS weight update recursion  is 

             W(n+1)=W(n)+µe(n)X(n)      (3.1) 

 where 

   e(n)=HT(n)X(n)+n0(n) -WT(n)X(n)   (3.2) 

and  µ is the step-size. Defining the weight error 

vector  V(n)=W(n)-H(n) 

V(n+1)={I-µX(n)XT(n)}V(n)+µn0(n)X(n)-Q(n)                                                     

(3.3)                               

 

A. LMS Mean Behavior 

E(V(n+1)]= {I-µRX(n)}E[v(n)]           (3.4) 

B. LMS MSD Behavior 

Kvv(n+1)= Kvv(n)- µ[RX(n) Kvv(n)+   Kvv(n)RX(n)]+ 

µ2{2RX(n) Kvv(n)RX(n)+Tr[RX(n) Kvv(n)RX(n)]}+µ2 

σ0
2(n)RX(n)+ σq

2(n)I                    (3.5) 

 

4. NLMS Algorithm 

        The NLMS weight update recursion  is 

               w(n+1)=w(n)+µ
𝑒(𝑛)𝑋(𝑛)

𝑋(𝑛)𝑋𝑇(𝑛)
    (4.1) 

where 

       e(n)=HT(n)X(n)+n0(n)-WT(n)X(n) 

(4.5) 
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and  µ is the step-size.  

A. NLMS Mean Behavior 

E[V(n+1])={I- µ𝐸 [
𝑋𝑇(𝑛)𝑋(𝑛)

𝑋(𝑛)𝑋𝑇(𝑛)
]} E[V(n)](4.6) 

B. NLMS MSD Behavior 

           MSD Behavior of NLMS is given by 

Kvv(n+1)=Kvv(n)-  µ𝐸 [
𝑋𝑇(𝑛)𝑋(𝑛)

𝑋(𝑛)𝑋𝑇(𝑛)
] 𝐾𝑣𝑣(𝑛) -

µ 𝐾𝑣𝑣(𝑛)𝐸 [
𝑋𝑇(𝑛)𝑋(𝑛)

𝑋(𝑛)𝑋𝑇(𝑛)
] [

𝑋(𝑛)𝑋𝑇(𝑛)𝐾𝑣𝑣(𝑛)𝑋(𝑛)𝑋𝑇(𝑛)

[𝑋𝑇(𝑛)𝑋(𝑛)]2 ] + 

µ2E[n0
2(n)]E [

𝑋(𝑛)𝑋𝑇(𝑛)

[𝑋𝑇(𝑛)𝑋(𝑛)]2]+ σq
2(n)I                          (4.7) 

5. Simulation results of LMS and NLMS 

algorithms 

              This section provides simulation results of 

LMS and NLMS algorithms. The simulations are 

done for the case of Cyclostationary random 

processes with sinusoidal power variations and 

pulse time power variations. The analysis is done 

for a system identification framework. The 

unknown system is modeled by the standard 

random-walk model. For periodic variation in the 

input power, the steady-state mean-square 

deviation (MSD) of the NLMS algorithm is shown 

to be periodic with the same period as that of the 

variation in the input power. 

              The transient and the steady-state MSD 

performances are not affected by rapid variation in 

the input power. 

Simulation Results for Sinusoidal Input Power 

Variations 

 

               Fig.2. LMS Fast Variation 

              

Fig.3. LMS Moderate Variation 

 

                 Fig.4. LMS Slow Variation 

 

                 Fig.5. NLMS Fast Variation 
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           Fig.6. NLMS Moderate Variation 

 

             Fig.7. NLMS  Slow Variation 

 

Simulation Results for Pulse Input Power 

Variations 

 
               Fig.8. LMS Fast Variation 

 
            Fig.9. LMS Moderate Variations 

 
               Fig.10. LMS Slow Variations 

 

 
               Fig.11. NLMS Fast Variation 

 

           
Fig.12. NLMS Moderate Variation 
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          Fig.13. NLMS Slow Variation 

 

6. COMPARISION OF LMS AND 

NLMS ALGORITHMS             

           The choice of algorithm depends upon the 

stability and tracking properties of each algorithm 

in the different environments studied in this paper. 

However, the NLMS algorithm is to be 

recommended based on stability, transient response 

and steady-state behavior as discussed above. 

Furthermore, the two algorithms share the 

following properties: 

1) For periodic input power variations, the mean-

square deviation (MSD) converges to a periodic 

sequence with the same period as the input power 

variations.  

2) Neither the transient nor the steady-state 

performance is affected by rapid input power 

variations (period of the variation of the input 

power<<N).  

They differ in the following properties: 

1) For slow input power variations, the transient 

NLMS MSD behavior does not depend on the rate 

of variation of the input power, while the LMS 

MSD behavior does.  

2) For a fixed plant with slow input power 

variations, the steady-state LMS MSD has 

negligible time-variations, while the NLMS MSD 

has significant time-variations.  

 

7. CONCLUSION 

           This paper studies the stochastic behavior of 

the LMS and NLMS algorithms for a system 

identification framework when the input signal is a 

Cyclostationary white Gaussian process. It was 

found that the MSD converges to a periodic 

sequence with the same period as that of the 

periodic input power variation. Neither the 

transient nor the steady-state performance is 

affected by rapid input power variation. The 

performances of the two algorithms are compared 

and the NLMS algorithm is chosen on the basis of 

stability, transient response and steady-state 

behavior. The results of this paper suggest that the 

NLMS algorithm can be used effectively with 

Cyclostationary inputs such as voice data. 
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