
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 4 Issue 8 Aug 2015, Page No. 13921-13926

Mr. Bhushan Kinholkar, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13921-13925 Page 13921

Study of Growing Grapes Technique for Malware Detection
Mr. Bhushan Kinholkar

PG Student, Department of Computer Science Engineering

SSBT’s College of Engineering and Technology, Jalgaon, India.
bhushank0029@gmail.com

Abstract: The Behavior based detection is promising to solve the pressing security problem of malware. The great challenge lies in how to

detect malware in a both accurate and light-weight manner. The Behavior based detection method, named growing grapes, aiming to enable

accurate online detection. It consists of a clustering engine and detection engine. The clustering engine groups the objects, e.g., processes

and files, of a suspicious program together into a cluster, just like growing grapes. The detection engine recognizes the cluster as malicious if

the behaviors of the cluster match a predefined behavior template formed by a set of discrete behaviors. Malware based on multiple

behaviors and the source of the processes requesting the behaviors. Light-weight as it uses OS level information flows instead of data flows

that generally impose significant performance impact on the system. To further improve the performance, a novel method of organizing the

behavior template and template database is proposed, which not only makes the template matching process very quick, but also makes the

storage space small and fixed. Furthermore, the detection accuracy and performance are optimized to the best degree using a combinatorial

optimization algorithm, which properly selects and combines multiple behaviors to form a template for malware detection. Finally, malicious

OS objects in a cluster fashion rather than one by one as done in traditional methods, which help users to thoroughly eliminate the changes

of a malware without malware family knowledge.

Keyword: Malware Detection, Growing Grapes, OS Level

1. Introduction

The Behavior based detection techniques can provide

promising alternative solutions to the growing malware

problem. Unlike signature based techniques that examine the

syntactic pattern of a program’s binary, behavior based

techniques focus on the actual actions that the program

performs in the system to access system services or resources.

Behavior based detectors is difficult to be by passed by

obfuscations or polymorphisms that are used to evade signature

based detectors. Moreover, as featured malware behaviors are

often shared by a family of malware instances instead of

pertaining to only an individual instance, behavior based

detectors are able to detect previously unseen malware

instances and avoid the need of a large database of signatures

to identify each known piece of malware instance. The grand

challenge in behavior based malware detection is to perform

detection accurately with a low performance overhead.

Commercial antivirus tools often have a module for monitoring

malicious behaviors, which is light-weight but not accurate.

The module only leverages a single system call and the

parameters to determine a malicious program. For example,

intercepting and analyzing the arguments to determine whether

a program is trying to modify a security sensitive registry key,

and then given up an alarm window when this is true. As a

outcome, such a module imposes small performance overhead

on the system but at the same time produces frequent false

alarms that annoy users. Many users even simply disable the

behavior monitoring module.

 On the other hand, state of the art behavior-based malware

detectors meaningful improve the detection accuracy at the

cost of heavy overhead on the system. They extract

dependencies among system calls to construct dependency

graphs, and match the activities of a program with predefined

dependency graphs to determine if it is a malware. Extracting

dependencies requires tracing data flow which meaningfully

slows down the system and needs virtual machine technology

to support. Moreover, matching dependency graph requires a

complex algorithm that further slows down the system

especially when the number of predefined dependency graphs

is large in a real application scenario. Therefore, existing

detection technologies cannot work effectively online, since

they are bulky or inaccurate. By carefully analyzing existing

technologies, find that they commonly determine whether a

program belongs to a specific malware family based on

implementation specific artifacts such as byte sequences and

dependencies among system calls. When the artifacts are

simple, the detectors are light weight but not accurate. On the

other hand, creating more accurate detectors with more

complex artifacts would incur a heavy overhead. Moreover,

existing technologies often target to identify the exact family

of a malware rather than simply discriminate a malware from

benign software. Identifying a malware family is useful when

cleaning up the impacts of a malware, but the need of a more

complex specification to recognize the malware family affects

the performance of the system.

 In this paper study of growing grapes the devise a novel

malware detector, named Growing Grapes, which can achieve

accurate malware detection without incurring high overhead.

The detector consists of a clustering engine and a detection

engine. The clustering engine correlates suspicious objects into

a number of clusters by tracking OS level information flows

and attaching a cluster label to each object. Each of the

obtained clusters contains either all benign objects or all

malicious objects. The detection engine determines a malicious

cluster by matching a predefined behavior template. A

http://www.ijecs.in/

DOI: 10.18535/ijecs/v4i8.54

Mr. Bhushan Kinholkar, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13921-13926 Page 13922

behavior template consists of a group of independent atomic

behaviors, each of which serves for different malware intent,

for example, hiding itself from users or disabling antivirus

tools. Each atomic behavior consists of a system call and their

arguments. All templates are stored in a behavior template

database.

 In order to have an accurate online detector, the define two

techniques. First, to achieve accurate detection, using a

simulated annealing algorithm to optimally select a set of

behaviors to form a behavior template to identify a single

malware. With the optimal combination of behaviors in a

behavior template and the combination of templates in the

template database, the malware detector can identify the

maximum possible number of malware samples while

incurring the minimum false positive rate. The further reduce

the false positive rate; implicitly take into account the source of

the processes launching the behaviors when determining a

malicious cluster. Second, take two means to achieve online

detection: 1) The devise a novel method to correlate system

calls of a malware’s all processes using light weight OS level

information flows rather than traditional data flows; 2)The

design a novel structure for the template database. The

database occupies a small and fixed size of memory even when

the number of templates contained increases up to millions.

With the support of the database, a template searching and

matching algorithm becomes very simple, and it only needs to

simultaneously test 45 bits within one operation.

2. Related Work

Growing Grapes is a type of behavior-based detector which

monitors system calls or API calls, but it differs from all

existing behavior based studies. Previous work takes into

account the relations among system calls, for example This

paper reports preliminary results aimed at establishing such a

definition of self for Unix processes, one in which self is

treated synonymously with normal behavior. That short

sequences of system calls in running processes generate a

stable signature for normal behavior. The signature has low

variance over a wide range of normal operating conditions and

is specific to each different kind of process, providing clear

separation between different kinds of programs. Further, the

signature has a high probability of being relaxed when

abnormal activities, such as attacks or attack attempts, occur.

These results are significant because most prior published work

on intrusion detection has relied on either a much more

complex definition of normal behavior or on prior knowledge

about the specific form of intrusions. The suggest that a

simpler approach, such as the one described in this paper; can

be effective in providing partial protection from intrusions.

One advantage of a simple definition for normal behavior is the

potential for implementing an on line monitoring system that

runs in real time [1].

In this paper, present a robust signature based malware

detection technique, with emphasis on detecting obfuscated

malware and mutated malware. The hypothesis is that all

versions of the same malware share a common core signature

that is a combination of several features of the code. After a

particular malware has been first identified, it can be analyzed

to extract the signature, which provides a basis for detecting

variants and mutants of the same malware in the future.

Encouraging experimental results on a large set of recent

malware are presented [2].

In this paper capitalize on earlier approaches for dynamic

analysis of application behavior as a means for detecting

malware in the Android platform. The detector is embedded in

an overall framework for collection of traces from an unlimited

number of real users based on crowdsourcing. The framework

has been demonstrated by analyzing the data collected in the

central server using two types of data sets those from artificial

malware created for test purposes, and those from real malware

found in the wild. The method is shown to be an elective

means of isolating the malware and alerting the users of a

downloaded malware. This shows the potential for avoiding

the spreading of a detected malware to a larger community [3].

There are many different levels on which IDS can monitor

system behavior. It is critical to profile normal behavior at a

level that is both robust to variations in normal and relaxations

by intrusions. In the work reported here, chose to monitor

behavior at the level of privileged processes. Privileged

processes are running programs that perform services (such as

sending or receiving mail), which require access to system

resources that are inaccessible to the ordinary user. To enable

these processes to perform their jobs, they are given privileges

over and above those of an ordinary user (even though they can

be invoked by ordinary users). In UNIX, processes usually run

with the privileges of the user that invoked them. However,

privileged processes can change their privileges to that of the

super user by means of the set mechanism. One of the security

problems with privileged processes in UNIX is that the

granularity of permissions is too coarse Privileged processes

need super user status to access system resources, but granting

them such status gives them more permission than necessary to

perform their specific tasks. Consequently, they have

permission to access all system resources, not just those that

are relevant to their operation. Privileged processes are trusted

to access only relevant system resources, but in cases where

there is some programming error in the code that the privileged

process is running, or if the privileged process is incorrectly

configured, an ordinary user may be able to gain super user

privileges by exploiting the problem in the program. For the

sake of brevity, usually refer to privileged processes or

programs simply as and use the qualifier only to resolve

ambiguities [4].

An automatic technique for building such specifications is

desirable, both to reduce the AV vendors’ response time to

new threats and to guarantee precise behavioral specifications.

If the behavioral specification used for detection is not specific

enough, then there is a risk that benign applications will be

flagged as malware. Similarly, if it is too specific then it may

fail to detect minor variants of previously observed malware.

In this paper are define address the challenge of automatically

creating behavioral specifications that strike a suitable balance

in this regard, thus removing the dependence on human

expertise. The making the observation that the behavioral

specifications used in malware detection are a form of

discriminative specification. A discriminative specification

describes the unique properties for a set of programs, in

contrast to another set of programs. This paper gives an

automatic technique that combines graph mining and concept

analysis to synthesize discriminative specifications, and

explores an application of the resulting specifications to

malware detection. Given a set of behavior graphs that describe

DOI: 10.18535/ijecs/v4i8.54

Mr. Bhushan Kinholkar, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13921-13926 Page 13923

the semantics exhibited by malicious and benign applications,

the graph mining operation extracts significant behaviors that

can be used to distinguish the malware from benign

applications. As these behaviors are not necessarily shared by

all programs in the same set (as, for example, there are many

ways in which a malicious program can attack a system), the

use them as building blocks for constructing discriminative

specifications that are general across variants, and thus robust

to many obfuscations. Furthermore, because our graph mining

and specification construction algorithms are indifferent to the

details of the underlying graph representation, technique

complements and benefits from recent advances in binary

analysis and behavior graph construction [5].

A common application of virtual machines (VM) is to use

and then throw away, basically treating a VM like a completely

isolated and disposable entity. The disadvantage of this

approach is that if there is no malicious activity, the user has to

re do all of the work in her actual workspace since there is no

easy way to commit (i.e., merge) only the benign updates

within the VM back to the host environment. In this work,

develop a VM commitment system called Secom to

automatically eliminate malicious state changes when merging

the contents of an OS-level VM to the host. Secom consists of

three steps grouping state changes into clusters, distinguishing

between benign and malicious clusters, and committing benign

clusters. Secom has three novel features. First, instead of

relying on a huge volume of log data, it leverages OS-level

information flow and malware behavior information to

recognize malicious changes. As a result, the approach imposes

a smaller performance overhead. Second, different from

existing intrusion detection and recovery systems that detect

compromised OS objects one by one, Secom classifies objects

into clusters and then identifies malicious objects on a cluster

by cluster basis. Third, to reduce the false positive rate when

identifying malicious clusters, it simultaneously considers two

malware behaviors that are of different types and the origin of

the processes that exhibit these behaviors, rather than considers

a single behavior alone as done by existing malware detection

methods. The having successfully define Secom on the

Feather-weight Virtual Machine (FVM) system, a Windows

based OS-level virtualization system. Experiments show that

the prototype can effectively eliminate malicious state changes

while committing a VM with small performance degradation.

Moreover, compared with the commercial anti malware tools,

the Secom prototype has a smaller number of false negatives

and thus can more thoroughly clean up malware side effects. In

addition, the number of false positives of the Secom prototype

is also lower than that achieved by the on-line behavior-based

approach of the commercial tools [6].

3. Growing Grapes Technique

Growing Grapes approach consists of clustering engine and

detection engine. The clustering engine groups the objects of a

program together into a cluster. The detection engine decides

whether the cluster is malicious by monitoring all behaviors of

the cluster. If a cluster’s behaviors match a predefined behavior

template in the template database, then it is identified as

malicious. The behavior template database has a novel

structure to minimize the memory and runtime overheads.

Moreover, the templates in the database are optimized to

reduce false positives and negatives.

3.1 Cluster Engine

The clustering engine clusters together the suspicious objects

of a program. Suspicious objects are the ones that derive from

the Internet or removable drives, and are thus suspected to be

malicious. Suspicious objects only include processes and

executable files because a process is possibly the agent of an

intruder and an executable file determines the execution flow

of a process which represents an intruder. Based on the cluster,

they can completely monitor all atomic behaviors of a program

and perform accurate detection by using multiple atomic

behaviors to identify a single malware. Moreover, the cluster

can help users to clean up the malware without knowing the

exact family of the malware [7].

Figure 1: (a) Cluster, (b) Atomic Behavior, (c)Template

DOI: 10.18535/ijecs/v4i8.54

Mr. Bhushan Kinholkar, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13921-13926 Page 13924

The challenge is how to correlate suspicious objects together

into clusters in a light manner. Since objects of a malware

often have various types and are scattered all over the system,

it is difficult to associate them together. The observe that

objects of a malware can be correlated together by tracing OS-

level information flows, and at the same time the malicious

objects can be clearly separated from the other objects through

a proper way of attaching cluster labels to them. Accordingly,

the devise a novel approach to correlate suspicious objects into

clusters, which includes root rules, spreading rules and

clustering rules. These rules are explained in details in the

following subsections.

3.2 Root Rule

As all malwares come from either the network or removable

drives, we design root rules to mark the objects from the

network or removable drives as suspicious. These objects are

start points to trace suspicious objects.

 Root Rule A: Marking processes which conduct

remote communications as suspicious

 Root Rule B: Marking executable (i.e., executable

file) located at removable drives as suspicious.

An executable in this paper are define growing grapes

technique an executable file with a specific extension, such as

.EXE, .COM, .DLL, .SYS, .VBS, .JS, BAT, etc., or a special

type of data file that can contain macro codes, say a semi-

executable, such as .DOC, .PPT, .XLS, .DOT, etc. Growing

Grapes does not allow a suspicious process to change the

extension of a file in order to prevent its potential evasion of

tracing. With these two rules, all malwares that attempt to enter

the system can be tracked as there are only two ways for them

to break into system, either through network communications

or through a removable drive.

3.3 Spreading Rule

To track OS-level information flow, Back Tracker is a

successful approach. However, the major challenge is how to

make sure that it won’t get the entire system marked as

suspicious while at the same time preventing malwares to

escape from tracing. This needs to tradeoff between reducing

the number of marked objects and reducing the risk of malware

evasion. The approach is to trace preferentially the information

flows with a high risk of propagating malwares while pruning

the information flows with a low risk. Based on this principle,

the following rules to mark related objects as suspicious.

 Spreading Rule 1): Marking executable files created

or modified by a suspicious process as suspicious

 Spreading Rule 2): Marking processes spawned by a

suspicious process as suspicious

 Spreading Rule 3): Marking processes loading a

suspicious executable file or reading a suspicious

semi executable or script file as suspicious

 Spreading Rule 4): Marking processes receiving data

from a suspicious process through a dangerous IPC as

suspicious.

As an executable represents an inactive malware while a

process represents an active malware, the information flows

presented in these four rules have a high possibility of

propagating malwares [7]. Thus, to track the information flows

with a high risk of propagating malwares, the spreading rules

focus on tracing executable and processes. In the Spreading

Rule C, Semi-executable and script file possibly contain

malwares (e.g., macro virus in MS Word), and thus the

processes reading them need to be marked. Although the macro

virus protection in Office software can reduce the chances of

macro virus infection, relying on it is very dangerous as crafted

macro codes are able to subvert it and cause destructive

damages.

To prune the information flows which have a low risk of

propagating malwares, the spreading rules do not trace most

reading and writing operations on ordinary files, directories

and registry entries, which are frequently invoked but difficult

to propagate malwares. However, subtle malwares might evade

tracing by changing registry entries or configuration files

which subsequently affect the processes reading them, so as to

run malicious executables, escalate privileges, impose damages

on system, etc. No matter what evasion schemes the malwares

utilize, they need to run their own executables to perform the

tasks, which are downloaded from the network, copied from

removable drives, or obtained from changing local executables.

Since all executable related operations are thoroughly traced by

the Spreading Rule A and C, the malwares will be captured

whenever trying to load their executables. The two rules are

applicable to all existing malwares because they rely on their

own executables to perform malicious tasks on a host,

according to our analysis on Symantec Threat Explorer. In case

that a malware relies only on benign programs to perform

attacks, the Root Rule A still can capture it when it requires a

remote communication to accept commands to exploit the

benign program to perform the malicious tasks [7]. In addition,

for a few special registry entries and configuration files that

can be used by a malware to fool a benign program to execute

arbitrary commands, Growing Grapes permit a suspicious

process to modify them. Therefore, although the operations on

registry entries or configuration files are not traced, malwares

still cannot avoid being detected by Growing Grapes. To

reduce the number of marked processes, the spreading rules

only trace dangerous IPCs Inter Process Communication.

According to investigation on Microsoft Security Bulletins, a

primary source for analyzing attack vectors of Windows OS,

the overwhelming majority of vulnerable IPCs can only be

used to launch denial-of-service attack, disclose sensitive

information, or escalate the privileges of the processes that

send IPC data, rather than take control of the receiver process.

Accordingly, they cannot be used to propagate malwares.

Moreover, IPCs that can propagate malwares often rely on

network (e.g., Remote Procedure Call) and thus are traced by

the Root Rule A. Consequently, the employ a Dangerous-IPC-

List to trace dangerous IPCs since there are very few

dangerous IPCs in a Windows OS.

3.4 Clustering Rule

Based on the spreading rules, the suspicious objects are

actually connected to each other by information flows and

form an existent but invisible dependency graph, which had

been disclosed by the literature [7]. The graph is a directed

graph and has a root node. Its nodes represent OS objects, e.g.,

a file, a process. Its edges represent information flow related

operations, e.g., creating a process, modifying a file. Figure 2

(a) and (b) show two dependency graphs which are derived

from a networking process and an executable file respectively.

DOI: 10.18535/ijecs/v4i8.54

Mr. Bhushan Kinholkar, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13921-13926 Page 13925

The clustering rules are responsible for dividing the

dependency graph into sub graphs, i.e., clusters. note that, this

technique do not intend to really generate dependency graphs

to help cluster objects since this would not be applicable to an

online approach. Instead, the clustering rules are implemented

together with the spreading rules as follows: when an object is

determined as suspicious by clustering or spreading rules, a

proper cluster label, i.e., a number and a time stamp, will be

attached to it at the same time in order to denote that it is a

suspicious object and belongs to the cluster identified by the

label.

Figure 2: (a) Branch Cluster, (b) Drive Cluster.

In other words, the clustering rules are enforced along with

the spreading rules in real-time, rather than generating a

dependency graph and then analyzing it.

When a root object is a network facing process, its

dependency graph is to abrasive-grained to be used to

recognize malicious objects in a cluster fashion since it might

contain both benign and malicious objects [7]. In other words,

this technique cannot determine that all objects in a graph are

malicious even if most of the objects in the graph are

malicious. Thus, must partition the graph into a number of sub

graphs, say clusters, so that each cluster contains either only

benign or only malicious objects.

According to the recent research and analysis on a huge

number of malware descriptions in the Symantec Threat

Explorer, malwares break into a host through three basic attack

channels. The first is that, malwares exploit bugs in network

facing daemon programs or client programs and compromise

them, then immediately spawn a shell or backdoor process.

After this, the attacker tries to download and install attacking

tools, as well as performs any other adversary actions.

 Clustering Rule 1: Attaching a cluster label to a

process and its descendants if the process is directly

spawned by a network-facing process.

This type of cluster a branch cluster, e.g., the Branch cluster

B in Figure 2. A branch cluster corresponds to a sub graph of a

dependency graph which roots from a network-facing process.

The other attack channel is that, malwares increasingly use

social engineering to lure users into downloading and

launching them. After started, malwares copy themselves and

make themselves resident in a host. Consequently, the

following rule.

 Clustering Rule 2: Attaching a cluster label to a

downloaded executable and its descendants.

 Clustering Rule 3: Attaching a cluster label to an

executable file located on a removable drive and all

its descendent objects.

Another issue for labeling objects is about a joint child who

has multiple parent nodes in a dependency graph, e.g., the joint

children A and B in Figure 2 (a). That is, when the parent

nodes belong to distinct clusters, determine the cluster label of

the joint child. Basically, make decision according to the

priority sequence like other objects. Obviously, the joint child

should inherit the cluster label from its parent process or

executable file if either of them exists instead of other objects.

Moreover, as loading an executable is posterior to creating a

process and necessarily overwrites the newly created process

code segment, the new process activity is based on the loaded

executable. Hence, the joint child should inherit the label from

the loaded executable rather than the parent process if both

exist. If more than one parent node has the same priority in the

sequence above, the child inherits their labels in the reverse

time order. Consequently, the joint children A and B are

classified into Branch-cluster A and B respectively, as shown

in Figure 2(a). On the other hand, when splitting a dependency

graph into different branch clusters, a sophisticated malware

might intentionally separate an ASEP (Auto-Start Extensibility

Point) pair into two different clusters. Then, the two clusters

work together to perform malicious actions and potentially

evade Growing Grapes detection [7]. An ASEP is used to

enable auto starting of programs without an explicit user

invocation, and thus becomes a common target of infection by

malwares. An ASEP pair represents an ASEP and the

corresponding executable file. To mitigate this issue,

periodically scan the clusters to see whether there are split

ASEP pairs, and combine the related clusters together if found.

3.5 Detection Engine

The detection engine performs detection tasks by monitoring

the activities of each cluster. To obtain an accurate detection,

the engine decides a malicious cluster using multiple atomic

behaviors rather than a single atomic behavior [7]. The

multiple atomic behaviors used to determine a malware serve

as a predefined behavior template in a behavior template

database that belongs to the detection engine.

At a high level, using multiple atomic behaviors to identify a

malware is in accordance with the recent work that uses

multiple significant behaviors. An atomic behavior is often the

core of a significant behavior, because a significant behavior is

represented by a dependency graph that includes a mission-

critical system call as the core step. Moreover, the result from

another recent work also supports our idea of using multiple

behaviors. The result shows that a set of discriminative

operations can be used to recognize a malware family. This

actually proves that multiple operations can be used to

effectively detect a malware.

The challenge to building the detection engine is three folds.

The first is how to extract proper atomic behaviors that reflect

the intent of the malware authors from system specific details.

The second is how to construct behavior templates that can

effectively detect known and unknown malware with a small

number of false positives. The last is how to design an online

mechanism to efficiently match the behavior templates. The

present strategies for addressing these three challenges in the

following three subsections.

DOI: 10.18535/ijecs/v4i8.54

Mr. Bhushan Kinholkar, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13921-13926 Page 13926

An atomic behavior consists of an operation, the manipulated

object and the necessary arguments, which is critical to fulfill a

malicious intent, e.g., modifying registry key value for

surviving reboot. When the behavior is too specific, e.g.,

presenting the exact name of the registry key and value, the

behavior may fail to recognize the minor variants of previously

observed malware. Hence, a generalization is necessary.

The having two basic steps to generalize atomic behaviors

(1) Extracting security sensitive OS object types and operation

types based on careful analysis on system details; (2) Making

meaningful combinations of the OS object types and operation

types to form candidate atomic behaviors, which are shown in

the next paragraph.

B_file, B_registry, B_process, and B_system represent four

sets of atomic behaviors. The operation types of various

objects are a generalization of one or several system calls and

necessary arguments. The File Type is recognized from the

extension names of the files. The Parent Directory Type is

recognized by the environment variables or paths, which

represents the parent directory of the file. Registry Type is

identified by the paths of the registry keys. Process Type is

detected by the names and paths of the image files. As a result

of the generalization, and obtained 63 candidate atomic

behaviors. Some examples include “create executable files

under system directory”, “modify registry to disable firewall”

and “kill antivirus processes”.

As an online detector, the detection algorithm should be

quick and light-weight, which is critical to the applicability of

the detector. For Growing Grapes, the detection algorithm

searches in the behavior template database to determine

whether there is a template that matches the set of behaviors

exhibited by the given cluster. A natural implementation of the

algorithm might use a number to represent a behavior and a set

of numbers to constitute a template, and store a set of templates

into a template database. In a real application scenario, the

template database might be huge and thus cost a significant

amount of time to search within the whole database. As the

detection algorithm will be called very frequently by related

system calls and API functions, such implementation of the

algorithm will significantly affect the system performance.

To accelerate the template searching and matching procedure

is design a novel detection algorithm that uses a number to

represent a behavior template rather than a behavior. Each bit

of the number represents an atomic behavior belonging to the

template. Thus an integer with 64 bits can express a template

that consists of 64 atomic behaviors at most. Accordingly, the

template matching procedure only needs a single comparison

between two integers instead of a serial of such comparisons. If

the template database is very large, it is time consuming to

search through it. Hence, do not store all of the templates one

by one as traditional methods do. Instead, here is define a

novel structure for the template database, which uses a fixed

size of 21K memory to contain up to 264 templates and tests a

few bits within the 21K space to fulfill a query for a given

template.

4. Conclusion
 In this paper, the overall study of Growing Grapes, a novel

scheme towards building a behavior-based accurate online

detector that requires low false positive and high performance

simultaneously. Growing Grapes has two engines. One is the

clustering engine responsible for collecting the objects of a

suspicious program into a cluster by tracing light-weight OS

level information flow rather than traditional data flow. The

other is the detection engine that determines a malware using

multiple simple behaviors, i.e., a behavior template, rather than

a single complex behavior. The detector thus novelly identifies

the malicious changes of a malware in a cluster fashion rather

than one by one, which helps the ordinary users to thoroughly

clean up the malware. The template database is optimized to

reduce the false positive rate while preserving high true

positive rate. With a novel design of the template and database

structure, it can complete a query in one operation and

occupies merely 21K memory space which allows storing up to

2^64 templates.

Reference

[1] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.

Longstaff, “A sense of self for Unix processes,” in Proc.

IEEE Symp. Sec. Privacy, Oakland, CA, USA, May 1996,

pp. 120–128.

[2] S. Mukkamala, A. Sung, D. Xu, and P. Chavez, “Static

analyzer for vicious executables (SAVE),” in Proc. 20th

ACSAC, 2004, pp. 326–334.

[3] I. Burguera, U. Zurutuza, and S. N. Tehrani, Crowdroid:

Behavior based malware detection system for Android,”

in Proc. 1st ACM Workshop Sec. SPSMD, 2011, pp. 15–

26.

[4] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion

detection using sequences of system calls,” J. Comput.

Sec., vol. 6, no. 3, pp. 151–180, Jan. 1998

[5] M. Frederickson, S. Jha, M. Christodorescu, R. Sailer,

and X. Yan, “Synthesizing near-optimal malware

specifications from suspicious behaviors,” in Proc. IEEE

Symp. Sec. Privacy, Berkeley, CA, USA, Apr. 2010, pp.

45–60.

[6] Z. Shan, X. Wang, T. Chiueh, and X. Meng, “Safe side

effects commitment for OS-level virtualization,” in Proc.

8th ACM Int. Conf. Auto. Comput., 2011, pp. 111–120.

[7] Zhiyong Shan and Xin Wang,” Growing Grapes in Your

Computer to Defend against Malware “, Ieee transactions

on information forensics and security, vol. 9, no. 2,

February 2014.

