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Abstract: The Behavior based detection is promising to solve the pressing security problem of malware. The great challenge lies in how to 

detect malware in a both accurate and light-weight manner. The Behavior based detection method, named growing grapes, aiming to enable 

accurate online detection. It consists of a clustering engine and detection engine. The clustering engine groups the objects, e.g., processes 

and files, of a suspicious program together into a cluster, just like growing grapes. The detection engine recognizes the cluster as malicious if 

the behaviors of the cluster match a predefined behavior template formed by a set of discrete behaviors. Malware based on multiple 

behaviors and the source of the processes requesting the behaviors. Light-weight as it uses OS level information flows instead of data flows 

that generally impose significant performance impact on the system. To further improve the performance, a novel method of organizing the 

behavior template and template database is proposed, which not only makes the template matching process very quick, but also makes the 

storage space small and fixed. Furthermore, the detection accuracy and performance are optimized to the best degree using a combinatorial 

optimization algorithm, which properly selects and combines multiple behaviors to form a template for malware detection. Finally, malicious 

OS objects in a cluster fashion rather than one by one as done in traditional methods, which help users to thoroughly eliminate the changes 

of a malware without malware family knowledge.  
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1. Introduction  

 

The Behavior based detection techniques can provide 

promising alternative solutions to the growing malware 

problem. Unlike signature based techniques that examine the 

syntactic pattern of a program’s binary, behavior based 

techniques focus on the actual actions that the program 

performs in the system to access system services or resources. 

Behavior based detectors is difficult to be by passed by 

obfuscations or polymorphisms that are used to evade signature 

based detectors. Moreover, as featured malware behaviors are 

often shared by a family of malware instances instead of 

pertaining to only an individual instance, behavior based 

detectors are able to detect previously unseen malware 

instances and avoid the need of a large database of signatures 

to identify each known piece of malware instance. The grand 

challenge in behavior based malware detection is to perform 

detection accurately with a low performance overhead. 

Commercial antivirus tools often have a module for monitoring 

malicious behaviors, which is light-weight but not accurate. 

The module only leverages a single system call and the 

parameters to determine a malicious program. For example, 

intercepting and analyzing the arguments to determine whether 

a program is trying to modify a security sensitive registry key, 

and then given up an alarm window when this is true. As a 

outcome, such a module imposes small performance overhead 

on the system but at the same time produces frequent false 

alarms that annoy users. Many users even simply disable the 

behavior monitoring module. 

  On the other hand, state of the art behavior-based malware 

detectors meaningful improve the detection accuracy at the 

cost of heavy overhead on the system. They extract 

dependencies among system calls to construct dependency 

graphs, and match the activities of a program with predefined 

dependency graphs to determine if it is a malware. Extracting 

dependencies requires tracing data flow which meaningfully 

slows down the system and needs virtual machine technology 

to support. Moreover, matching dependency graph requires a 

complex algorithm that further slows down the system 

especially when the number of predefined dependency graphs 

is large in a real application scenario. Therefore, existing 

detection technologies cannot work effectively online, since 

they are bulky or inaccurate. By carefully analyzing existing 

technologies, find that they commonly determine whether a 

program belongs to a specific malware family based on 

implementation specific artifacts such as byte sequences and 

dependencies among system calls. When the artifacts are 

simple, the detectors are light weight but not accurate. On the 

other hand, creating more accurate detectors with more 

complex artifacts would incur a heavy overhead. Moreover, 

existing technologies often target to identify the exact family 

of a malware rather than simply discriminate a malware from 

benign software. Identifying a malware family is useful when 

cleaning up the impacts of a malware, but the need of a more 

complex specification to recognize the malware family affects 

the performance of the system.  

 In this paper study of growing grapes the devise a novel 

malware detector, named Growing Grapes, which can achieve 

accurate malware detection without incurring high overhead. 

The detector consists of a clustering engine and a detection 

engine. The clustering engine correlates suspicious objects into 

a number of clusters by tracking OS level information flows 

and attaching a cluster label to each object. Each of the 

obtained clusters contains either all benign objects or all 

malicious objects. The detection engine determines a malicious 

cluster by matching a predefined behavior template. A 
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behavior template consists of a group of independent atomic 

behaviors, each of which serves for different malware intent, 

for example, hiding itself from users or disabling antivirus 

tools. Each atomic behavior consists of a system call and their 

arguments. All templates are stored in a behavior template 

database.  

 In order to have an accurate online detector, the define two 

techniques. First, to achieve accurate detection, using a 

simulated annealing algorithm to optimally select a set of 

behaviors to form a behavior template to identify a single 

malware. With the optimal combination of behaviors in a 

behavior template and the combination of templates in the 

template database, the malware detector can identify the 

maximum possible number of malware samples while 

incurring the minimum false positive rate. The further reduce 

the false positive rate; implicitly take into account the source of 

the processes launching the behaviors when determining a 

malicious cluster. Second, take two means to achieve online 

detection: 1) The devise a novel method to correlate system 

calls of a malware’s all processes using light weight OS level 

information flows rather than traditional data flows; 2)The 

design a novel structure for the template database. The 

database occupies a small and fixed size of memory even when 

the number of templates contained increases up to millions. 

With the support of the database, a template searching and 

matching algorithm becomes very simple, and it only needs to 

simultaneously test 45 bits within one operation. 

 

2.   Related Work 

 
Growing Grapes is a type of behavior-based detector which 

monitors system calls or API calls, but it differs from all 

existing behavior based studies. Previous work takes into 

account the relations among system calls, for example This 

paper reports preliminary results aimed at establishing such a 

definition of self for Unix processes, one in which self is 

treated synonymously with normal behavior. That short 

sequences of system calls in running processes generate a 

stable signature for normal behavior. The signature has low 

variance over a wide range of normal operating conditions and 

is specific to each different kind of process, providing clear 

separation between different kinds of programs. Further, the 

signature has a high probability of being relaxed when 

abnormal activities, such as attacks or attack attempts, occur. 

These results are significant because most prior published work 

on intrusion detection has relied on either a much more 

complex definition of normal behavior or on prior knowledge 

about the specific form of intrusions. The suggest that a 

simpler approach, such as the one described in this paper; can 

be effective in providing partial protection from intrusions. 

One advantage of a simple definition for normal behavior is the 

potential for implementing an on line monitoring system that 

runs in real time [1]. 

In this paper, present a robust signature based malware 

detection technique, with emphasis on detecting obfuscated 

malware and mutated malware. The hypothesis is that all 

versions of the same malware share a common core signature 

that is a combination of several features of the code. After a 

particular malware has been first identified, it can be analyzed 

to extract the signature, which provides a basis for detecting 

variants and mutants of the same malware in the future. 

Encouraging experimental results on a large set of recent 

malware are presented [2].   

In this paper capitalize on earlier approaches for dynamic 

analysis of application behavior as a means for detecting 

malware in the Android platform. The detector is embedded in 

an overall framework for collection of traces from an unlimited 

number of real users based on crowdsourcing. The framework 

has been demonstrated by analyzing the data collected in the 

central server using two types of data sets those from artificial 

malware created for test purposes, and those from real malware 

found in the wild. The method is shown to be an elective 

means of isolating the malware and alerting the users of a 

downloaded malware. This shows the potential for avoiding 

the spreading of a detected malware to a larger community [3].  

There are many different levels on which IDS can monitor 

system behavior. It is critical to profile normal behavior at a 

level that is both robust to variations in normal and relaxations 

by intrusions. In the work reported here, chose to monitor 

behavior at the level of privileged processes. Privileged 

processes are running programs that perform services (such as 

sending or receiving mail), which require access to system 

resources that are inaccessible to the ordinary user. To enable 

these processes to perform their jobs, they are given privileges 

over and above those of an ordinary user (even though they can 

be invoked by ordinary users). In UNIX, processes usually run 

with the privileges of the user that invoked them. However, 

privileged processes can change their privileges to that of the 

super user by means of the set mechanism. One of the security 

problems with privileged processes in UNIX is that the 

granularity of permissions is too coarse Privileged processes 

need super user status to access system resources, but granting 

them such status gives them more permission than necessary to 

perform their specific tasks. Consequently, they have 

permission to access all system resources, not just those that 

are relevant to their operation. Privileged processes are trusted 

to access only relevant system resources, but in cases where 

there is some programming error in the code that the privileged 

process is running, or if the privileged process is incorrectly 

configured, an ordinary user may be able to gain super user 

privileges by exploiting the problem in the program. For the 

sake of brevity, usually refer to privileged processes or 

programs simply as and use the qualifier only to resolve 

ambiguities [4]. 

An automatic technique for building such specifications is 

desirable, both to reduce the AV vendors’ response time to 

new threats and to guarantee precise behavioral specifications. 

If the behavioral specification used for detection is not specific 

enough, then there is a risk that benign applications will be 

flagged as malware. Similarly, if it is too specific then it may 

fail to detect minor variants of previously observed malware. 

In this paper are define address the challenge of automatically 

creating behavioral specifications that strike a suitable balance 

in this regard, thus removing the dependence on human 

expertise. The making the observation that the behavioral 

specifications used in malware detection are a form of 

discriminative specification. A discriminative specification 

describes the unique properties for a set of programs, in 

contrast to another set of programs. This paper gives an 

automatic technique that combines graph mining and concept 

analysis to synthesize discriminative specifications, and 

explores an application of the resulting specifications to 

malware detection. Given a set of behavior graphs that describe 
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the semantics exhibited by malicious and benign applications, 

the graph mining operation extracts significant behaviors that 

can be used to distinguish the malware from benign 

applications. As these behaviors are not necessarily shared by 

all programs in the same set (as, for example, there are many 

ways in which a malicious program can attack a system), the 

use them as building blocks for constructing discriminative 

specifications that are general across variants, and thus robust 

to many obfuscations. Furthermore, because our graph mining 

and specification construction algorithms are indifferent to the 

details of the underlying graph representation, technique 

complements and benefits from recent advances in binary 

analysis and behavior graph construction [5]. 

A common application of virtual machines (VM) is to use 

and then throw away, basically treating a VM like a completely 

isolated and disposable entity. The disadvantage of this 

approach is that if there is no malicious activity, the user has to 

re do all of the work in her actual workspace since there is no 

easy way to commit (i.e., merge) only the benign updates 

within the VM back to the host environment. In this work, 

develop a VM commitment system called Secom to 

automatically eliminate malicious state changes when merging 

the contents of an OS-level VM to the host. Secom consists of 

three steps grouping state changes into clusters, distinguishing 

between benign and malicious clusters, and committing benign 

clusters. Secom has three novel features. First, instead of 

relying on a huge volume of log data, it leverages OS-level 

information flow and malware behavior information to 

recognize malicious changes. As a result, the approach imposes 

a smaller performance overhead. Second, different from 

existing intrusion detection and recovery systems that detect 

compromised OS objects one by one, Secom classifies objects 

into clusters and then identifies malicious objects on a cluster 

by cluster basis. Third, to reduce the false positive rate when 

identifying malicious clusters, it simultaneously considers two 

malware behaviors that are of different types and the origin of 

the processes that exhibit these behaviors, rather than considers 

a single behavior alone as done by existing malware detection 

methods. The having successfully define Secom on the 

Feather-weight Virtual Machine (FVM) system, a Windows 

based OS-level virtualization system. Experiments show that 

the prototype can effectively eliminate malicious state changes 

while committing a VM with small performance degradation. 

Moreover, compared with the commercial anti malware tools, 

the Secom prototype has a smaller number of false negatives 

and thus can more thoroughly clean up malware side effects. In 

addition, the number of false positives of the Secom prototype 

is also lower than that achieved by the on-line behavior-based 

approach of the commercial tools [6].  

 

3.   Growing Grapes Technique 
 

Growing Grapes approach consists of clustering engine and 

detection engine. The clustering engine groups the objects of a 

program together into a cluster. The detection engine decides 

whether the cluster is malicious by monitoring all behaviors of 

the cluster. If a cluster’s behaviors match a predefined behavior 

template in the template database, then it is identified as 

malicious. The behavior template database has a novel 

structure to minimize the memory and runtime overheads. 

Moreover, the templates in the database are optimized to 

reduce false positives and negatives. 

 

3.1     Cluster Engine 

 

The clustering engine clusters together the suspicious objects 

of a program. Suspicious objects are the ones that derive from 

the Internet or removable drives, and are thus suspected to be 

malicious. Suspicious objects only include processes and 

executable files because a process is possibly the agent of an 

intruder and an executable file determines the execution flow 

of a process which represents an intruder. Based on the cluster, 

they can completely monitor all atomic behaviors of a program 

and perform accurate detection by using multiple atomic 

behaviors to identify a single malware. Moreover, the cluster 

can help users to clean up the malware without knowing the 

exact family of the malware [7].  

 

 
 

Figure 1: (a) Cluster, (b) Atomic Behavior, (c)Template 
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The challenge is how to correlate suspicious objects together 

into clusters in a light manner. Since objects of a malware 

often have various types and are scattered all over the system, 

it is difficult to associate them together. The observe that 

objects of a malware can be correlated together by tracing OS-

level information flows, and at the same time the malicious 

objects can be clearly separated from the other objects through 

a proper way of attaching cluster labels to them. Accordingly, 

the devise a novel approach to correlate suspicious objects into 

clusters, which includes root rules, spreading rules and 

clustering rules. These rules are explained in details in the 

following subsections. 

 

3.2    Root Rule 

 

As all malwares come from either the network or removable 

drives, we design root rules to mark the objects from the 

network or removable drives as suspicious. These objects are 

start points to trace suspicious objects. 

 Root Rule A: Marking processes which conduct 

remote communications as suspicious 

 Root Rule B: Marking executable (i.e., executable 

file) located at removable drives as suspicious. 

An executable in this paper are define growing grapes 

technique  an executable file with a specific extension, such as 

.EXE, .COM, .DLL, .SYS, .VBS, .JS, BAT, etc., or a special 

type of data file that can contain macro codes, say a semi-

executable, such as .DOC, .PPT, .XLS, .DOT, etc. Growing 

Grapes does not allow a suspicious process to change the 

extension of a file in order to prevent its potential evasion of 

tracing. With these two rules, all malwares that attempt to enter 

the system can be tracked as there are only two ways for them 

to break into system, either through network communications 

or through a removable drive. 

 

3.3    Spreading Rule 

 

To track OS-level information flow, Back Tracker is a 

successful approach. However, the major challenge is how to 

make sure that it won’t get the entire system marked as 

suspicious while at the same time preventing malwares to 

escape from tracing. This needs to tradeoff between reducing 

the number of marked objects and reducing the risk of malware 

evasion. The approach is to trace preferentially the information 

flows with a high risk of propagating malwares while pruning 

the information flows with a low risk. Based on this principle, 

the following rules to mark related objects as suspicious. 

 Spreading Rule 1): Marking executable files created 

or modified by a suspicious process as suspicious 

 Spreading Rule 2): Marking processes spawned by a 

suspicious process as suspicious 

 Spreading Rule 3): Marking processes loading a 

suspicious executable file or reading a suspicious 

semi executable or script file as suspicious 

 Spreading Rule 4): Marking processes receiving data 

from a suspicious process through a dangerous IPC as 

suspicious. 

As an executable represents an inactive malware while a 

process represents an active malware, the information flows 

presented in these four rules have a high possibility of 

propagating malwares [7]. Thus, to track the information flows 

with a high risk of propagating malwares, the spreading rules 

focus on tracing executable and processes. In the Spreading 

Rule C, Semi-executable and script file possibly contain 

malwares (e.g., macro virus in MS Word), and thus the 

processes reading them need to be marked. Although the macro 

virus protection in Office software can reduce the chances of 

macro virus infection, relying on it is very dangerous as crafted 

macro codes are able to subvert it and cause destructive 

damages.  

To prune the information flows which have a low risk of 

propagating malwares, the spreading rules do not trace most 

reading and writing operations on ordinary files, directories 

and registry entries, which are frequently invoked but difficult 

to propagate malwares. However, subtle malwares might evade 

tracing by changing registry entries or configuration files 

which subsequently affect the processes reading them, so as to 

run malicious executables, escalate privileges, impose damages 

on system, etc. No matter what evasion schemes the malwares 

utilize, they need to run their own executables to perform the 

tasks, which are downloaded from the network, copied from 

removable drives, or obtained from changing local executables. 

Since all executable related operations are thoroughly traced by 

the Spreading Rule A and C, the malwares will be captured 

whenever trying to load their executables. The two rules are 

applicable to all existing malwares because they rely on their 

own executables to perform malicious tasks on a host, 

according to our analysis on Symantec Threat Explorer. In case 

that a malware relies only on benign programs to perform 

attacks, the Root Rule A still can capture it when it requires a 

remote communication to accept commands to exploit the 

benign program to perform the malicious tasks [7]. In addition, 

for a few special registry entries and configuration files that 

can be used by a malware to fool a benign program to execute 

arbitrary commands, Growing Grapes permit a suspicious 

process to modify them. Therefore, although the operations on 

registry entries or configuration files are not traced, malwares 

still cannot avoid being detected by Growing Grapes. To 

reduce the number of marked processes, the spreading rules 

only trace dangerous IPCs Inter Process Communication. 

According to investigation on Microsoft Security Bulletins, a 

primary source for analyzing attack vectors of Windows OS, 

the overwhelming majority of vulnerable IPCs can only be 

used to launch denial-of-service attack, disclose sensitive 

information, or escalate the privileges of the processes that 

send IPC data, rather than take control of the receiver process. 

Accordingly, they cannot be used to propagate malwares. 

Moreover, IPCs that can propagate malwares often rely on 

network (e.g., Remote Procedure Call) and thus are traced by 

the Root Rule A. Consequently, the employ a Dangerous-IPC-

List to trace dangerous IPCs since there are very few 

dangerous IPCs in a Windows OS. 

 

3.4     Clustering Rule 

 

Based on the spreading rules, the suspicious objects are 

actually connected to each other by information flows and 

form an existent but invisible dependency graph, which had 

been disclosed by the literature [7]. The graph is a directed 

graph and has a root node. Its nodes represent OS objects, e.g., 

a file, a process. Its edges represent information flow related 

operations, e.g., creating a process, modifying a file. Figure 2 

(a) and (b) show two dependency graphs which are derived 

from a networking process and an executable file respectively. 



DOI: 10.18535/ijecs/v4i8.54 
 

Mr. Bhushan Kinholkar, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13921-13926  Page 13925 

The clustering rules are responsible for dividing the 

dependency graph into sub graphs, i.e., clusters. note that, this 

technique do not intend to really generate dependency graphs 

to help cluster objects since this would not be applicable to an 

online approach. Instead, the clustering rules are implemented 

together with the spreading rules as follows: when an object is 

determined as suspicious by clustering or spreading rules, a 

proper cluster label, i.e., a number and a time stamp, will be 

attached to it at the same time in order to denote that it is a 

suspicious object and belongs to the cluster identified by the 

label. 

 

 
Figure 2: (a) Branch Cluster, (b) Drive Cluster. 

 

In other words, the clustering rules are enforced along with 

the spreading rules in real-time, rather than generating a 

dependency graph and then analyzing it. 

When a root object is a network facing process, its 

dependency graph is to abrasive-grained to be used to 

recognize malicious objects in a cluster fashion since it might 

contain both benign and malicious objects [7]. In other words, 

this technique cannot determine that all objects in a graph are 

malicious even if most of the objects in the graph are 

malicious. Thus, must partition the graph into a number of sub 

graphs, say clusters, so that each cluster contains either only 

benign or only malicious objects. 

According to the recent research and analysis on a huge 

number of malware descriptions in the Symantec Threat 

Explorer, malwares break into a host through three basic attack 

channels. The first is that, malwares exploit bugs in network 

facing daemon programs or client programs and compromise 

them, then immediately spawn a shell or backdoor process. 

After this, the attacker tries to download and install attacking 

tools, as well as performs any other adversary actions. 

 Clustering Rule 1: Attaching a cluster label to a 

process and its descendants if the process is directly 

spawned by a network-facing process. 

This type of cluster a branch cluster, e.g., the Branch cluster 

B in Figure 2. A branch cluster corresponds to a sub graph of a 

dependency graph which roots from a network-facing process. 

The other attack channel is that, malwares increasingly use 

social engineering to lure users into downloading and 

launching them. After started, malwares copy themselves and 

make themselves resident in a host. Consequently, the 

following rule. 

 Clustering Rule 2: Attaching a cluster label to a 

downloaded executable and its descendants. 

 Clustering Rule 3: Attaching a cluster label to an 

executable file located on a removable drive and all 

its descendent objects. 

Another issue for labeling objects is about a joint child who 

has multiple parent nodes in a dependency graph, e.g., the joint 

children A and B in Figure 2 (a). That is, when the parent 

nodes belong to distinct clusters, determine the cluster label of 

the joint child. Basically, make decision according to the 

priority sequence like other objects. Obviously, the joint child 

should inherit the cluster label from its parent process or 

executable file if either of them exists instead of other objects. 

Moreover, as loading an executable is posterior to creating a 

process and necessarily overwrites the newly created process 

code segment, the new process activity is based on the loaded 

executable. Hence, the joint child should inherit the label from 

the loaded executable rather than the parent process if both 

exist. If more than one parent node has the same priority in the 

sequence above, the child inherits their labels in the reverse 

time order. Consequently, the joint children A and B are 

classified into Branch-cluster A and B respectively, as shown 

in Figure 2(a). On the other hand, when splitting a dependency 

graph into different branch clusters, a sophisticated malware 

might intentionally separate an ASEP (Auto-Start Extensibility 

Point) pair into two different clusters. Then, the two clusters 

work together to perform malicious actions and potentially 

evade Growing Grapes detection [7]. An ASEP is used to 

enable auto starting of programs without an explicit user 

invocation, and thus becomes a common target of infection by 

malwares. An ASEP pair represents an ASEP and the 

corresponding executable file. To mitigate this issue, 

periodically scan the clusters to see whether there are split 

ASEP pairs, and combine the related clusters together if found. 

 

3.5    Detection Engine 

 

The detection engine performs detection tasks by monitoring 

the activities of each cluster. To obtain an accurate detection, 

the engine decides a malicious cluster using multiple atomic 

behaviors rather than a single atomic behavior [7]. The 

multiple atomic behaviors used to determine a malware serve 

as a predefined behavior template in a behavior template 

database that belongs to the detection engine. 

At a high level, using multiple atomic behaviors to identify a 

malware is in accordance with the recent work that uses 

multiple significant behaviors. An atomic behavior is often the 

core of a significant behavior, because a significant behavior is 

represented by a dependency graph that includes a mission-

critical system call as the core step. Moreover, the result from 

another recent work also supports our idea of using multiple 

behaviors. The result shows that a set of discriminative 

operations can be used to recognize a malware family. This 

actually proves that multiple operations can be used to 

effectively detect a malware. 

The challenge to building the detection engine is three folds. 

The first is how to extract proper atomic behaviors that reflect 

the intent of the malware authors from system specific details. 

The second is how to construct behavior templates that can 

effectively detect known and unknown malware with a small 

number of false positives. The last is how to design an online 

mechanism to efficiently match the behavior templates. The 

present strategies for addressing these three challenges in the 

following three subsections. 
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An atomic behavior consists of an operation, the manipulated 

object and the necessary arguments, which is critical to fulfill a 

malicious intent, e.g., modifying registry key value for 

surviving reboot. When the behavior is too specific, e.g., 

presenting the exact name of the registry key and value, the 

behavior may fail to recognize the minor variants of previously 

observed malware. Hence, a generalization is necessary. 

The having two basic steps to generalize atomic behaviors 

(1) Extracting security sensitive OS object types and operation 

types based on careful analysis on system details; (2) Making 

meaningful combinations of the OS object types and operation 

types to form candidate atomic behaviors, which are shown in 

the next paragraph. 

B_file, B_registry, B_process, and B_system represent four 

sets of atomic behaviors. The operation types of various 

objects are a generalization of one or several system calls and 

necessary arguments. The File Type is recognized from the 

extension names of the files. The Parent Directory Type is 

recognized by the environment variables or paths, which 

represents the parent directory of the file. Registry Type is 

identified by the paths of the registry keys. Process Type is 

detected by the names and paths of the image files. As a result 

of the generalization, and obtained 63 candidate atomic 

behaviors. Some examples include “create executable files 

under system directory”, “modify registry to disable firewall” 

and “kill antivirus processes”. 

As an online detector, the detection algorithm should be 

quick and light-weight, which is critical to the applicability of 

the detector. For Growing Grapes, the detection algorithm 

searches in the behavior template database to determine 

whether there is a template that matches the set of behaviors 

exhibited by the given cluster. A natural implementation of the 

algorithm might use a number to represent a behavior and a set 

of numbers to constitute a template, and store a set of templates 

into a template database. In a real application scenario, the 

template database might be huge and thus cost a significant 

amount of time to search within the whole database. As the 

detection algorithm will be called very frequently by related 

system calls and API functions, such implementation of the 

algorithm will significantly affect the system performance. 

To accelerate the template searching and matching procedure 

is design a novel detection algorithm that uses a number to 

represent a behavior template rather than a behavior. Each bit 

of the number represents an atomic behavior belonging to the 

template. Thus an integer with 64 bits can express a template 

that consists of 64 atomic behaviors at most. Accordingly, the 

template matching procedure only needs a single comparison 

between two integers instead of a serial of such comparisons. If 

the template database is very large, it is time consuming to 

search through it. Hence, do not store all of the templates one 

by one as traditional methods do. Instead, here is define a 

novel structure for the template database, which uses a fixed 

size of 21K memory to contain up to 264 templates and tests a 

few bits within the 21K space to fulfill a query for a given 

template. 

 

4.  Conclusion 
 In this paper, the overall study of Growing Grapes, a novel 

scheme towards building a behavior-based accurate online 

detector that requires low false positive and high performance 

simultaneously. Growing Grapes has two engines. One is the 

clustering engine responsible for collecting the objects of a 

suspicious program into a cluster by tracing light-weight OS 

level information flow rather than traditional data flow. The 

other is the detection engine that determines a malware using 

multiple simple behaviors, i.e., a behavior template, rather than 

a single complex behavior. The detector thus novelly identifies 

the malicious changes of a malware in a cluster fashion rather 

than one by one, which helps the ordinary users to thoroughly 

clean up the malware. The template database is optimized to 

reduce the false positive rate while preserving high true 

positive rate. With a novel design of the template and database 

structure, it can complete a query in one operation and 

occupies merely 21K memory space which allows storing up to 

2^64 templates.  
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